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1. Introduction

Transport coefficients in quantum field theories at finite temperature have received an

increasing amount of attention over the last few years, not only because of their potential

relevance in some physical environments, such as heavy-ion collisions and the early universe,

but also because, from a theoretical point of view, their calculation turns out to be highly

nontrivial. A perturbative analysis can be used when the temperature is sufficiently high

and the theory is weakly coupled. However, the computation of transport coefficients

in hot gauge theories within the framework of thermal field theory remains a difficult

task due to the necessity of summing an infinite number of Feynman diagrams, so-called

ladder diagrams [1]. This has favoured the use of effective descriptions such as transport

theory [2]–[4]. Another alternative is the use of lattice field theory [5], which allows one

in principle to obtain transport coefficients at temperatures where a perturbative analysis

(either with field or transport theory) is not valid. This approach has not been completely

developed and presents its own difficulties [6].

It is within the kinetic approach that it was first realized that screening processes in

the plasma at the scale of the Debye mass are enough to render results finite [2]. The first

complete calculation of transport coefficients in hot gauge theories at leading logarithmic

order appeared only recently [4], also using kinetic theory. For a scalar theory the ladder

diagrams have been summed explicitly by Jeon [7] using a Bethe-Salpeter equation for an

effective vertex and the leading-order results for the shear and bulk viscosities have been

obtained. The conclusions of his diagrammatic analysis have been confirmed in refs. [8].
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Furthermore, Jeon and Yaffe [9] showed the equivalence between the diagrammatic and

the kinetic approach: to leading order the linearized Boltzmann equation for the distri-

bution function and the Bethe-Salpeter equation for the effective vertex yield equivalent

results. For QCD, a simplified ladder summation [10] reproduces the result for the color

conductivity at leading logarithmic order [11].

Only very recently a simple and economical way of

����� ����������

Figure 1: Typical ladder dia-

gram contributing to the electri-

cal conductivity. The side rails

are hard, nearly on-shell fermions

and the rungs are soft photons.

summing the ladder series via a Bethe-Salpeter equation

in the imaginary-time formalism has been presented by

Valle Basagoiti [12], for both scalar and (non) abelian

gauge theories. To leading logarithmic order, the inte-

gral equations obtained in ref. [12] are identical to those

found previously in the kinetic approach [4]. However,

for gauge theories the integral equations for the effective

vertices used in ref. [12] are not consistent with the Ward

identities. In the case of the electrical conductivity in

QED, which we will consider in this paper, this can be

understood as follows. As usual, the photon-electron vertex and the fermion propagator

are related via the Ward identity. A typical ladder diagram contributing to the electrical

conductivity at leading logarithmic order is shown in figure 1.

Propagators for the nearly on-shell fermions on the side rails with hard momentum

(p ≡ |p| ∼ T , with T the temperature) have to include the fermionic thermal width,

such that singularities due to so-called pinching poles are regulated. This thermal width

receives contributions from processes involving both a soft (p ∼ eT ) photon and a soft

fermion. Ladder diagrams as the one shown in figure 1 can be summed by introducing

an effective photon-electron vertex involving a soft photon rung [12]. One expects that

the Ward identity relates the contribution to the thermal width from soft photons to the

vertex with a soft photon rung. However, the contribution to the thermal width from soft

fermions, appearing at order e4T ln(1/e), has no counterpart in the equation for the vertex

function presented in ref. [12]. Therefore, the Ward identity is not fulfilled and the equation

for the effective vertex given in ref. [12] cannot be complete. We show in this paper that in

order to satisfy the Ward identity a new diagram involving soft fermions has to be included,

so that the integral equation is the one depicted in figure 2. As far as we know, this diagram

has not been discussed before. Concerning the electrical conductivity, however, only the

real part of the effective photon-electron vertex is required. It turns out that the real

part of the new diagram is parametrically suppressed with respect to the tree-level vertex.

Therefore we find that the presence of the vertex correction involving soft fermions does

not affect the final result for the electrical conductivity at leading logarithmic order.

The paper is organized as follows. In section 2 we review the derivation of the elec-

trical conductivity in terms of a particular analytic continuation of the effective vertex of

ref. [12]. The complete thermal width of order e4T ln(1/e) for an on-shell electron with

hard momentum is computed in section 3. In section 4 we show the consistency of the mod-

ified vertex equation with the Ward identity. In section 5 we show that the new integral

equation leads to the same leading-log differential equation as in refs. [4, 12] for that piece
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Γµ γµ Γµ
HTL Γµ

ladder

Figure 2: Integral equation for the effective photon-electron vertex function Γµ. The second

diagram on the right-hand-side with a hard photon and HTL vertex and fermion propagators is

new and is required to fulfill the Ward identity.

of the effective vertex relevant for the electrical conductivity. Conclusions are presented in

section 6. We have summarized convenient sum rules in appendix A. The calculation of

the new diagram is detailed in appendix B.

2. Electrical conductivity

The Kubo formula for the electrical conductivity in QED is

σ =
1

6

∂

∂q0
ρ(q0,0)

∣

∣

∣

q0=0
, (2.1)

where ρ is the spectral density associated with the spatial part of the retarded polarization

tensor

ρ(q0,q) = 2ImΠii
R(q

0,q) , Πii
R(x− y) = iθ(x0 − y0)〈[ji(x), ji(y)]〉 , (2.2)

with ji(x) = ψ̄(x)γiψ(x) the electromagnetic current. The retarded correlator can be

obtained from the euclidean one by analytical continuation,

Πii
R(q

0,q) = Πii
E(iωq → q0 + i0+,q) , (2.3)

with ωq = 2πnT (n ∈ Z) the Matsubara frequency. The relevance of ladder diagrams for the

conductivity can be understood as follows. We start with the simple one-loop expression:

since in the Kubo formula (2.1) the correlator appears with vanishing external momentum,

the fermionic propagators in the one-loop expression share almost the same momentum

and so-called pinching poles are present. They cause the one-loop contribution to diverge

unless the thermal width is present in the electron propagators [1]. Because the dominant

contribution arises when the electrons are on-shell and carry hard momentum, the width is

included by replacing the Dirac delta functions of the free single-particle spectral densities

with lorentzian spectral functions1

ρfree± (ω,p) = 2πδ(ω ∓ p) −→ ρ±(ω,p) =
Γp

(ω ∓ p)2 + (Γp/2)2
, (2.4)

1We assume the temperature and hence the hard fermion momentum is sufficiently high such that both

the zero-temperature electron mass and the real part of the fermionic self-energy can be safely neglected.
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where Γp is the thermal width of a fermion with hard on-shell momentum. These positive-

and negative-energy spectral densities are related to the electron propagator as

S(p0,p) = ∆+(p
0,p)h+(p̂) + ∆−(p

0,p)h−(p̂) , ∆±(p
0,p) = −

∫

dω

2π

ρ±(ω,p)

p0 − ω
, (2.5)

with2

h+(p̂) =
1

2

(

γ0 − γ · p̂
)

=
∑

λ

uλ(p̂)ūλ(p̂) , h−(p̂) =
1

2

(

γ0 + γ · p̂
)

=
∑

λ

vλ(p̂)v̄λ(p̂) ,

(2.6)

where uλ (vλ) are spinors for the electron (positron) in a simultaneous chirality-helicity

base (λ = ± indicates the helicity, p̂ = p/p). Similarly we write the self-energy as

Σ(p0,p) = Σ−(p
0,p)h+(p̂) + Σ+(p

0,p)h−(p̂) . (2.7)

The use of lorentzian spectral densities leads to fermionic propagators

∆±(z,p) =
−1

z ∓ p− Σ±(z,p)
, Σ±(z,p) = −i sgn[Im(z)]

Γp

2
. (2.8)

This propagator has a cut on the real axis due to the discontinuity of the sign function.

In particular, the retarded and advanced propagators and self-energies for hard on-shell

fermions are

∆R
±(p

0,p) =
−1

p0 ∓ p+ iΓp/2
=
[

∆A
±(p

0,p)
]∗
,

ΣR
±(p

0,p) = −iΓp/2 =
[

ΣA
±(p

0,p)
]∗
, (2.9)

when p0 ' ±p. The presence of the width regulates the pinching-pole divergence in the

one-loop expression, which now behaves as 1/Γp. However, the immediate consequence

is the need to sum all ladders diagrams with soft photon rungs, like the one depicted in

figure 1. Since each new rung introduces a pair of propagators with pinching poles and the

width scales (naively) as e2, the powers of the coupling constant introduced by the rung

are compensated for by the factor 1/Γp from the nearly-pinching poles. As a result it is

necessary to sum all contributions from uncrossed ladders.3

These diagrams can be summed with a Bethe-Salpeter equation for an effective vertex

Γµ. In ref. [12] such an equation was written and it was shown that the spatial part of

the integral equation, relevant for the transport coefficient, reduces to leading logarithmic

accuracy to a differential equation equivalent to the one obtained previously in ref. [4] using

2The gamma-matrices obey {γµ, γν} = 2gµν with gµν = diag(1,−1,−1,−1).
3Actually, the thermal width or corresponding inverse time scale ∼ e2T never appears in the calculation

of the conductivity. Instead the relevant scale is Γp ∼ e4T ln(1/e). Therefore we think that a better way

to justify the importance of ladder diagrams is as follows. For each additional soft photon rung, include

a factor e2 from the explicit interaction vertices, a factor m2
D ln(1/e) from the integration over the rung,

and a factor δ(ω ± p)/Γp ∼ [e4T 2 ln(1/e)]−1 from the additional pinching poles, see eq. (2.16). Putting

this together gives that the contribution of each additional rung is ∼ 1 and all ladder diagrams are equally

important.
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kinetic theory. As discussed in the Introduction, the equation for the vertex presented in

ref. [12] does not satisfy the Ward identity and can therefore not be complete. In order for

the Ward identity to be fulfilled a new diagram has to be included such that the integral

equation is the one depicted in figure 2.

The euclidean correlator summing all the ladder diagrams is then given by4

Πii
E(Q) = e2

∑

∫

P
tr γiS(P +Q)Γi(P +Q,P )S(P ) , (2.10)

with Q = (iωq,0). We now follow ref. [12] to express the electrical conductivity in

terms of a particular analytic continuation of the effective vertex. After doing the sum

over Matsubara frequencies, only products of retarded and advanced fermion propagators

SR(p0+ q0,p)SA(p0,p) must be retained because only these can have pinching poles. Fur-

thermore, since q0 goes to zero, it cannot change the mass shell condition of the electrons

on the side rails with hard momentum. Thus pinching poles arise only from the products

∆R
±(p

0 + q0,p)∆A
±(p

0,p) and we find

Πii
R(q

0,0) = 2ie2
∫

p,ω

[

nF (ω + q0)− nF (ω)
]

×

×

[

∆R
+(ω + q0,p)∆A

+(ω,p)p̂
iDi

+(ω + q0, ω;p)−

−∆R
−(ω + q0,p)∆A

−(ω,p)p̂
iDi
−(ω + q0, ω;p)

]

, (2.11)

where nF (ω) = 1/[exp(ω/T ) + 1] is the Fermi distribution, and

∫

p,ω
=

∫

d3p

(2π)3

∫

dω

2π
. (2.12)

Here we used

h±(p̂)γ
ih±(p̂) = ±p̂

ih±(p̂) , (2.13)

and defined

Dµ
+(ω + q0, ω;p) ≡ ūλ(p̂)Γ

µ(ω + q0 + i0+, ω − i0+;p)uλ(p̂) , (2.14)

Dµ
−(ω + q0, ω;p) ≡ v̄λ(p̂)Γ

µ(ω + q0 + i0+, ω − i0+;p)vλ(p̂) . (2.15)

Both helicities give the same result such that the sum over helicities yields a trivial factor

2 in eq. (2.11). Note that out of the many vertex functions with real energy arguments [13]

only one particular analytical continuation appears. Now, in the limit q0 → 0 and in the

limit of narrow width (weak coupling), the pair of propagators goes to its pinching-pole

limit,

lim
q0→0

∆R
±(ω + q0,p)∆A

±(ω,p) =
1

(ω ∓ p)2 + (Γp/2)2
−→

2π

Γp
δ(ω ∓ p) , (2.16)

4As we will see below it is sufficient to have one full (Γi) and one bare (γi) vertex since the real part of

ΓiHTL is subleading.
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forcing the on-shell condition ω = ±p. Since in the pinching-pole limit the product of prop-

agators (2.16) is real and only the imaginary part of Πii
R(q

0,0) is needed for the electrical

conductivity, only the real part of the effective vertex contributes. Therefore we define

Di
±(p) ≡ ReDi

±(±p+ q0,±p;p)
∣

∣

∣

q0=0
. (2.17)

Finally, since due to rotational invariance Di
±(p) = p̂iD±(p) and due to CP invariance

D+(p) = −D−(p) ≡ D(p), the electrical conductivity is given by

σ = −
4e2

3

∫

p

n′F (p)
D(p)

Γp
. (2.18)

This expression can be easily compared with the result from kinetic theory [4]. The factor

4 reflects that both electrons and positrons with either helicity contribute in the same way.

3. Thermal width

The electrical conductivity depends on the thermal width Γp of a hard on-shell fermion,

which screens the pinching-pole singularity and naturally sets an inverse time scale in

the system. Kinetic theory calculations [2, 4] show that the relevant inverse relaxation

time for the electrical conductivity is 1/τ ∼ e4T ln(T/mD) ∼ e4T ln(1/e), coming from

large angle scattering between the hard nearly on-shell fermions in the plasma as well as

from scattering processes that change the type of excitation. The thermal width, on the

other hand, is dominated by scattering processes in which the fermions exchange a soft

quasistatic transverse gauge boson (the leading term is in fact logarithmically divergent,

reflecting that in QED the thermal width is ill-defined) [1, 14]. This dominant contribution

should therefore not be relevant for the calculation of the electrical conductivity to leading

logarithmic order. This is indeed what is found in refs. [1, 12] and will be confirmed in

section 5.5 The thermal width, however, receives subleading contributions from scattering

regimes different than the previous one. A contribution of order e4T ln(1/e) arises from the

one-loop diagram with a soft fermion (see the second diagram in figure 3 below) and has

been computed in ref. [12]. This contribution corresponds to Compton scattering and pair

annihilation/creation processes, as can be seen by cutting the diagram, which are mediated

by a soft fermion screened at the scale of the Debye mass. As is shown in this section, there

is also a contribution to the thermal width of order e4T ln(1/e) from the one-loop diagram

with a soft photon (see the first diagram in figure 3). This part arises from scatterings

where the electrons exchange a soft photon screened at the scale of the Debye mass.

In order to verify the Ward identity up to a given order in the coupling constant, all

processes that contribute up to that order have to be included (in particular, not just those

processes that contribute to transport). Therefore, we compute in this section the complete

contribution to the thermal width to order e4T ln(1/e). In section 5 we show how the scale

5Note that in the case of the shear viscosity in a scalar theory or color conductivity in QCD the scattering

processes that give the relevant relaxation time are those that also dominate the thermal width. In these

cases the simple relation 1/τp ∼ Γp holds.
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Figure 3: Contributions to the thermal width of a hard on-shell fermion with a soft photon (sp)

and a soft fermion (sf).

e4T ln(1/e) actually arises in the field theory calculation of the conductivity, from both

soft photon and soft fermion mediated scattering processes. It turns out that only the soft

fermion contribution to the thermal width appears explicitly. The processes in which a

soft photon, screened at the scale of the Debye mass, is exchanged contribute not through

the thermal width but in an indirect way, through the rungs in the ladder diagrams.

The thermal width of an on-shell electron is given by6

Γp = −2ImΣR
+(p

0 = p,p) . (3.1)

The one-loop fermion self-energy reads

Σ(P ) = −e2
∑

∫

K
γνS(P +K)γµDµν(K) . (3.2)

The Matsubara sum is easily performed using spectral representations. For the photon we

work in the Coulomb gauge and the photon propagator reads

Dµν(p
0,p) = −

1

p2
PL
µν −

∫ ∞

−∞

dω

2π

ρµν(ω,p)

p0 − ω
, (3.3)

with

ρµν(ω,p) = ρT (ω,p)P
T
µν(p̂) + ρL(ω,p)P

L
µν , (3.4)

and P T
ij (p̂) = δij − p̂ip̂j, P

T
0ν = PT

µ0 = 0 and PL
µν = δµ0δν0. We find for the imaginary part

of the retarded on-shell self-energy,

ImΣR(p,p) = −
e2

2

∫

k,ω
[nB(ω) + nF (p+ ω)] γνρF (p+ ω, r)γµρµν(ω,k) , (3.5)

with r = p + k, nB(ω) = 1/[exp(ω/T )− 1] is the Bose distribution, and

ρF (ω,k) = ρ+(ω,k)h+(k̂) + ρ−(ω,k)h−(k̂) . (3.6)

With the help of the following useful relations,

h±(p̂)h±(p̂) = 0 , h±(p̂)h∓(p̂) = γ0h∓(p̂) = h±(p̂)γ
0 ,

h±(p̂)γ
0h∓(p̂) = 0 , h±(p̂)γ

ih∓(p̂) = (±p̂i − γiγ0)h∓(p̂) ,

h±(p̂)γ
0h±(p̂) = h±(p̂) , (3.7)

6The same result is obtained if one uses Γp = −2ImΣR
−(p

0 = −p,p).
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and

γµh±(p̂)γ
νPL

µν = h∓(p̂) , γµh±(p̂)γ
νP T

µν(r̂) = γ0 ∓ p̂ · r̂γ · r̂ , (3.8)

the (exact) result for the one-loop width is

Γp = e2
∫

k,ω
[nF (p+ ω) + nB(ω)]×

×

(

ρT (ω,k)
[

ρ+(p+ ω, r)(1 − p̂ · k̂ k̂ · r̂) + ρ−(p+ ω, r)(1 + p̂ · k̂ k̂ · r̂)
]

+

+
1

2
ρL(ω,k) [ρ+(p+ ω, r)(1 + p̂ · r̂) + ρ−(p+ ω, r)(1 − p̂ · r̂)]

)

. (3.9)

There are two contributions of order e4T ln(1/e), arising when either the photon or the

fermion carries soft momentum, Γp = Γ
(sp)
p +Γ

(sf)
p (see figure 3). We first specialize to the

case that the photon is soft, k ¿ p. In this case the momentum of the fermion inside the

loop is hard and its spectral density can be taken as the free one, ρfree± (ω,p) = 2πδ(ω∓ p).

Since we consider p0 = p, ρ− does not contribute. Because the momentum of the photon is

soft, we use HTL spectral densities, which are denoted as ∗ρT/L (the same asterisk notation

is used for HTL propagators and vertices). We have

Γ
(sp)
p = e2

∫

k,ω
[nF (p+ ω) + nB(ω)] ρ

free
+ (p+ ω, r)×

×

[

∗ρT (ω,k)(1 − p̂ · k̂ k̂ · r̂) +
1

2
∗ρL(ω,k)(1 + p̂ · r̂)

]

. (3.10)

The angular integration can be performed with the fermionic spectral function,

ρfree+ (p+ ω, r) = 2πδ(p + ω − r)→ 2π
p+ ω

pk
δ(z − z0)θ(k

2 − ω2) , z0 =
ω

k
+
ω2 − k2

2pk
,

(3.11)

where z is the cosine of the angle between k and p. We find for the contribution with the

soft photon

Γ
(sp)
p =

α

2p2

∫ Λmax

Λmin

dk k

∫ k

−k

dω

2π
[nF (p+ ω) + nB(ω)]

(

∗ρT (ω, k)
k2 − ω2

k2
[

(ω + 2p)2 + k2
]

+

+ ∗ρL(ω, k)
[

(ω + 2p)2 − k2
]

)

,(3.12)

with α = e2/4π. The integral over the momentum k has been restricted between Λmin, a

lower cutoff to avoid the logarithmic singular behaviour, and Λmax (with eT ¿ Λmax ¿

T [15]), so that the approximation of soft photon momentum is valid. In order to find

contributions up to e4T ln(1/e), we define x = ω/k and expand in powers of k/p,

Γ
(sp)
p = 2αT

∫ Λmax

Λmin

dk k

∫ k

−k

dω

2π

1

ω

[

∗ρT (ω, k)

(

V
(0)
T (x) + V

(1)
T (x)

k

p
+ V

(2)
T (x)

k2

2p2
+ · · ·

)

+

+ ∗ρL(ω, k)

(

V
(0)
L (x) + V

(1)
L (x)

k

p
+ V

(2)
L (x)

k2

2p2
+ · · ·

)

]

,

(3.13)
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with

V
(0)
L (x) = 1 , V

(0)
T (x) = 1− x2 ,

V
(1)
L (x) =

1

2
x(2− βp [1− 2nF (p)]) , V

(1)
T (x) = (1− x2)V

(1)
L (x) ,

V
(2)
L (x) = −

1

2
(1− x2)− βpx2[1− 2nF (p)] +

1

6
β2p2x2[1 + 12βn′F (p)] ,

V
(2)
T (x) = (1− x2)[1 + V

(2)
L (x)] , (3.14)

where β = 1/T . The integrals over ω can be performed using sum rules (see appendix A).

It is convenient to split the range of integration between Λmin and the Debye mass mD ∼

eT , and between mD and Λmax, such that the residues and dispersion relations can be

approximated in both ranges. For the leading-order term V
(0)
T/L, the dominant contribution

comes from the lower part of the integral and from transverse photons only. We recover

the logarithmic singular behaviour [1, 14]

Γ
(sp,lo)
p = 2αT ln

(

mD

Λmin

)

. (3.15)

With the help of the sum rules one can show that subleading corrections [to e2 ln(mD/Λmin)]

do not lead to e4 ln(1/e) behaviour. The next contribution, from V
(1)
T/L, vanishes because it

is odd in ω. Therefore the next-to-leading order contribution to the thermal width comes

from V
(2)
T/L. This contribution is finite and Λmin can be taken to zero. In this case sum rules

show that the dominant contribution arises from momentum mD ¿ k ¿ Λmax. We may

take Λmax ∼ T , since we are only interested in the coefficient of the logarithmic term [15].

Performing the integral over ω with the sum rules collected in appendix A we arrive at

Γ
(sp,nlo)
p =

αm2
D ln(1/e)

2p

[

−1 + 2nF (p) +
p

6T
+ 2pn′F (p)

]

, (3.16)

with m2
D = e2T 2/3. We note here that the leading logarithmic terms in the sum rules [see

eq. (A.4)] cancel exactly. We also note that this contribution is negative for momentum

p . 6T . Higher-order terms in the expansion in k/p of eq. (3.12) yield contributions

parametrically suppressed with respect to e4T ln(1/e).

Now we turn to the contribution when the fermion is soft. Since in this case the

momentum of the photon is hard, only the free transverse photon contributes. Making a

change of variables (p + ω → −ω, p + k → −k) such that the fermion carries the soft

momentum k, we get

Γ
(sf)
p = e2

∫

k,ω
[nF (ω) + nB(p+ ω)] ρfreeT (p+ ω, r)×

×
[

∗ρ+(ω,k)(1 − p̂ · r̂ k̂ · r̂) + ∗ρ−(ω,k)(1 + p̂ · r̂ k̂ · r̂)
]

. (3.17)

The angular integration can be performed using the photon spectral function,

ρfreeT (p+ ω, r) = 2π sgn(p+ ω)δ((p + ω)2 − r2) −→
2π

2pk
δ(z − z0)θ(k

2 − ω2) . (3.18)
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As a result we get

Γ
(sf)
p =

α

4p2

∫ Λmax

0
dk

∫ k

−k

dω

2π
[nF (ω) + nB(p+ ω)] [V+

∗ρ+(ω, k) + V−
∗ρ−(ω, k)] , (3.19)

with

V± =
k ∓ ω

(p+ ω)2
[

4p3 + 2(3ω ∓ k)p2 + 4ω2p+ (ω ± k)(k2 + ω2)
]

. (3.20)

Since this integral is well-defined for k → 0, one may safely take Λmin = 0. We proceed

as in the case of the soft photon and expand in k/p after introducing x = ω/k. Using

the sum rules for HTL fermion spectral functions it is easy to see that the leading-order

contribution to the thermal width comes from the first term in the expansion,

Γ
(sf,lo)
p = α

1 + 2nB(p)

2p

∫ Λmax

0
dk k

∫ k

−k

dω

2π

[(

1−
ω

k

)

∗ρ+(ω, k) +
(

1 +
ω

k

)

∗ρ−(ω, k)
]

,

(3.21)

when the soft fermion momentum k lies in the range mf ¿ k ¿ Λmax. Here m2
f = e2T 2/8

is the fermion thermal mass squared. With the help of the sum rules listed in appendix A

and using that to leading-logarithmic accuracy Λmax ∼ T , the result is

Γ
(sf,lo)
p =

αm2
f ln(1/e)

p
[1 + 2nB(p)] . (3.22)

As in the case of the soft photon, the leading logarithmic terms in the sum rules [see

eq. (A.8)] cancel exactly. This result, of course, agrees with ref. [12].

4. Ward identity

The Ward identity for the electron-photon vertex in QED is

QµΓ
µ(P +Q,P ) = S−1(P )− S−1(P +Q) . (4.1)

As shown in section 2, the effective vertex appearing in the expression for the electrical

conductivity is given by the following analytic continuation,

iωp + iωq −→ p0 + q0 + i0+ , iωp −→ p0 − i0+ , (4.2)

with q = 0. Thus the Ward identity reads

q0Γ0(p0+q0+i0+, p0−i0+;p) = S−1A (P )−S−1R (P+Q) = q0γ0+ΣA(P )−ΣR(P+Q) . (4.3)

In order to make this a scalar equation, we may contract it with positive- or negative-energy

spinors and find

q0D0
±(p

0 + q0, p0;p) = q0 + iΓp , (4.4)

where we used eq. (2.9) for the self-energies, definitions (2.14), (2.15) for D0
±, as well as

ūλ(p̂)γ
0uλ′(p̂) = δλλ′ , ūλ(p̂)γ

iuλ′(p̂) = p̂iδλλ′ ,

v̄λ(p̂)γ
0vλ′(p̂) = δλλ′ , v̄λ(p̂)γ

ivλ′(p̂) = −p̂iδλλ′ . (4.5)
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We emphasize that eq. (4.4) is only valid in the special kinematical regime relevant for the

conductivity, i.e. q0 → 0 and p0 ' ±p. To make this explicit, we define the quantity

D(p) ≡ lim
q0→0

q0D0
±(±p+ q0,±p;p) . (4.6)

The Ward identity is then simply

D(p) = iΓp . (4.7)

To verify that the integral equation Γ0 = γ0+Γ0HTL+Γ0ladder (see figure 2) is consistent with

the Ward identity, we choose to continue with p0 = p and contract the integral equation

with positive-energy spinors ūλ(p̂) . . . uλ(p̂), multiply it with q0 and take the limit q0 → 0,

p0 = p. The tree level contribution then vanishes. The two remaining parts on the right-

hand-side should give i times the thermal width, Γp = Γ
(sp)
p + Γ

(sf)
p .

We start with the term Γ0HTL in the integral equation,

Γ0HTL(P +Q,P ) = e2
∑

∫

K
γµ∗S(K +Q)∗Γ0(K +Q,K)∗S(K)γνDµν(P −K) , (4.8)

where again Q = (iωq,0). We can use the (euclidean) Ward identity satisfied by the HTL

vertex
∗S(K +Q)∗Γ0(K +Q,K)∗S(K) =

1

iωq
[∗S(K +Q)− ∗S(K)] , (4.9)

to simplify the expression,

Γ0HTL(P +Q,P ) =
e2

iωq

∑

∫

K
γµ [∗S(K +Q)− ∗S(K)] γνDµν(P −K) . (4.10)

Since P is hard andK soft, we need only to consider free transverse photons. Using spectral

representations for the propagators it is straightforward to do the sum over the Matsubara

frequencies, arriving at

Γ0HTL(P +Q,P ) = −
e2

iωq

∫

k,ω,ω′

[

nF (ω) + nB(ω
′)
]

γµ∗ρF (ω,k)γ
νP T

µν(r̂)ρ
free
T (ω′, r̂)×

×

(

1

iωp + iωq + ω − ω′
−

1

iωp + ω − ω′

)

. (4.11)

Now we can do the analytic continuation (4.2), choose p0 = p, multiply with q0 and take

it to zero, to arrive at

lim
q0→0

q0Γ0HTL = ie2
∫

k,ω,ω′

[

nF (ω) + nB(ω
′)
]

γµ∗ρF (ω, r)γ
νP T

µν(r̂)ρ
free
T (ω′, r̂)2πδ(p+ ω − ω′) .

(4.12)

In the limit q0 → 0 the real part of the vertex multiplied with q0 vanishes. The remaining

part is purely imaginary, as required by the Ward identity. After performing the integral

over ω′ and using (3.8) to do the algebra, we contract with the positive-energy spinors and

arrive at

DHTL(p) = ie2
∫

k,ω
[nB(p+ ω) + nF (ω)] ρ

free
T (p+ ω, r)×

×
[

∗ρ+(ω,k)(1 − p̂ · r̂ k̂ · r̂) + ∗ρ−(ω,k)(1 + p̂ · r̂ k̂ · r̂)
]

. (4.13)
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The right-hand-side of eq. (4.13) is precisely i times the contribution from the soft fermion

to the thermal width Γ
(sf)
p , see eq. (3.17).

Now we turn to the remaining contribution Γ0ladder. We have

Γ0ladder(P+Q,P ) = e2
∑

∫

K
γµS(P+K+Q)Γ0(P+K+Q,P+K)S(P+K)γν∗Dµν(K) . (4.14)

We can do the sum of Matsubara frequencies using the contour of ref. [12] and perform the

analytic continuation (4.2). We choose again p0 = p, multiply with q0 and take it to zero.

This gives

lim
q0→0

q0Γ0ladder = e2
∫

k,ω
[nB(ω) + nF (p+ ω)]∆R

+(p+ ω, r)∆A
+(p+ ω, r)×

× γµh+(r̂)q
0Γ0(p+ ω + i0+, p+ ω − i0+; r)h+(r̂)γ

ν∗ρµν(ω,k) .

Here we used that in the pinching-pole limit (2.16) with p0 = p only the positive-energy

propagators contribute. A convenient way to proceed is to realize that the full vertex Γµ

is linear in the γ-matrices.7 Since the vertex then conserves helicity (see e.g. eq. (4.5)) we

may use

h±(r̂)Γ
µ(±p+ ω + i0+,±p+ ω − i0+; r)h±(r̂) = h±(r̂)D

µ
±(±p+ ω,±p+ ω; r) . (4.15)

Using then again eq. (3.8) and contracting with the positive-energy spinors gives

Dladder(p) = e2
∫

k,ω
[nB(ω) + nF (p+ ω)] ∆R

+(p+ ω, r)∆A
+(p+ ω, r)D(r)×

×

[

∗ρT (ω,k)(1 − p̂ · k̂ k̂ · r̂) +
1

2
∗ρL(ω,k)(1 + p̂ · r̂)

]

. (4.16)

In the pinching-pole limit (2.16) the product of the propagators is proportional to 1/Γp.

It is then easy to see that our integral equation is consistent with the Ward identity (4.7).

If we use the Ward identity itself explicitly we can write

∆R
+(p+ ω, r)∆A

+(p+ ω, r)D(r) = 2πiδ(p + ω − r) . (4.17)

Eq. (4.16) then indeed yields precisely i times the contribution to the thermal width from

the soft photon Γ
(sp)
p in eq. (3.10). We conclude that with both Γ0HTL and Γ0ladder the

Ward identity is satisfied. We point out that the Ward identity relates the diagrams in

the vertex equation to those contributing to the electron self-energy exactly, without doing

any approximation.

5. Integral equation for the spatial part of the vertex

In the previous section we verified that the modified vertex equation summing the ladders is

consistent with the Ward identity. Now we turn to the spatial part of the vertex equation,

which appears in the expression for the transport coefficient.

7This can be seen by decomposing the vertex in the 16 basis elements 1, γµ, γ5, γ5γ
µ, σµν = i[γµ, γν ]/2.

The integral equations for the coefficients that are not linear in the γ-matrices decouple.
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First we consider the contribution of the new diagram. It has an imaginary part which

behaves as ∼ 1/q0 in the limit that q0 → 0, due to the structure of the HTL vertex.

However, the conductivity only depends on the real part of the vertex, so we focus on the

real part only. Since it is a modification of the tree level vertex (defined to be γµ), in order

to be relevant for the calculation of the electrical conductivity, it should be at least of order

1. The interaction vertices in the diagram give a factor e2. One could expect that pinching

poles might be present and compensate for the explicit powers of the coupling constant;

however it turns out that the frequency of the fermion propagators is always below the

light-cone and therefore the poles of the HTL electron propagator, which lie above the

light-cone, can never be reached. The conclusion is therefore that in the limit q0 → 0 the

real part of the new diagram is finite and smaller than the tree level vertex. This is shown

explicitly in appendix B. In fact, explicit power counting shows that it is suppressed by

three powers of the coupling.

It only remains to compute the contribution from the diagram with the soft rung.

This was, in leading-logarithmic order, done in ref. [12]. Here we derive the leading-log

equation for the effective vertex keeping the identification with the explicit expression of

the self-energy completely general, which allows us to correct a small error in the derivation

of ref. [12].

After doing the Matsubara frequency sum, the diagram reads

Γi
ladder(p+ q0 + i0+, p− i0+;p) = e2

∫

k,ω

[

nB(ω) + nF (p+ ω + q0)
]

∆R
+(p+ ω + q0, r)×

×∆A
+(p+ ω, r)γµh+(r̂)×

× Γi(p+ ω + q0 + i0+, p+ ω − i0+; r)h+(r̂)×

× γν∗ρµν(ω,k) , (5.1)

where we recall that r = p + k. We choose to take p0 = p and since q0 will be taken

to zero, only positive-energy propagators contribute. To proceed, we use property (4.15)

and eq. (3.8) to do the algebra and contract with positive-energy spinors ūλ(p̂) . . . uλ(p̂).
8

Since in the pinching-pole limit everything is real except the vertex itself, the real and the

imaginary parts of the integral equation decouple. Recalling the property D i
+(p) = p̂iD(p),

we can multiply the real part of the integral equation with p̂i and find, after doing the

angular integral,

D(p) = 1 +
α

2p2

∫ Λmax

Λmin

dk k

∫ k

−k

dω

2π
[nB(ω) + nF (p+ ω)]

{

p̂ · r̂
D(r)

Γr

∣

∣

∣

z=z0

}

× (5.2)

×

[

∗ρT (ω, k)
k2 − ω2

k2
[

(ω + 2p)2 + k2
]

+ ∗ρL(ω, k)
[

(ω + 2p)2 − k2
]

]

.

We notice that, save for the factor within braces, the integral is precisely eq. (3.12) giving

the soft photon contribution Γ
(sp)
p to the thermal width. Now we define

χ(p) ≡
D(p)

Γp
, (5.3)

8We remind that one could as well contract with v̄λ(p̂) . . . vλ(p̂) and use p0 = −p. Since D+(p) = −D−(p)

it does not matter which one is used.
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with Γp = Γ
(sp)
p + Γ

(sf)
p and get for the integral equation

1 = Γ
(sf)
p χ(p) +

α

2p2

∫ Λmax

Λmin

dk k

∫ k

−k

dω

2π
[nB(ω) + nF (p+ ω)]

{

χ(p)− p̂ · r̂ χ(r)
∣

∣

∣

z=z0

}

×

×

[

∗ρT (ω, k)
k2 − ω2

k2
[

(ω + 2p)2 + k2
]

+ ∗ρL(ω, k)
[

(ω + 2p)2 − k2
]

]

.

(5.4)

So far we have made no approximation, apart from taking the pinching-pole limit. To

arrive at the leading-log approximation, we write x = ω/k and expand in powers of k/p.

We need to expand the term in braces up to second order in k/p,

χ(p)− p̂ · r̂ χ(r)|z=z0 = −xpχ′(p)
k

p
+
[

(1− x2)χ(p)− x2p2χ′′(p)
] k2

2p2
+ · · · (5.5)

The expansion of the other terms is precisely as in eq. (3.13). To leading order in k/p

(which gives the leading-log order) we find

1 = Γ
(sf,lo)
p χ(p) +

2αT

p2

∫ Λmax

Λmin

dk k3
∫ k

−k

dω

2π

1

ω

[

∗ρT (ω, k)ṼT

(ω

k

)

+ ∗ρL(ω, k)ṼL

(ω

k

)]

, (5.6)

with

ṼL(x) =
1

2
[(1− x2)χ(p)− p x2 (2− pβ [1− 2nF (p)])χ

′(p)− p2x2χ′′(p)] ,

ṼT (x) = (1− x2)ṼL(x) . (5.7)

It is worth noting that although V
(1)
T/L did not contribute to the thermal width, it is required

here to get the leading order result,

ṼT/L(x) =
1

2

[

(1− x2)χ(p)− x2p2χ′′(p)
]

V
(0)
T/L(x)− xpχ

′(p)V
(1)
T/L(x) . (5.8)

Thus, taking into account the relation between the soft photon rung and the soft photon

contribution to the thermal width, it is necessary to go beyond the contributions V
(0)
T/L that

gives the leading logarithmic contribution to the thermal width.9 Furthermore, because

V
(0)
T is now multiplied by two additional powers of k, it gives a finite contribution and no

dependence on Λmin arises. Finally, V
(2)
T/L, which led to Γ

(sp,nlo)
p , turns out to be irrelevant

since it appears only in subleading terms.

Using sum rules it is easy to see that the dominant contribution comes from momenta

mD ¿ k ¿ Λmax, and again to leading-log accuracy we may take Λmax ∼ T . Performing

the integral over ω with the help of the sum rules and using eq. (3.22) for Γ
(sf,lo)
p , we arrive

at [4, 12]

1 =
αm2

f ln(1/e)

p
[1 + 2nB(p)]χ(p) +

+
αm2

D ln(1/e)

p

T

p

[

χ(p)−
(

1−
p

2T
[1− 2nF (p)]

)

pχ′(p)−
1

2
p2χ′′(p)

]

. (5.9)

9In ref. [12] the term V
(1)
T/L was neglected. This error was luckily cancelled by another coming from doing

the expansion (5.5) with just the leading term in z0.
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Again the leading-logarithmic terms in the sum rules [see eq. (A.4)] cancel exactly. The

electrical conductivity is then given by

σ = −
4e2

3

∫

p

n′F (p)χ(p) . (5.10)

The parametrical behaviour of the conductivity can be made explicit by writing

χ(p) =
T

αm2
D ln(1/e)

φ
( p

T

)

, (5.11)

such that

σ = C
T

e2 ln(1/e)
, C =

2

π

∫ ∞

0
dy y2

1

cosh2(y/2)
φ(y) . (5.12)

The dimensionless function φ(y) obeys the differential equation

1 =

[

3 coth(y/2)

8y
+

1

y2

]

φ(y) +

[

1

2
tanh

(y

2

)

−
1

y

]

φ′(y)−
1

2
φ′′(y) . (5.13)

To obtain the final result for the conductivity, the differential equation should be solved

or, alternatively, an equivalent variational problem as was done in ref. [4], where the value

C = 15.6964 was obtained.

6. Conclusions

The computation of the electrical conductivity in hot QED at leading-logarithmic order

requires the summation of an infinite series of ladder diagrams as well the inclusion of a

thermal width for hard on-shell fermions. We studied the Ward identity for the effective

photon-electron vertex summing these diagrams. In order to match soft fermionic contri-

butions to the thermal width of order e4T ln(1/e), we found that a new diagram has be

included in the integral equation for the vertex. This diagram contains a hard photon rung

and soft fermion lines as well as the associated HTL vertex.

A consequence of the Ward identity is that in the kinematical region relevant for

transport coefficients (external frequency q0 → 0 and external momentum q = 0), the

imaginary part of the temporal component of the photon-electron vertex Γ0(P + Q,P )

is singular ∼ Γp/q
0, with Γp the thermal width for hard fermions. The real part is finite

when q0 → 0 and therefore subdominant. Similarly the imaginary part of the spatial vertex

Γi(P +Q,P ) is singular. However, in the expression for the electrical conductivity only the

real part of the effective photon-electron vertex appears. We found that the real part of the

new diagram is, in the kinematical regime of interest, suppressed by three powers of the

coupling constant with respect to the tree-level vertex. Therefore it does not contribute to

the electrical conductivity at leading logarithmic order. For the same reason we expect it

will also not contribute at full leading order.

The thermal width receives contributions of order e4T ln(1/e) from diagrams involving

either a soft photon or a soft fermion. Only the contribution from soft fermions appears

explicitly in the expression for the conductivity to leading-log order. We have verified that
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the inverse relaxation time from the Boltzmann equation in the relaxation-time approxi-

mation from those contributions to the collision term where a fermion is exchanged, i.e.

diagrams D (fermion annihilation) and E (Compton scattering) in ref. [4], agrees precisely

with the result (3.22). On the other hand, processes contributing to the thermal width

which involve soft photon exchange (i.e. Coulomb scattering) appear in the expression for

the electrical conductivity only indirectly, through the rungs in the ladder diagrams.

For other transport coefficients, such as the shear viscosity, the soft fermionic contri-

bution to the thermal width contributes as well. Therefore it seems that an additional

diagram similar to Γµ
HTL in our vertex equation will be necessary; the analog of the HTL

vertex in QED but with two fermion lines and one insertion of the operator πij, the traceless

spatial part of the energy momentum tensor. However, as is the case for the electrical con-

ductivity, this will probably not affect the leading-log differential equation for the effective

vertex.

Finally, to go beyond the leading-log approximation requires the inclusion of all con-

tributions to the thermal width that are of order e4T . The Ward identity may be a useful

tool that can help in verifying what type of diagrams contribute to the conductivity in this

case.
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A. Sum rules

The evaluation of integrals over the Landau damping contribution in HTL spectral func-

tions can be conveniently carried out using sum rules [16]. In this Appendix we collect a

list of useful results.

We start with HTL photon spectral functions. We define

IT/Ln (k) =

∫ ∞

−∞

dω

2π
ω2n−1 ∗ρT/L(ω, k) . (A.1)

The first few sum rules are

IT0 (k) =
1

k2
, IT1 (k) = 1 , IT2 (k) = k2 +

m2
D

3
,

IL0 (k) =
m2

D

k2(k2 +m2
D)

, IL1 (k) =
m2

D

3k2
, IL2 (k) =

m2
D

5
+
m4

D

9k2
. (A.2)
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Because Landau damping contributes below the light-cone only and the pole contributions

lie inside the light-cone, we find immediately

JT/L
n (k) ≡

∫ k

−k

dω

2π
ω2n−1 ∗ρT/L(ω, k) = IT/Ln (k)− 2ZT/L(k)ω

2n−1
T/L (k) . (A.3)

We need these sum rules especially for intermediate momentum mD ¿ k ¿ T . In this

case they can be further simplified using standard approximations for the residues and

dispersion relations [16]. We find

JT
0 (k) =

m2
D

4k4

[

ln
8k2

m2
D

− 1 +O

(

m2
D

k2

)]

, JL
0 (k) '

m2
D

k4
,

JT
1 (k) =

m2
D

4k2

[

ln
8k2

m2
D

− 3 +O

(

m2
D

k2

)]

, JL
1 (k) '

m2
D

3k2
,

JT
2 (k) =

m2
D

4

[

ln
8k2

m2
D

−
11

3
+O

(

m2
D

k2

)]

, JL
2 (k) '

m2
D

5
. (A.4)

In the case of the longitudinal photons the corrections are exponentially suppressed.

For fermionic HTL spectral functions we define

I±n (k) =

∫ ∞

−∞

dω

2π
ωn ∗ρ±(ω, k) , (A.5)

and find

I±0 (k) = 1 , I±1 (k) = ±k , I±2 (k) = k2 +m2
f . (A.6)

The contribution below the light-cone gives

J±n (k) ≡

∫ k

−k

dω

2π
ωn ∗ρ±(ω, k) = I±n (k)− Z±(k)ω

n
±(k)− (−1)nZ∓(k)ω

n
∓(k) . (A.7)

For intermediate momentum mf ¿ k ¿ T this yields

J±0 (k) =
m2

f

2k2

[

ln
2k2

m2
f

− 1 +O

(

m2
f

k2

)]

,

J±1 (k) = ±
m2

f

2k

[

ln
2k2

m2
f

− 3 +O

(

m2
f

k2

)]

,

J±2 (k) =
m2

f

2

[

ln
2k2

m2
f

− 3 +O

(

m2
f

k2

)]

. (A.8)

B. Spatial contribution of the new diagram

The new diagram in the integral equation for the effective vertex gives a contribution

Γi
HTL(P +Q,P ) = e2

∑

∫

K
γµ∗S(K +Q)∗Γi(K +Q,K)∗S(K)γνDµν(P −K) , (B.1)

where the HTL-vertex with vanishing photon momentum is

∗Γi(K +Q,K)
∣

∣

∣

q=0
≡ ∗Γi(k0 + q0, k0;k) = Aγ0k̂i +Bγi + Cγ · k̂ k̂i , (B.2)

– 17 –



J
H
E
P
1
1
(
2
0
0
2
)
0
2
2

with

A = −
m2

f

k q0

[

Q1

(

k0 + q0

k

)

−Q1

(

k0

k

)]

,

B = 1−
m2

f

k q0

[

Q2

(

k0 + q0

k

)

−Q2

(

k0

k

)

−Q0

(

k0 + q0

k

)

+Q0

(

k0

k

)]

,

C =
m2

f

3p q0

[

Q2

(

k0 + q0

k

)

−Q2

(

k0

k

)]

. (B.3)

Here Qn(x) are Legendre functions of the second kind. In the limit q0 → 0 the real part

of the HTL vertex is regular whereas the imaginary part (present below the light-cone

k20 < k2) is singular ∼ 1/q0.

In order to do the Matsubara frequency sum we follow the steps of ref. [12], using the

contour depicted in figure 4. After doing the analytic continuation (4.2), we arrive at

Γi
HTL = e2

∫

k,ω

∫

du

2iπ
nF (u)γ

µ ×

×

[

∗SR(u+ q0,k)∗Γi(u+ q0 + i0+, u+ i0+;k)∗SR(u,k)
1

u − (p0 − ω) + i0+
−

− ∗SR(u+ q0,k)∗Γi(u+ q0 + i0+, u− i0+;k)∗SA(u,k)
1

u− (p0 − ω) + i0+
+

+∗SR(u,k)∗Γi(u+i0+, u−q0−i0+;k)∗SA(u−q0,k)
1

u− (p0+q0−ω)−i0+
−

−∗SA(u,k)∗Γi(u−i0+, u−q0−i0+;k)∗SA(u− q0,k)
1

u− (p0+q0−ω)− i0+

]

×

× γνP T
µν(v̂)ρ

free
T (ω, v̂) +

+ e2
∫

k,ω
nB(−ω)γ

µ∗SR(p0 + q0 − ω,k)∗Γi(p0 + q0 − ω + i0+, p0 − ω − i0+;k)×

× ∗SA(p0 − ω,k)γνP T
µν(v̂)ρ

free
T (ω, v̂) +

+ e2
∫

k,ω
γµ

[

∗SR(ω± + q0,k)∗Γi(ω± + q0, ω±;k)h±(k̂)Z±(k)
nF (ω±)

p0 − ω − ω±
+

+ h±(k̂)Z±(k)
∗Γi(ω±, ω± − q

0;k)∗SA(ω± − q
0,k)

nF (ω± − q
0)

p0 + q0 − ω − ω±
+

+ ∗SR(−ω± + q0,k)∗Γi(−ω± + q0, ω±;k)h∓(k̂)Z±(k)
nF (−ω±)

p0 − ω + ω±
+

+ h∓(k̂)Z±(k)
∗Γi(−ω±,−ω± − q

0;k)∗SA(−ω± − q
0,k)×

×
nF (−ω± − q

0)

p0 + q0 − ω + ω±

]

γνP T
µν(v̂)ρ

free
T (ω, v̂) , (B.4)

where v = p−k. The first group of terms come from the branch cuts, the second from the

pole of the photon propagator and the last group (which must be written for ω+ and ω−)
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come from the poles of the HTL propagators. After doing the integral in u we arrive at

Γi
HTL = e2

∫

k,ω
[nF (ω) + nB(ω − p)] γ

µ∗SR(ω + q0,k)×

× ∗Γi(ω + q0 + i0+, ω − i0+;k)∗SA(ω,k)γνP T
µν(v̂)ρ

free
T (p− ω, v̂) +

+ e2
∫

k,ω
γµ

[

∗SR(ω± + q0,k)∗Γi(ω± + q0, ω±;k)h±(k̂)Z±(k)
nF (ω±)

ω − ω±
+

+ h±(k̂)Z±(k)
∗Γi(ω±, ω± − q

0;k)∗SA(ω± − q
0,k)

nF (ω± − q
0)

ω + q0 − ω±
+

+ ∗SR(−ω± + q0,k)∗Γi(−ω± + q0, ω±;k)h∓(k̂)Z±(k)
nF (−ω±)

ω + ω±
+

+ h∓(k̂)Z±(k)
∗Γi(−ω±,−ω± − q

0;k)∗SA(−ω± − q
0,k)×

×
nF (−ω± − q

0)

ω + q0 + ω±

]

γνP T
µν(v̂)ρ

free
T (p− ω, v̂) , (B.5)

where we have made the change of variable p−ω→ ω. We are interested in computing the

real part after contracting with the spinors ūλ(p̂) . . . uλ(p̂). First we must show that if we

expand in the external frequency q0, the real part of the first term 1/q0 vanishes. For the

last group of terms we notice that since ω±(k) ≥ k both the vertex and the propagators

are real (apart from the Dirac matrix structure). With the help of

∗SR/A(ω± ± q
0,p) =

Z±(p)h±(p̂)

±q0
+ regular terms ,

∗SR/A(−ω± ± q
0,p) =

Z±(p)h∓(p̂)

±q0
+ regular terms ,

∗Γµ(±ω± + q0,±ω±;k)]|q0=0 = ∗Γµ(±ω±,±ω± − q
0;k)|q0=0 , (B.6)

it is easy to see that the last group of terms is regular when q0 vanishes. Now, using

the spectral density of the transverse photon eq. (3.18), we see that the integral over ω is

restricted to be below the light-cone. Therefore the propagators do not have poles and so

there are no pinching poles. After doing the algebra the first term in eq. (B.5), contracted

with p̂i, can be written as

e2
∫

k,ω
[nF (ω) + nB(ω − p)] ρ

free
T (p− ω, v̂)×

×
[

(A+B +C)∗∆R
+(ω + q0,k)∗∆A

+(ω,k) p̂ · k̂(1− k̂ · v̂p̂ · v̂) +

+ (A−B − C)∗∆R
−(ω + q0,k)∗∆A

−(ω,k) p̂ · k̂(1 + k̂ · v̂p̂ · v̂) +

+B
{

∗∆R
+(ω + q0,k)∗∆A

−(ω,k) +
∗∆R
−(ω + q0,k)∗∆A

+(ω,k)
}

×

× p̂ · v̂(p̂ · k̂k̂ · v̂− p̂ · v̂)
]

. (B.7)

The HTL vertex has an imaginary part below the light-cone which is singular when q0

vanishes. However, the three combinations of propagators in the previous formula are real

when q0 → 0, and since we need the real part of the new diagram, we also only need the real
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ωq

k0

−k k

C
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Im(k  ) = 00

Im(k  ) = − 0

Figure 4: Contour used to do the sum over Matsubara frequencies in eq. (B.1). The contour C

is deformed into C ′ surrounding the poles and cuts. The fermionic HTL propagator ∗S(K) has a

branch cut from −k to k and also poles at ω± and −ω±, where ω± are the dispersion relations with

ω±(k) ≥ k. The HTL vertex ∗Γi(K +Q,K) has the same branch cut.

part of the HTL vertex. This is finite when the external frequency goes to zero, hence the

real part of the previous formula has the same property. Thus for the real part of eq. (B.5)

we can safely put q0 to zero. Finally, since there are no pinching poles, which could cancel

some of the powers of the coupling constant, we conclude that the whole expression is

smaller than the tree level vertex contribution. After writing ω = kx, expanding in powers

of k/p and making the scaling k/mf = y, it can easily be seen that the contribution

of eq. (B.5) behaves as e3 times a finite integral independent of the coupling constant.

Therefore the real part of the new diagram is, in the pinching-pole limit, suppressed by e3

and it can safely be neglected.
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