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1. Introduction

In recent years there has been a growing interest in the calculation of transport coefficients

in quantum field theories at finite temperature. With the advent of relativistic heavy-ion

colliders, such as RHIC, a proper knowledge of transport coefficients has become relevant

since hydrodynamical descriptions of heavy-ion collisions provide a useful tool to analyse

the experimental data [1]. In practice the extension of ideal relativistic hydrodynamics to

include finite transport coefficients is far from straightforward and applications to heavy-ion

physics have only just begun [2].

If the temperature is sufficiently high and the theory is weakly coupled, transport co-

efficients can be computed in a perturbative expansion, employing either kinetic theory

or field theory using Kubo formulas. It turns out that the latter approach requires the

summation of an infinite series of higher-order diagrams, known as ladder diagrams, which

has been a serious drawback for its use. For a scalar theory, the higher-order contributions

in the loop expansion have been identified and summed in ref. [3], using an intricate dia-

grammatic analysis, and the leading-order results for the shear and bulk viscosities have

been found. In ref. [4] the equivalence of an effective Boltzmann equation and the field-

theoretical calculation is shown. Using a more transparent analysis, the diagrammatic

conclusions of ref. [3] have been confirmed recently [5]. So far, the only other transport

coefficient for which the ladder series has been summed explicitly is the color conductivity

in QCD [6]. The viscosities in the scalar theory and color conductivity in QCD have the

property that the one-loop contribution and the ladder contributions are of the same order

in the coupling constant. However, for other transport coefficients in gauge theories, such

as the shear viscosity or the electrical conductivity, the ladder contributions are in fact

larger than the one-loop one [7]. Only recently and using kinetic theory, a complete com-

putation of the leading logarithmic order of these transport coefficients has appeared [8].

Unfortunately, a full leading-order computation is still lacking. Ref. [8] provides a useful

guide to the literature.
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Euclidean lattice simulations offer in principle the possibility to compute transport co-

efficients completely nonperturbatively [9]. However, transport coefficients are determined

by the small frequency limit of zero-momentum spectral functions of appropriate composite

operators (such as components of the energy-momentum tensor) and spectral functions or

other real-time correlators are not readily available on a euclidean lattice, although recent

progress has been made with the Maximal Entropy Method (MEM) [10, 11].1 For that

reason it was proposed in ref. [9] to introduce instead an ansatz for the spectral function

and fit the result to the numerical data for the euclidean correlator, employing a stan-

dard dispersion relation between these two. This approach was pursued more recently in

refs. [13, 14].

Motivated by these studies, our goal in this paper is to compute the spectral function

relevant for the shear viscosity at high temperature in weakly-coupled scalar (section 3)

and nonabelian gauge theories (section 4). In the conclusions we compare our findings with

the analysis carried out so far in refs. [9, 13, 14]. It is found that the ansatz used in these

papers is inadequate and we suggest a better one. We also point out a potential problem in

the calculation of spectral functions at very low frequencies (ω → 0) from euclidean lattice
correlators using the MEM approach.

2. Correlation functions

We start with a summary of basic relations between transport coefficients, spectral func-

tions and euclidean correlators, using the shear viscosity as an example. The relations

presented in this section are quite general and valid for arbitrary transport coefficients.

The shear viscosity can be defined from a Kubo relation as

η =
1

20
lim
ω→0

1

w

∫

d4x eiωt 〈[πkl(t,x), πkl(0,0)]〉 , (2.1)

with πkl the traceless part of the spatial energy-momentum tensor. The brackets denote the

equilibrium expectation value at temperature T . We define spectral functions of hermitean

(composite) operators, such as πkl, as the expectation value of the commutator,

ρππ(x− y) = 〈[πkl(x), πkl(y)]〉 , (2.2)

and in momentum-space

ρππ(ω,p) =

∫

d4x eiωt−ip·xρππ(t,x) . (2.3)

Spectral functions obey basic symmetry relations2 ρ∗ππ(x) = −ρππ(x) = ρππ(−x) and
ρ∗ππ(ω,p) = ρππ(ω,p) = −ρππ(−ω,p) as well as the positivity condition ωρππ(ω,p) ≥ 0.

1Note that for classical field theories at finite temperature spectral functions can be computed nonper-

turbatively by numerical simulations directly in real time [12].
2When most manipulations take place in real-space, it can be convenient to define spectral functions

such that they are real instead of purely imaginary in real-space. Here we stick to the usual convention and

spectral functions are real in momentum-space.
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The shear viscosity is determined by the slope at zero frequency:

η =
1

20

d

dω
ρππ(ω)

∣

∣

∣

ω=0
, (2.4)

where ρππ(ω) = ρππ(ω,0). Since the spectral function is odd, we consider from now on

positive ω only.

The euclidean correlator (at zero spatial momentum) is given by

GE
ππ(τ) =

∫

d3x 〈πkl(τ,x)πkl(0,0)〉E (τ = it) , (2.5)

where the imaginary time τ ∈ [0, 1/T ] and GE
ππ(1/T − τ) = GE

ππ(τ). The euclidean cor-

relator and the spectral function are related via an integral equation, originating from a

dispersion relation,

GE
ππ(τ) =

∫ ∞

0

dω

2π
K(τ, ω)ρππ(ω) , (2.6)

with the kernel

K(τ, ω) = eωτn(ω) + e−ωτ [1 + n(ω)] = e−ωτ + 2n(ω) coshωτ , (2.7)

obeying K(τ, ω) = −K(τ,−ω) = K(1/T − τ, ω). The Bose distribution is

n(ω) =
1

exp(ω/T )− 1 . (2.8)

The low-frequency part of the spectral function contains all information on the trans-

port coefficient and its effect on the euclidean correlator can be estimated quite easily.

When ω ¿ T , the kernel can be expanded as

K(τ, ω) =
2T

ω
+
ω

T

[

1

6
− τT (1− τT )

]

+O
(

ω3

T 3

)

, (2.9)

and all except the first term are suppressed. As a consequence we find that the contribution

to the euclidean correlator from low frequencies,

GE,low
ππ (τ) = 2T

∫ ωΛ

0

dω

2π

ρππ(ω)

ω
, (2.10)

is independent of τ . The frequency cutoff ωΛ ¿ T is introduced here to justify the expan-

sion of the kernel. We conclude that the dominant effect of the low-frequency region is a

constant τ -independent contribution to the euclidean correlator.

3. Scalar field

We consider a one-component massless scalar field with a quartic λφ4/4! interaction.3 The

one-particle spectral function is

ρ(x− y) = 〈[φ(x), φ(y)]〉 = G>(x− y)−G<(x− y) . (3.1)

3We assume that the temperature is sufficiently high such that a possible zero-temperature mass m2
0 ¿

λT 2 plays no role.
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The one-particle Wightman functions, G>(x−y) = 〈φ(x)φ(y)〉 andG<(x−y) = 〈φ(y)φ(x)〉,
are related to the one-particle spectral function via the KMS condition

G>(p) =
[

n(p0) + 1
]

ρ(p) , G<(p) = n(p0)ρ(p) . (3.2)

The traceless part of the spatial energy-momentum tensor reads

πkl = ∂kφ∂lφ−
1

3
δkl∂mφ∂mφ. (3.3)

The lowest-order skeleton diagram that contributes to the spectral function for the shear

viscosity in eq. (2.2) follows from simple Wick contraction,

〈[φ2(x), φ2(y)]〉 = 2
[

G>2(x− y)−G<2(x− y)
]

, (3.4)

and we find

ρππ(ω) =
4

3

∫

d4k

(2π)4
(k · k)2n(k0)ρ(k0,k)

[

ρ(k0 + ω,k)− ρ(k0 − ω,k)
]

, (3.5)

where we used the KMS conditions (3.2) and −n(−ω) = n(ω) + 1. The four k’s in the

integrand arise from the derivatives in πkl. In the remainder of this section we compute

the one-loop spectral function (3.5) as a function of the external frequency.

The spectral function ρππ depends on the one-particle spectral functions ρ, which

contain the quasiparticle structure of the theory at finite temperature. We describe this

in some detail since similar, though more complicated, considerations appear in gauge

theories. For hard momenta |k| ∼ T , excitations are on-shell with energy |k|. For softer
momenta screening effects become important and hard thermal loop (HTL) resummation

yields a temperature-dependent plasmon mass, m2 = m2
th(1− 3mth/πT + . . .) with m2

th =

λT 2/24 [15]. Finally, collisions in the plasma result in a finite (but narrow) momentum-

dependent width 2γk ¿ m ¿ T , changing the one-particle spectral function from an

on-shell delta function to a Breit-Wigner spectral function (see below) [16].

We may now discuss the one-loop expression k0

2γ
k

kE  + i kγ

ω+ kE  − i kγ

ω

Figure 1: Typical configuration of poles

in the complex k0-plane for the evaluation

of the one-loop spectral function ρππ(ω),

Ek (2γk) denotes the quasiparticle energy

(width).

(3.5). First we note that the integral is domi-

nated by hard ∼ T momenta. Therefore, for ex-

ternal frequencies that are not too small a sim-

ple on-shell delta function for the one-particle

spectral functions suffices to find the dominant

contribution. We will refer to this region as the

high-frequency region. For smaller frequencies,

however, the arguments of the delta functions

come close, producing a so-called pinch singu-

larity [3]. The pinch singularity is screened by

a finite external frequency or width, whichever

one is the largest. For very small external frequencies, the inclusion of the width4 is essen-

tial [3]. This situation is sketched in figure 1. The effect of these nearly pinching poles is

to enhance the spectral function compared to naive estimates. We will refer to the region

where pinching poles are important as the low-frequency domain.

4And of ladder diagrams, see below.
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Figure 2: Contribution to the spectral function ρππ(ω)/ω
4 (full line) from decay/creation processes

(see eq. (3.7)) as a function of ω/T , with m/T = 0.1. The contribution from the nearly pinching

poles in the low-frequency region is discussed below. The dashed line shows the contribution

proportional to the Bose distribution only. The dotted line indicates the asymptotic value.

We start with the region where the frequency is much larger than the thermal width

and no pinch-singularity problems are encountered. The one-particle spectral function can

be taken on-shell and is

ρ0(k
0,k) = 2πε(k0)δ(k20 − ω2k) , (3.6)

where ωk =
√
k2 +m2 and ε(x) the sign-function. HTL effects are included in the mass

parameter. Evaluating the integrals in eq. (3.5) with the use of the delta-functions (the

angular integrals are trivial) results in (recall that we take ω > 0)

ρππ(ω) = θ(ω − 2m)
(

ω2 − 4m2
)5/2

48πω

[

n
(ω

2

)

+
1

2

]

, (3.7)

which is shown in figure 2. The physical processes are the decay of a zero-momentum

excitation with energy ω into two on-shell particles with equal and opposite momentum, and

the inverse process of creation. The decay process contributes also at zero temperature and

makes the spectral function increase as ω4 at large frequencies. The threshold at ω = 2m

arises from (simple) HTL resummation. This concludes the analysis of the spectral function

in the high-frequency domain.

We continue with the low-frequency region where pinch singularities lead to a non-

trivial enhancement of the spectral function. We replace the on-shell one-particle spectral

functions with Breit-Wigner spectral functions:

ρBW (k
0,k) =

1

2ωk

[

2γk
(k0 − ωk)2 + γ2k

− 2γk
(k0 + ωk)2 + γ2k

]

. (3.8)
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The width 2γk is determined by the imaginary part of the retarded self energy

γk = −
ImΣR(ωk,k)

2ωk

, (3.9)

and the dominant contribution at weak coupling arises from two-to-two scattering from

the two-loop setting-sun diagram [3, 16]. A convenient way to write this damping rate is

as [17]

γk = γ
T

ωk

B

( |k|
T
;
m

T

)

, (3.10)

where

γ =
λ2T

1536π
, (3.11)

determines the parametrical behaviour. The function B contains the nontrivial momen-

tum dependence and is related to A defined in ref. [17] as B(|k|/T ;m/T ) = (6/π2)×
A(|k|/T ;m/T ). In the limit of hard momenta and small mass [17]

lim
m→0

lim
|k|→∞

B

( |k|
T
;
m

T

)

= 1 . (3.12)

For analytical estimates we will neglect the momentum dependence and take B = 1. In

the results obtained by numerical integration the full momentum dependence is included.

We insert the Breit-Wigner functions into expression (3.5) for the spectral function

and perform the k0 integral by integrating around the poles in the complex plane. We

preserve only the dominant contributions and discard all terms suppressed by (powers

of) the coupling constant with respect to the leading order contribution. Breit-Wigner

spectral functions have four poles at complex energy-arguments k0 = ±(ωk ± iγk). From

the residue of these poles we keep n(ωk ± iγk) ∼ n(ωk). The Bose distribution n(k
0) has

poles along the imaginary axis at k0 = 2πinT , n ∈ Z. However, the residues at these poles

are subdominant compared to those from the poles of the Breit-Wigner functions. Hence

we do not include these contributions. After performing the k0 integral we find

ρππ(ω) = −
4

3

∫

k

|k|4
2ωk

{

[n(ωk)− n(ωk − ω)]I(ω,k)
ωk − ω

ω2 + 4γ2k
− [ω → −ω]

}

, (3.13)

with
∫

k

=

∫

d3k

(2π)3
, (3.14)

and

I(ω,k) =
8γk

(ω − 2ωk)2 + 4γ
2
k

. (3.15)

For sufficiently large ω and in the limit of small coupling (width) we may take I(ω,k) →
4πδ(ω − 2ωk) and the result of the previous calculation in the high-frequency region is

recovered, as it should.

Let’s now consider the low-frequency region, ω . m. Here we may approximate

I(ω,k) ' 2γk/ω
2
k and expand the difference between the Bose distributions to find

ρππ(ω) = −
8

3

∫

k

|k|4
ω2k

n′(ωk)
ωγk

ω2 + 4γ2k
(0 ≤ ω . m) . (3.16)
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We note that the last factor controls the pinch singularity in precise agreement with figure 1.

Although in principle ρππ(ω)/T
4 may depend on the three dimensionless combinations

ω/T , γ/T , and m/T , we find that in practice it only depends on ω/γ and m/T . Since

the integral is dominated by hard momenta the m/T dependence is subdominant and the

natural parameter on which the spectral function depends in this region is ω/γ. It is easy

to see that the spectral function has a local maximum at ω ∼ γ and ρππ(ω ∼ γ)/T 4 ∼ 1.
For very small frequencies ω ¿ γ we expand and obtain

ρππ(ω)

T 4
= a1

(

ω

γ

)

+
a3
3!

(

ω

γ

)3

+ · · · (0 ≤ ω ¿ γ), (3.17)

with

a1 = −
2

3T 4

∫

k

|k|4
ω2k

n′(ωk)
γ

γk
' 5! ζ(5)

3π2
(3.18)

a3 =
1

T 4

∫

k

|k|4
ω2k

n′(ωk)

(

γ

γk

)3

' −7! ζ(7)
2π2

, (3.19)

where the ' indicates that the final integrals are evaluated by neglecting the remaining
momentum dependence of the damping rate (i.e. taking B = 1) as well as the thermal

mass (the first approximation has numerically the largest effect). From this the one-loop

viscosity follows as

η1−loop = −
1

30

∫

k

|k|4
ω2k

n′(ωk)
1

γk
' 2ζ(5)

π2
T 4

γ
. (3.20)

However, as is well-known [3] these one-loop results are not complete and a ladder summa-

tion is required to obtain the complete leading-order result (see figure 3). Due to nearly

pinching poles, each additional rung in the ladder contributes with a factor λ2T/γ ∼ 1 and
is therefore not suppressed. The effect of ladder summation is to change the coefficients

a1, a3, . . ., but not the parametric dependence on the coupling constant.

In the region γ ¿ ω . m we find

ρππ(ω)/T
4 = − 8

3T 4

∫

k

|k|4
ω2k

n′(ωk)
γk
ω
' 8ζ(3)

π2
γ

ω
(γ ¿ ω . m). (3.21)

���
�

���
�

Figure 3: Ladder diagrams that contribute to ρππ(ω) in the scalar theory. In the low-frequency

region, ω . γ, the pinching-pole contributions from the ladder diagrams are equally important as

the one-loop contribution. When ω À γ, pinching-pole contributions from ladder diagrams are

suppressed.
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Figure 4: Contribution to the spectral function ρππ(ω)/T
4 (full line) from the nearly pinching

poles in the low-frequency region as a function of ω/γ, obtained by numerical integration of eq.

(3.16). The dashed line is the analytical result (3.21) when γ ¿ ω . m, neglecting nontrivial

momentum dependence and finite mass corrections. The inset shows a blowup. The viscosity is

determined by the slope for ω → 0.

In this frequency interval pinching-pole contributions from ladders are subdominant since

each additional rung comes with a factor λ2T/ω ¿ 1. The perturbative part of the three-
loop ladder diagram (i.e. with a single rung) also contributes at this order and has the

same λ2T/ω behaviour as we find above.5 Figure 4 shows the contribution to the spectral

function from the nearly pinching poles in the low-frequency interval, obtained by numerical

integration of eq. (3.16) with the full momentum and mass dependence. Note that the

natural dimensionless combinations in the low-frequency region differ from those in the

high-frequency region (compare figures 2 and 4).

We may now combine the results obtained so far to construct the complete one-loop

spectral function at high temperature in the weak-coupling limit. The spectral function

can be written as the sum of the contributions discussed above:

ρππ(ω) = ρlowππ (ω) + ρhighππ (ω) , (3.22)

where ρlowππ represents the contribution from the nearly pinching poles in eq. (3.16), dom-

inating at low frequencies, and ρhighππ is the contribution from decay/creation processes in

eq. (3.7), dominating at higher frequencies.

We find that for very small frequencies the spectral function rises quickly as ω/γ. It

reaches a maximum of order 1 (in units of temperature) at ω ∼ γ and decays then slowly

as γ/ω. Around the thermal mass the contribution from decay/creation processes enter

5We thank Guy Moore for pointing this out.
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Figure 5: Complete one-loop spectral function ρππ(ω)/ω
4 (full line) as a function of ω/T , with

m/T = 0.1. The dashed line is the contribution from decay/creation processes and vanishes below

ω = 2m, the dot-dashed line is the contribution due to the nearly pinching poles at lower frequencies.

The dotted line indicates the asymptotic value.

and the spectral function increases again. Note that the results obtained in both frequency

domains smoothly match parametrically at ω ∼ m, since ρππ(ω ∼ 3m)/T 4 ∼ λ3/2, both

from the low- and the high-frequency calculation. For large ω the spectral function increases

as ω4, due to the zero-temperature decay process. Ladder diagrams do not affect this

characteristic shape. In figure 5 we present the complete one-loop spectral function as a

function of ω/T .6 In order to combine the low- and the high-frequency contribution in one

figure, we show ρππ(ω)/ω
4, which enhances the contribution at lower frequencies.

We are now ready to calculate the euclidean correlator using eq. (2.6). Because GE
ππ(τ)

depends linearly on the spectral function, we write it as a sum of two contributions, GE
ππ =

GE,low
ππ +GE,high

ππ , and discuss each term separately. We start with the contribution due to

decay/creation processes which reads

GE,high
ππ (τ) =

∫ ∞

2m

dω

2π
K(τ, ω)

(

ω2 − 4m2
)5/2

48πω

[

n
(ω

2

)

+
1

2

]

. (3.23)

It is easy to see that the mass plays only a subdominant role and finite-mass corrections

are suppressed by m2/T 2. Therefore we take m = 0 which yields

GE,high
ππ (τ) =

T 5

96π2

∫ ∞

0
dxx4

[

esx + e(1−s)x
]

n(x)

[

n
(x

2

)

+
1

2

]

, (3.24)

where x = ω/T and s = τT . The remaining integral can be performed and we find

GE,high
ππ (τ) =

π2T 5

3 sin5 u
{(π − u) [11 cos u+ cos 3u] + 6 sin u+ 2 sin 3u} , (3.25)

6We used here that m/T = 0.1 corresponds to λ ' 0.267 and γ/T ' 1.48 · 10−5.
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Figure 6: Logarithm of the euclidean correlator GE
ππ(τ)/T

5 as a function of τT , obtained by

numerical integration of eq. (2.6) with (3.22), for m/T = 0.1 (full line). The dashed line represents

the analytical expression for m = 0, eq. (3.29); it cannot be distinguished from the full result,

except in the inset. The dot-dashed line shows the contribution from decay/creation processes only,

obtained by numerical integration of eq. (3.23). The inset shows a blowup around τT = 0.5.

where u = 2πτT . An approximate but illuminating expression for the euclidean correlator

can be obtained by noticing that the integral in eq. (3.24) is dominated by hard frequencies,

x & 1/s with 0 < s < 1, such that the Bose distributions may be approximated with

maxwellian ones, n(x) ∼ e−x. In that case we find

GE,high
ππ (τ) ' 1

8π2

[

1

τ5
+

1

(1/T − τ)5
+

2

(3/2T − τ)5
+

2

(1/2T + τ)5

]

. (3.26)

This approximate expression differs less than 2% from the exact result (3.25). The domi-

nant 1/τ 5 behaviour of the correlator arises from decay at zero temperature. Finite tem-

perature is manifested mainly through the reflection symmetry, τ → 1/T − τ . At the

central point τT = 1/2, we find the contribution to the euclidean correlator from the

decay/creation processes to be

GE,high
ππ (τ = 1/2T ) =

4π2

45
T 5
[

1− 25

8π2
m2

T 2
+ · · ·

]

. (3.27)

The effect of a finite mass is to lower the mimimal value of the correlator.

The contribution to the euclidean correlator from the nearly pinching poles in the low-

frequency region can be found easily from eqs. (2.6) and (3.16) by interchanging frequency

and momentum integrals. Since ρlowππ gives the dominant contribution to the spectral func-

tion up to frequencies of order m, whereas ρhighππ dominates for higher frequencies, we can
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use the expansion (2.9) for the kernel and obtain

GE,low
ππ (τ) ' −8

3

∫

k

|k|4
ω2k

n′(ωk)

∫ ωΛ

0

dω

2π

2T

ω

ωγk
ω2 + 4γ2k

= −4
3

T

π

∫

k

|k|4
ω2k

n′(ωk) arctan

(

ωΛ
2γk

)

' 4π
2

45
T 5
[

1− 25

8π2
m2

T 2
+ · · ·

]

, (3.28)

with ωΛ ∼ m. The error that is introduced by expanding the kernel is negligible (see fig-

ure 6). We note that in our one-loop calculation this result is at leading order independent

of the coupling constant. Similarly, while ladder diagrams determine the precise shape of

the spectral function, the effect on the euclidean correlator GE,low
ππ (τ) appears only in sub-

leading corrections in the coupling constant, as can be seen with the kinetic approach [18].

Therefore the low-frequency contribution to the euclidean correlator is constant and of

order one (in the appropriate units) and insensitive to details of the ladder summation.

Combining the low- and high-frequency contribution to the euclidean correlator at high

temperature and weak coupling we find, to leading order in the coupling constant,

GE
ππ(τ) =

π2T 5

3 sin5 u
{(π − u) [11 cos u+ cos 3u] + 6 sinu+ 2 sin 3u}+ 4π

2

45
T 5 , (3.29)

with u = 2πτT . Corrections due to the finite thermal mass are suppressed by m2/T 2.

The euclidean correlator is minimal at τT = 1/2, and GE
ππ(1/2T ) receives contributions of

the same order from both the high- and the low-frequency region (at leading order in the

coupling they are equal). A comparison between the analytical result at m = 0 and the

full result obtained by numerical integration of eq. (2.6) with eq. (3.22) in the presence of

a finite mass is shown in figure 6.

4. Nonabelian gauge fields

We leave the scalar case and consider nonabelian SU(Nc) gauge theory. The traceless

spatial part of the energy-momentum tensor is

πij = F aµ
i F a

jµ −
1

3
δijF

akµF a
kµ . (4.1)

The coupling vertex between the operator πij and two gluons with incoming momenta P,K

and indices (µ, a), (ν, b) respectively can be read from (4.1) and we find7

Γabij,µν(P,K) = −δab
[

δµν

(

pikj + pjki −
2

3
δijp · k

)

+ P ·K
(

δiµδjν+ δiνδjµ−
2

3
δijδkµδkν

)

−

− (piKµδjν + pjKµδiν + Pνkiδjµ + Pνkjδiµ) +

+
2

3
δij (Pνkkδkµ + pkKµδkν)

]

. (4.2)

7In order to arrive at the basic one-loop expression (4.5) below we use here the imaginary-time formalism

with P = (p4,p), the Matsubara frequency ωn = −p4 = 2πnT (n ∈ Z) and P ·K = p4k4 + p · k.
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Figure 7: Diagrams that contribute to the spectral function ρππ at higher order. These diagrams

are special for a nonabelian theory.

In the nonabelian theory πij also couples to three and four gluons, which leads to diagrams

as depicted in figure 7. However, these contributions are suppressed by powers of the

coupling constant and will not be considered further.

We use the Coloumb gauge in which the gluon propagator reads

Dµν(P ) = PT
µν(p̂)∆T (P ) + δ4µδ4ν∆L(P ) , (4.3)

with PT
ij(p̂) = δij − p̂ip̂j, PT

4µ = PT
µ4 = 0. The transverse and longitudinal components

have the following spectral representations

∆T (P ) = −
∫ ∞

−∞

dω

2π

ρT (ω,p)

iωn − ω
, ∆L(P ) =

1

p2
+

∫ ∞

−∞

dω

2π

ρL(ω,p)

iωn − ω
. (4.4)

The one-loop contribution to the spectral function reads, after evaluating the Matsubara

sum and taking all frequencies real again,

ρππ(ω) =
2dA
3

∫

d4k

(2π)4
[

n(k0)− n(k0 + ω)
]

{

V1(k, ω)ρT (k
0,k)ρT (k

0 + ω,k) +

+ V2(k)ρT (k
0,k)ρL(k

0 + ω,k) +

+ V3(k)ρL(k
0,k)ρL(k

0 + ω,k)
}

, (4.5)

where dA = N2
c − 1 is the number of gluons and V1(k, ω) = 7|k|4 − 10k2k0(k0 + ω) +

7(k0)2(k0 + ω)2, V2(k) = 6k
2(k0)2 and V3(k) = −32|k|4. This expression is the equivalent

of eq. (3.5) in the scalar theory.

As in the scalar case, we start the analysis for external frequencies ω that are suffi-

ciently large such that no pinch singularities are present. The collective (HTL) effects in

a nonabelian plasma [19] can be incorporated in the one-particle spectral functions, which

are however more complex than in the scalar case. The spectral function for transverse

gluons can be written as [20, 21]

ρT (k
0,k) = 2πZT (|k|)

{

δ[k0 − ωT (|k|)]− δ[k0 + ωT (|k|)]
}

+ βT (k
0, |k|) . (4.6)

The delta functions describe propagating quasiparticles with a dispersion relation ωT and

a residue

ZT (k) =
ωT (k)[ω

2
T (k)− k2]

3ω2plω
2
T (k) − [ω2T (k)− k2]2

, (4.7)
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where ω2pl = g2T 2Nc/9 is the plasma frequency squared. For small and large spatial

momentum one finds

ω2T (k) ' ω2pl +
6

5
k2 , ZT (k) '

1

(2ωpl)
(k → 0) ,

ω2T (k) ' k2 +m2
∞ , ZT (k) '

1

(2k)
(k →∞) , (4.8)

wherem2
∞ =

3
2ω

2
pl is the asymptotic gluon mass squared. The βT function describes Landau

damping and is nonzero below the light-cone only. The spectral function of longitudinal

gluons ρL(k
0,k) has a similar form [20, 21].

We start studying the contribution to eq. (4.5) when both gluons are transverse. There

are three parts, depending on whether we take from the one-particle spectral functions the

delta functions of the quasiparticles (pole-contribution) or the β function of the Landau

damping (cut-contribution). When both gluons are quasiparticles the integrals can be done

with the help of the delta functions and we find the pole-pole contribution for transverse

gluons

ρppππ(ω) = θ(ω − 2ωpl)
2dA
3π

Z2T (f0)f
2
0

ω′T (f0)

(

7f40 +
5

2
f20ω

2 +
7

16
ω4
)[

n
(ω

2

)

+
1

2

]

. (4.9)

Here we use the notation f0 = f(ω/2), with f(u) defined as the inverse of the transverse

dispersion relation, f [ωT (k)] = k. The function f(u) vanishes when u ≤ ωpl, and

f(u) '
√

5

6
(u2 − ω2pl) (u→ ωpl) ,

f(u) ' u−
3ω2pl
4u

(u→∞) . (4.10)

Again, as for the scalar case, the HTL resummation produces the threshold in the spectral

function (4.9) for soft external frequency. We find that

ρppππ(ω ∼ gT ) ∼ g3T 4 . (4.11)

For large ω the spectral function behaves as

ρppππ(ω) =
dA
4π

ω4
[

n
(ω

2

)

+
1

2

]

(ω À ωpl) , (4.12)

which is, up to the prefactor, what we found in the scalar case as well.

The contribution when one transverse gluon is a quasiparticle and the other undergoes

Landau damping (pole-cut contribution) is

ρpcππ(ω) =
2dA
3π2

∫ ∞

ωpl

du
f2(u)

ω′T [f(u)]
ZT [f(u)][n(u− ω)− n(u)]βT [u− ω, f(u)]×

×
[

7f4(u)− 10u(u − ω)f 2(u) + 7u2(u− ω)2
]

. (4.13)

For soft ω ∼ gT the dominant contribution arises when the energy u is hard, and we may

use

βT [u− ω, f(u)] ∼ 3π
4

ω2pl
ωu3

, (4.14)
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as well as other simplifications given above. We find

ρpcππ(ω ∼ gT ) ' −dA
π
ω2pl

∫ ∞

ωpl

duu2n′(u) ∼ g2T 4 . (4.15)

For soft external frequencies the pole-cut contribution dominates over the pole-pole con-

tribution (4.11).

For hard frequencies ω ∼ T , the βT function determines the lower integration limit to

be u0 = ω/2 + 3ω2pl/(4ω). As a result, u is always hard and we can simplify the integrand

to arrive at

ρpcππ(ω ∼ T ) =
dA
3π2

∫ ∞

u0

duu3
(

4u2 − 4uω + 7ω2
)

[n(u− ω)− n(u)]βT (u− ω, u) . (4.16)

It is convenient to substitute u = ω(z + 1)/2 such that

ρpcππ(ω ∼ T ) =
dAω

6

48π2

∫ ∞

a
dz (z + 1)3

(

z2 + 6
)

[n(ωz−)− n(ωz+)]βT (ωz−, ωz+) , (4.17)

where z± = (z ± 1)/2 and a = 3ω2pl/(2ω
2). The dominant contribution comes from the

lower integration limit (z → a) where the βT function can be approximated as

βT (ωz−, ωz+) ' −
4π

ω2
za

(z + a)2
. (4.18)

Using this expression we find that

ρpcππ(ω ∼ T ) ∼ g2T 4 ln

(

1

g

)

. (4.19)

For hard frequencies the pole-cut contribution is therefore suppressed compared to the

pole-pole contribution (4.12). Finally, we found that the remaining cut-cut contribution

when both gluons are transverse is suppressed with respect to the pole-pole contribution

when ω is hard and to the pole-cut contribution when ω is soft.

In a similar way we have analysed the remaining longitudinal-transverse and longi-

tudinal-longitudinal contributions in eq. (4.5) with the result that they do not modify

the conclusions drawn from the transverse-transverse contribution analysed above. In

particular, for hard frequencies ω À ωpl transverse gluons dominate and the spectral

function is given by eq. (4.12). We do not need to be more explicit about the region where

ω . gT because the dominant contribution in this region arises from the pinching poles,

screened by a finite width and/or external frequency, as we will show now.

For small external frequencies 0 ≤ ω . gT the loop integral is dominated by the region

of hard momentum and we only need to consider transverse gluons, since the residue for

longitudinal gluons vanishes exponentially. In order to avoid pinch singularities we follow

the same steps as in the scalar case and substitute for the one-particle spectral function

a Breit-Wigner function, see eq. (3.8). For transverse on-shell gluons with hard momen-

tum the dispersion relation is ωk =
√

k2 +m2
∞ and the leading (momentum-independent)

contribution to the damping rate is [22]

γ =
g2

4π
NcT ln

(

1

g

)

, (4.20)
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where the logarithm is sensitive to the magnetic mass, ln(ωpl/mmag) ∼ ln(1/g) withmmag ∼
g2T .8 The mass m∞ only plays a subdominant role and is neglected below. Evaluating

the integral over k0 exactly as in the scalar case, we find

ρππ(ω) = −
dA
3

∫

k

1

|k|

{

[n(|k|)− n(|k| − ω)]I(ω,k)A(ω,k) |k| − ω

ω2 + 4γ2
− [ω → −ω]

}

, (4.21)

where I(ω,k) was defined in eq. (3.15) and A(ω,k) = k2
(

4k2 − 4ω|k|+ 7ω2
)

. For ω . ωpl
this expression simplifies to

ρππ(ω) = −
16dA
3

∫

k

k2n′(|k|) ωγ

ω2 + 4γ2
(0 ≤ ω . ωpl) , (4.22)

which is 2dA times the scalar result. In the region γ ¿ ω . ωpl we find

ρππ(ω)

T 4
= −16dA

3T 4
γ

ω

∫

k

k2n′(|k|) = 32π
2

45
dA

γ

ω
. (4.23)

As in the scalar case, the three-loop ladder diagram with one rung contributes in this region

at the same order. Note that the contribution from the pinching poles at ω ∼ gT ,

ρππ(ω ∼ gT ) ∼ gT 4 ln

(

1

g

)

(4.24)

actually dominates over the contribution (4.15) from the collective (HTL) excitations in

this region. The shear viscosity in the one-loop approximation follows from (4.22) as

η1−loop =
8π2dA
225

T 4

γ
. (4.25)

However, for the complete spectral function at small frequencies 0 ≤ ω . γ the effects

of ladder diagrams must be taken into account. As was mentioned in the Introduction,

kinetic theory predicts that the shear viscosity is parametrically larger than the one-loop

result (4.25) [7, 8, 24]. Therefore, for vanishing frequency the spectral function due to

ladder diagrams is expected to be larger than the one-loop contribution and to behave as

ρladderππ (ω → 0) = 20η ω, with [8]

η ∼ N2
c − 1
N2

c

T 3

g4 ln(1/g)
. (4.26)

Hence the slope of the spectral function is much steeper close to the origin, compared

to the one-loop result. Up to frequencies ω ∼ γ the actual behaviour of the spectral

function depends on the pinching-poles contribution of ladders diagrams. When γ ¿ ω .

ωpl pinching-poles contributions of the ladders are subdominant by a factor g
2T/ω and

the spectral function decreases as g2T/ω until it meets with the rising contribution from

eq. (4.12). For large ω the spectral function increases as ω4.

The euclidean correlator at high temperature can be computed as in the scalar case

and we find, at leading order in g,

GE
ππ(τ)/T

5 =
4π2dA

sin5 u
{(π − u) [11 cos u+ cos 3u] + 6 sin u+ 2 sin 3u}+ 8π

2dA
45

, (4.27)

with u = 2πτT . The last constant term reflects the low-frequency region.
8In QED there is no magnetic mass which could regularize the logarithmic divergence of the leading

contribution to the damping rate. It turns out that the electron damping rate is ill defined [23].
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5. Conclusions

We have studied the spectral function relevant for the shear viscosity in scalar and non-

abelian gauge theories at high temperature as a function of the external frequency. While

for small frequencies ladder diagrams are important in the scalar case and essential in the

nonabelian case, for higher frequencies a simple one-loop computation yields the dominant

contribution.

We found that the spectral function has a characteristic shape: for small frequencies the

spectral function rises, reaches a local maximum and decreases as 1/ω. This contribution

is due to scattering processes in the plasma and is enhanced due to nearly pinching poles.

We referred to this contribution as the low-frequency contribution. For higher frequencies,

decay/creation processes dominate and the spectral function increases essentially as ω4.

This contribution is referred to as the high-frequency contribution.

In order to extract transport coefficients from euclidean lattice correlators, a simple

ansatz, essentially a Breit-Wigner spectral function, was introduced in ref. [9] to model

spectral functions of components of the energy-momentum tensor. The resulting three-

parameter ansatz was subsequently used in refs. [13, 14] to determine transport coefficients

in hot gauge theories from lattice simulations. Unfortunately, as we have seen in this paper,

at high temperature spectral functions of composite operators do not resemble simple Breit-

Wigner functions at all. In order to improve this analysis, we propose therefore to use a

different ansatz, which is written as the sum of two terms:

ρππ(ω) = ρlowππ (ω) + ρhighππ (ω) . (5.1)

The high-frequency part can be described by eqs. (4.12) or (3.7) with m as a possible free

parameter. For the low-frequency part we note that the spectral function is odd, increases

linearly with ω for small ω and decreases with 1/ω for larger ω. A simple ansatz reflecting

this is

ρlowππ (x)/T
4 = x

b1 + b2x
2 + b3x

4 + · · ·
1 + c1x2 + c2x4 + c3x6 + · · ·

, x =
ω

T
, (5.2)

with bi = ci = 0, i > n for given n. The viscosity is given by η/T 3 = b1/20. The

ansatz (5.1), with free parameters m, bi, and ci, should be used in eq. (2.6) to fit the

corresponding euclidean correlator to the numerical results. When insisting on a three-

parameter fit, one may take n = 1 which leaves m, b1 and c1 to be determined.

Concerning the euclidean correlator, we found that the dominant τ dependence is de-

termined by the high-frequency part (ω & T ) of the spectral function. However, around

τT = 1/2 both the high- and the low-frequency regions of the spectral function contribute

at the same order. The low-frequency contribution is of special importance since transport

coefficients are determined by the slope of the spectral function at zero frequency and a

precise calculation of the spectral function at low frequencies is therefore essential. We

found that no matter how complicated the spectral function up to frequencies ω ∼ gT

(g ¿ 1) might be, its contribution to the euclidean correlator will be a τ independent con-
stant. This latter feature poses a severe challenge for the MEM approach, since the spectral

function at low frequencies should be reconstructed from the knowledge of a single constant
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alone. It turns out that this constant carries information on the transport coefficient (or

more generally on ladder diagrams) only in subleading contributions. As a result euclidean

correlators are remarkably insensitive to transport coefficients, which makes it extremely

difficult to extract those at weak coupling.

We emphasize that these results are not specific for the correlator we considered here.

For instance, in the first paper of ref. [10] the current-current correlator relevant for thermal

dilepton rates in QCD was studied on the lattice and an enhancement in the central value

of the euclidean correlator compared to the free result was observed. This enhancement

might be accounted for by the pinching-poles contribution in the low-frequency region of

the spectral function.9
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