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1. Introduction

Due to the recent progress in relativistic heavy ion collisions and cosmology, detailed theo-

retical investigations of the dynamics of quantum fields out of equilibrium have become an

active subject of research. A successful approach to solve the dynamics of quantum fields

far from equilibrium as well as the subsequent stage of equilibration and thermalization

makes use of the so-called two-particle-irreducible (2PI) effective action (see refs. [1]–[13]

for recent nonequilibrium applications).

The final stages of thermalization in systems out of equilibrium with conserved quanti-

ties can be described by hydrodynamics, characterized by an equation of state and transport

coefficients. Recently, we investigated the connection between the 2PI effective action and

transport coefficients for a variety of field theories and found that the lowest nontrivial

truncation of the 2PI effective action determines correctly transport coefficients in a weak
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coupling or 1/N expansion at leading (logarithmic) order [14].1 We emphasized that this

result provides an important benchmark to validate commonly used truncation schemes

for nonequilibrium quantum field dynamics.2

In applications to heavy ion dynamics, successful hydrodynamical descriptions of heavy

ion collisions are so far based on ideal hydrodynamics, assuming infinitely fast thermaliza-

tion and vanishing transport coefficients [17]. The extension to nonideal hydrodynamics is

nontrivial, but the effects of viscous corrections are currently under investigation [18]. In

order to make further progress, it is crucial to know the magnitude of transport coefficients

quantitatively [18].

Transport coefficients in relativistic plasmas at high temperature can be computed

following different approaches. The first complete calculations in hot gauge theories were

done using kinetic theory: to leading logarithmic order in the weak coupling expansion [19],

to full leading order [20, 21], and in the large Nf limit [22]. Using field theory tech-

niques, the shear and bulk viscosities were obtained in a single-component scalar field

theory with cubic and quartic interactions through the summation of an infinite series

of ladder diagrams [23] (for a more concise analysis of the shear viscosity, see [24]). In

ref. [25] a simple and economical way was presented to carry out the sum of ladder di-

agrams contributing to the shear viscosity to leading order in a quartic scalar theory

and to the shear viscosity and electrical conductivity in the leading-log approximation

in (non)abelian gauge theories. The Ward identity in the calculation of the electrical con-

ductivity in QED was studied in ref. [26], while an alternative diagrammatic approach

employing a dynamical renormalization group to study the conductivity was presented in

ref. [27]. The prospects of extracting transport coefficients nonperturbatively using lat-

tice QCD have been discussed in ref. [28] and first results have been obtained [29] (see

also [30]). In strongly coupled supersymmetric Yang-Mills theories, the shear viscosity

has been computed with the help of the AdS/CFT correspondence [31]. Finally, the

shear viscosity has been computed in the hadronic phase using phenomenological mod-

els [32, 33].

In this paper we consider the O(N) model in its symmetric phase and compute the

shear viscosity to first nontrivial order in the 1/N expansion. The O(N) model is widely

used when applying methods and techniques in thermal and nonequilibrium field theory,

because without running into the issue of gauge invariance, it still leaves a nontrivial

problem to solve. Moreover, it acts as a low energy effective description of QCD (for

N = 4) and is frequently used in early cosmology (inflation, reheating). The large N

expansion offers the possibility to explore the behavior of transport coefficients outside

the weak-coupling domain and in combination with the 2PI effective action, it naturally

leads to the inclusion of the required medium effects in the single particle propagators.

We use a field theory approach to compute the shear viscosity. As we will show below, a

typical ladder diagram that contributes at leading order is shown in figure 1. We note that

the lines in this diagram are dressed propagators, so it should be regarded as a skeleton

1For the bulk viscosity it is necessary to go to higher-order truncations [15].
2In this context it would be interesting to compute transport coefficients within the so-called 2PPI

effective action approach [16].
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Figure 1: Typical skeleton diagram that contributes to the shear viscosity in the O(N) model at

first nontrivial order in the large N limit. The black dots with tiny lines represent the external

bilinear operators.

diagram. As we have recently shown [14], the summation of these classes of diagrams is

neatly organized using the 2PI effective action. In particular, the 2PI-1/N expansion to

next-to-leading order (NLO) [4, 6] sums precisely the relevant set of diagrams.

The paper is organized as follows. In section 2 we describe the 2PI effective action for

the O(N) model and write down the ensuing integral equation at next-to-leading order in

the 1/N expansion. We argue that it sums all necessary diagrams that contribute to the

shear viscosity at leading order. In section 3 we study the various elements that appear in

the integral equation and which are essential for its calculation: the single particle spectral

function, the gap equation for the mass and its renormalization, the auxiliary correlator

summing the chain of bubbles diagrams, and the thermal width. In section 4 we derive

a compact expression for the shear viscosity in terms of an effective vertex summing the

ladder diagrams. Section 5 is devoted to the integral equation for the effective vertex. We

show how to cast the problem of solving it into a variational one, better suited for numerical

analysis. In section 6 we study the weak-coupling limit of the integral equation and find an

analytical result in the limit of ultrahard momentum. In section 7 we solve numerically the

variational problem and present the results for the shear viscosity. The final section 8 is

devoted to the conclusions. In the appendix we consider the weakly coupled O(N) model

for arbitrary N using the three-loop expansion of the 2PI effective action.

2. 2PI-1/N expansion

We consider a real scalar N -component quantum field φa (a = 1, . . . , N) with a classical

O(N)-invariant action,

S[φ] =

∫

x

[

1

2
∂0φa∂0φa −

1

2
∂iφa∂iφa −

1

2
m2

0φaφa −
λ0
4!N

(φaφa)
2

]

. (2.1)

The mass parameter m0 and coupling constant λ0 are bare parameters. To the order we

are working, field renormalization is not necessary. We use the notation
∫

x
=

∫

C
dx0

∫

d3x , (2.2)

where C is a contour in the complex-time plane. We will work in the imaginary time

formalism, so below we specialize to the Matsubara contour, running from 0 to −i/T .

According to the Kubo formula, the shear viscosity can be obtained from the slope of

a spectral function at zero frequency,

η =
1

20

∂

∂q0
ρππ(q

0,0)
∣

∣

∣

q0=0
, (2.3)
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where

ρππ(x− y) = 〈[πij(x), πij(y)]〉 , (2.4)

with πij the traceless part of the spatial energy-momentum tensor,

πij(x) = ∂iφa(x)∂jφa(x)−
1

3
δij∂kφa(x)∂kφa(x) . (2.5)

It is well known from weak coupling studies that a one loop calculation of the shear

viscosity is incorrect, since diagrams that appear at higher order in the loop expansion

contribute at leading order and the computation must be carried out using dressed propa-

gators [23, 25]. For a single-component scalar field (N = 1), Jeon showed that these higher

order diagrams are ladder diagrams, where the rung in the ladder is a single bubble [23].

Due to the kinematical configuration, the propagators on the side rails suffer from pinching

poles. As a result the thermal width, which is determined by the imaginary part of the

self energy, has to be included in these propagators, while the real part is subleading and

can be neglected (at weak coupling). The picture is quite similar for gauge theories at

leading logarithmic order in the weak coupling limit [25, 26]. The ladder series is conve-

niently summed through an integral equation for an effective vertex [23]–[25]. We have

shown recently that this integral equation in the required kinematic configuration appears

naturally in the 2PI effective action formalism [14]. In the 1/N expansion, in which we are

interested here, the presence of pinching poles also leads to higher order diagrams in the

loop expansion contributing at leading order, and the 2PI effective action formalism neatly

organizes this calculation as well, as we describe now.

The 2PI effective action is a functional of the time-ordered two-point function

Gab(x, y) = 〈TCφa(x)φb(y)〉 (2.6)

and can be parametrized as [34, 35]

Γ[G] =
i

2
Tr lnG−1 +

i

2
Tr G−10 (G−G0) + Γ2[G] . (2.7)

Throughout we consider 〈φa(x)〉 = 0. The classical inverse propagator iG−10 is given by

iG−10,ab(x, y) = −
[

¤x +m2
0

]

δabδC(x− y) , (2.8)

with δC(x − y) ≡ δC(x0 − y0)δ(x − y). Γ2[G] is the sum of all 2-particle irreducible (2PI)

diagrams with no external legs and exact propagators on the internal lines. Extremizing

this effective action,
δΓ[G]

δGab(x, y)
= 0 , (2.9)

leads to a Dyson equation for the two-point function

G−1ab (x, y) = G−10,ab(x, y)− Σab(x, y) , (2.10)

where the self energy

Σab(x, y) ≡ 2i
δΓ2[G]

δGab(x, y)
(2.11)

depends on the full propagator G.
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Within the 2PI formalism, a 4-

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

1
2+

�������������������������������������������������������������������������������������������������������������������������

�������������������������������������������������������������������������������������������������������������������������

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

���������������������������������������������������������������������������������������������������

���������������������������������������������������������������������������������������������������

=

Figure 2: Integral equation for the 4-point function.

point vertex function Γ(4) appears, de-

fined as the usual connected 4-point

function with the external legs remo-

ved. This 4-point function obeys an

integral equation that can be obtained

using standard functional relations [34] (see figure 2)

Γ
(4)
ab;cd(x, y;x

′, y′) = Λab;cd(x, y;x
′, y′) + (2.12)

+
1

2

∫

ww′zz′
Λab;ef (x, y;w, z)Gee′ (w,w

′)Gff ′(z, z
′)Γ(4)

e′f ′;cd(w
′, z′;x′, y′) .

The kernel or rung Λ is defined as

Λab;cd(x, y;x
′, y′) = 2

δΣab(x, y)

δGcd(x′, y′)
. (2.13)

Semicolons separate indices with a different origin [14].

The relations so far are general. We now specialize to the 2PI-1/N expansion to NLO.

The 2PI part of the effective action can be written as [4, 6]

Γ2[G] = ΓLO
2 [G] + ΓNLO

2 [G] + · · · , (2.14)

where (see figure 3)

ΓLO
2 [G] = −

λ0
4!N

∫

x
Gaa(x, x)Gbb(x, x) , (2.15)

ΓNLO
2 [G] =

i

2
Tr lnB , (2.16)

with

B(x, y) = δC(x− y)−
iλ0
3N

Π(x, y) . (2.17)

The function B depends on the single bubble diagram defined by

Π(x, y) = −
1

2
Gab(x, y)Gab(x, y) . (2.18)

Expanding the logarithm in eq. (2.16) generates the closed chain of bubble diagrams as in

figure 3.

Figure 3: Contributions to the 2PI effective action in the O(N) model in the 2PI-1/N expansion

at LO and NLO. Only the first few diagrams at NLO are shown.
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= +

Figure 4: Contributions to the self energy

at LO and NLO. The auxiliary correlator D

is represented by the dashed line.

Figure 5: Integral equation for the auxiliary

correlator D.

(a) (b) (c)

Figure 6: 4-point kernel in the 2PI–1/N expansion of the O(N) model at LO and NLO.

The self energy follows from eq. (2.11). We write Σ = ΣLO +ΣNLO, with

ΣLO
ab (x, y) = −i

λ0
6N

δabGcc(x, x)δC(x− y) , (2.19)

ΣNLO
ab (x, y) = −Gab(x, y)D(x, y) , (2.20)

shown in figure 4. Here we introduced the auxiliary correlator

D(x, y) =
iλ0
3N

B−1(x, y) . (2.21)

From the identity B−1B = 1 it follows that the auxiliary correlator obeys

D(x, y) =
iλ0
3N

[

δC(x− y) +
∫

z
Π(x, z)D(z, y)

]

, (2.22)

which is depicted in figure 5. For the rung, we write Λ = ΛLO + ΛNLO, and find (see

figure 6)

ΛLO
ab;cd(x, y;x

′, y′) = −
iλ0
3N

δabδcdδC(x− y)δC(x− y
′)δC(x

′ − y) , (2.23)

ΛNLO
ab;cd(x, y;x

′, y′) = − [δacδbd + δadδbc]D(x, y)δC(x− x
′)δC(y − y

′) +

+2Gab(x, y)D(x, x′)D(y, y′)Gcd(x
′, y′) . (2.24)

Finally, we specialize to the O(N)-symmetric case, take Gab(x, y) = δabG(x, y) and

Σab(x, y) = δabΣ(x, y), choose the Matsubara contour and write the equations in momen-

tum space. The final set of equations then reads

G(P ) =
1

ω2
n + p2 +m2

0 +Σ(P )
, (2.25)

with

ΣLO(P ) =
λ0
6

∑

∫

K
G(K) , (2.26)

ΣNLO(P ) = −
∑

∫

K
G(P +K)D(K) , (2.27)

– 6 –
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and

D(P ) =
1

−3N/λ0 +Π(P )
, (2.28)

Π(P ) = −
N

2

∑

∫

K
G(P +K)G(K) . (2.29)

The 4-point function obeys

Γ
(4)
ab;cd(R,K) = Λab;cd(R,K) +

1

2

∑

∫

P
Λab;ef (R,P )G2(P )Γ

(4)
ef ;cd(P,K) , (2.30)

with the kernel

ΛLO
ab;cd(R,P ) = −

λ0
3N

δabδcd , (2.31)

ΛNLO
ab;cd(R,P ) = [δacδbd + δadδbc]D(R− P ) +

+ 2δabδcd
∑

∫

L
G(R − L)D2(L)G(L − P ) . (2.32)

Here we used the notation P = (iωn,p), where ωn = 2πnT (n ∈ Z) is the Matsubara

frequency, and
∑

∫

K
= T

∑

n

∫

k

,

∫

k

=

∫

d3k

(2π)3
. (2.33)

In the remainder of this section, we argue that the set of eqs. (2.25)–(2.32) sums all

the diagrams contributing to the shear viscosity at leading order in the 1/N expansion.

First we note that the one loop contribution to the viscosity is proportional to N 2. Here,

one factor of N arises from the group indices running in the loop, the other originates from

the pair of pinching poles in the loop. Pinching poles are screened by the imaginary part

of the retarded self energy Σ, which appears first at NLO (the leading order contribution

to Σ is real). Since pinching poles are sensitive to the inverse of the imaginary part, each

pair of pinching poles gives a contribution that scales as N . Therefore the shear viscosity

takes the form3

η = N2T 3

[

F
(

λ(µ),
mR

T
,
µ

T

)

+O

(

1

N

)]

, (2.34)

where mR is the renormalized mass in vacuum and λ(µ) is the renormalized coupling

constant at the scale µ. The shear viscosity is independent of µ. It is now straightforward

to identify which diagrams contribute to the shear viscosity at leading order. The auxiliary

correlator D is proportional to 1/N , see eqs. (2.28), (2.29). Starting from the naive one-loop

expression, adding a vertical D correlator as in figure 6b yields one extra pair of pinching

poles that cancels the explicit 1/N from the D correlator. Therefore all vertical line

insertions contribute at the same order. An insertion of the box rung (see figure 6c) results

in two additional D correlators, one additional pair of pinching poles, and one additional

closed loop over the group indices. Therefore also all box rung insertions contribute at the

3Note that the ratio of the shear viscosity and the entropy density s is proportional to N , and therefore

always far above the lower bound conjectured recently, η/s ≥ 1/4π [36].
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Figure 7: Examples of rungs that may contribute at next-to-leading order to the shear viscosity

in the 1/N expansion.

same order. Finally, the lowest order rung (see figure 6a), which would generate a string

of bubbles, does not contribute to the shear viscosity. This was shown by Jeon [23] for the

weakly coupled single component case and will be confirmed below. Rungs that are down

by 1/N have additional D correlators but no compensating additional pinching poles or

closed loops. Some examples of subleading rungs are shown in figure 7. We find therefore

that the typical diagram contributing at leading order is as shown in figure 1. Throughout

the paper we neglect subleading powers of N as indicated in eq. (2.34).

Before analyzing the integral equation, which sums the required contributions, several

elements are needed in detail. We study those in the next section.

3. Quasiparticles

In this section we study the single particle propagators that are dressed to account for

plasma effects, which are crucial to the calculation of transport coefficients. A convenient

way to study these effects is through the use of the single particle spectral density.

Analytically continuing the euclidean propagator (2.25) to real frequencies yields the

retarded and advanced propagators,

GR(P ) = G(iωn → p0 + i0,p) = G∗A(P )

=
1

−p20 + p2 +m2
0 +ReΣR(P ) + i ImΣR(P )

, (3.1)

from which the spectral function is obtained as

ρ(P ) = −i [GR(P )−GA(P )]

=
−2 ImΣR(P )

[

p20 − p2 −m2
0 −ReΣR(P )

]2
+ [ImΣR(P )]2

. (3.2)

The leading part of the self energy ΣLO is of the same order as the mass in the 1/N

expansion and hence it cannot be neglected. The real part of ΣNLO
R on the other hand can

be dropped since it is suppressed by 1/N compared to the leading piece.4 Since ImΣR

is proportional to 1/N , the spectral density generically has a simple on-shell form in the

large N limit,

ρ(P ) = 2π sgn(p0)δ(p20 − ω
2
p) +O

(

1

N

)

, (3.3)

with

ωp =
√

p2 +M2 , M2 = m2
0 +ΣLO . (3.4)

4This is the reason field renormalization does not enter in this problem.
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However, when pairs of propagators with pinching poles are present, the imaginary part

cannot be neglected as it separates the poles in the complex-energy plane that approach

the real axis from below and above [23, 25]. In this case, the full propagator G(P ) has a

cut along the whole real p0 axis since ImΣR(P ) is nonvanishing for all real p0. Moreover,

the product of retarded and advanced propagators is directly proportional to its inverse,

GR(P )GA(P ) =
1

[

p20 − p2 −m2
0 −ReΣR(P )

]2
+ [ImΣR(P )]2

=
ρ(P )

−2 ImΣR(P )
. (3.5)

In the limit of large N we may use eq. (3.3) and this expression reduces to

GR(P )GA(P ) =
ρ(P )

2p0Γp

+O(1) , (3.6)

with Γp the (on-shell) thermal width defined from the imaginary part of the retarded self

energy as

Γp = −
ImΣR(P )

p0

∣

∣

∣

p0=±ωp

. (3.7)

In the remainder of this section we study the corrections introduced by the self energy.

The real part of Σ leads to a gap equation for the mass which requires renormalization of

both the mass parameter and coupling constant. The imaginary part is computed in terms

of the auxiliary correlator D, which we work out in detail.

3.1 Gap equation and renormalization

Since the real part of ΣNLO
R can be systematically neglected, the gap equation for the mass

parameter M reads

M2 = m2
0 +

λ0
6

∑

∫

P
G(P ) , (3.8)

with

G(P ) =
1

ω2
n + p2 +M2

. (3.9)

This gap equation is divergent and in order to renormalize it5 we also need the integral

equation for the 4-point function, eq. (2.30), at lowest order. In this approximation the

4-point function is momentum independent and eq. (2.30) can be solved as

Γ
(4)
ab;cd(R,K) = δabδcdΓ

(4) ,
1

Γ(4)
= −

3N

λ0
+Π(0) , (3.10)

with the single bubble at zero momentum

Π(0) = −
N

2

∑

∫

P
G2(P ) . (3.11)

We note that the equation for the 4-point function is identical to the equation for the

auxiliary correlator D(P ) at zero momentum. Therefore the renormalization carried out

to obtain a finite gap equation renders D(P ) finite too.

5See refs. [37, 38] for recent studies of renormalization in the 2PI effective action formalism.
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0 1 2 3 4

m
R
/T

0

1

2

3

4

M
/T

λ(T)=80
λ(T)=50
λ(T)=10

Figure 8: Finite temperature massM/T as a function of the renormalized mass at zero temperature

mR/T for 3 different values of λ(T ).

In order to regulate the divergent integrals we use dimensional regularization in 3− 2ε

dimensions. Both λ0 and Γ(4) have dimension µ2ε. We introduce a dimensionless coupling

λR via

Γ(4) = −
λRµ

2ε

3N
, (3.12)

such that the equations to renormalize read

1

λR
=

µ2ε

λ0
+
µ2ε

6

∑

∫

P
G2(P ) , (3.13)

M2 = m2
0 +

λ0
6

∑

∫

P
G(P ) . (3.14)

Since renormalization can be carried out at zero temperature, we only compute the bubble

in the vacuum
1

λR
=
µ2ε

λ0
+

1

96π2

(

1

ε
+ ln(4π)− γE + 2 ln

µ

mR

)

, (3.15)

where mR is the renormalized mass at zero temperature. Introducing the running coupling

constant in the MS scheme λ(µ) via

1

λ(µ)
≡
µ2ε

λ0
+

1

96π2

(

1

ε
+ ln(4π)− γE

)

, (3.16)

we find
1

λR
=

1

λ(µ)
+

1

48π2
ln

µ

mR
. (3.17)

The running coupling λ(µ) obeys the usual renormalization group (RG) equation with the

correct β function for the O(N) model in the large N limit, β(λ) = λ2/(48π2).

– 10 –
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Returning to the gap equation (3.14) at zero temperature, we find

m2
R = m2

0 −
λ0µ

−2ε

6

m2
R

16π2

[

1

ε
+ ln(4π) − γE + 1 + 2 ln

µ

mR

]

, (3.18)

Combining eqs. (3.14), (3.16), (3.18), we arrive at the renormalized gap equation at finite

temperature

M2 = m2
R −

λ(µ)

96π2

[

(M2 −m2
R)

(

1 + ln
µ2

m2
R

)

+M2 ln
m2
R

M2

]

+
λ(µ)

6

∫

p

n(ωp)

ωp

, (3.19)

where n(ω) = 1/(eω/T − 1) is the Bose distribution function. The solution of this gap

equation is independent of the renormalization scale µ. A numerical solution of the gap

equation for three values of λ(µ = T ) is shown in figure 8.

There is one additional issue related to renormalization that needs to be considered.

This scalar theory has a Landau pole at the scale ΛL = µe48π
2/λ(µ), where the running

coupling constant diverges. One has to require that all physical energy scales involved in

the problem, i.e. mR,M , and T , are much smaller that the one associated with the Landau

pole. This imposes a restriction on which values of λ(µ) and mR can be considered.

Taking, for example, T to be the largest scale and demanding that ΛL/T & 40, we find

that λ(µ = T ) . 48π2/ ln 40 ≈ 128.

3.2 Auxiliary correlator

Before proceeding with a calculation of the thermal width, we need to consider the chain

of bubbles summed by the auxiliary correlator D. The single bubble is given by

Π(P ) = −
N

2

∑

∫

K
G(P +K)G(K) , (3.20)

which after performing the Matsubara sum reads

Π(P ) = −
N

2

∫

k

1

4ωkωr

{

[n(ωr)− n(ωk)]

(

1

iωn + ωk − ωr

−
1

iωn − ωk + ωr

)

+ (3.21)

+ [1 + n(ωk) + n(ωr)]

(

1

iωn + ωk + ωr

−
1

iωn − ωk − ωr

)}

,

where r = k + p. In order to separate the logarithmic divergence in the zero-temperature

contribution we write

Π(P ) = Π0(P ) + ΠT (P ) , Π0(P ) = Π0(0) + Π′0(P ) , (3.22)

where Π0(P ) is the part without distribution functions. The divergent contribution Π0(0)

is similar to the one computed for the renormalization of the coupling constant,

Π0(0) = −
N

32π2

(

1

ε
+ ln4π − γE + 2 ln

µ

M

)

, (3.23)

while the remainder is finite and can be evaluated as

Π′0(P ) = −
N

16π2

(

1 +
1

2

√

1 + 4M2/P 2 ln

√

1 + 4M2/P 2 − 1
√

1 + 4M2/P 2 + 1

)

, (3.24)

with P 2 = ω2
n + p2. The easiest way to arrive at the above result is to go back to the

original four-dimensional euclidean integral.
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We are interested in the retarded bubble, obtained by analytical continuation iωn →

p0 + i0. For the finite contribution to the real part we write

ReΠf
R(P ) = ReΠ

′R
0 (P ) + ReΠR

T (P ) , (3.25)

with

ReΠ
′R
0 (P ) = −

N

16π2

{

1 +
1

2

[

Θ(s− 4M 2) + Θ(−s)
]

β(P ) ln

∣

∣

∣

∣

1− β(P )

1 + β(P )

∣

∣

∣

∣

−

−Θ(4M 2 − s)Θ(s)B(P ) arctan
1

B(P )

}

, (3.26)

where s = p20 − p
2, and

β(P ) =

√

1−
4M2

p20 − p
2
, B(P ) =

√

4M2

p20 − p
2
− 1 , (3.27)

and

ReΠR
T (P ) = −

N

16π2p

∫ ∞

0
dk

k

ωk

n(ωk) ln

∣

∣

∣

∣

(k + p+)(k + p−)
(k − p+)(k − p−)

∣

∣

∣

∣

, (3.28)

with p± = 1
2

[

p± p0β(P )
]

. The remaining integral can be done numerically.

The imaginary part can be written in terms of single particle spectral functions as

ImΠR(P ) = −
N

4

∫

K
ρ(P +K)ρ(K)

[

n(k0)− n(p0 + k0)
]

, (3.29)

where
∫

K
=

∫

d4k

(2π)4
, (3.30)

and can be evaluated completely

ImΠR(P ) = −Θ(s− 4M 2)
N

32π

[

β(P ) +
2T

p
ln

1− e−p̄+/T

1− e−p̄−/T

]

−

−Θ(−s)
NT

16πp
ln

1− e−p̄+/T

1− ep̄−/T
, (3.31)

with p̄± = 1
2 [p

0 ± pβ(P )].

The chain of bubbles is summed by the auxiliary correlator D in eq. (2.28). The

divergent piece of the single bubble Π0(0) is absorbed by coupling constant renormalization.

The renormalized expression for D−1 reads

D−1(P ) = −3N

[

1

λ(µ)
−

1

96π2
ln
M2

µ2

]

+Π′0(P ) + ΠT (P ) . (3.32)

The auxiliary correlator is renormalization group invariant. Retarded auxiliary propagators

are obtained as DR(P ) = D(iωn → p0 + i0,p) = D∗A(P ). The spectral density is

ρD(P ) = −i [DR(P )−DA(P )] =
−2 ImΠR(P )

[

3N/λ(M) −ReΠf
R(P )

]2
+ [ImΠR(P )]2

, (3.33)
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Figure 9: Spectral density NρD(ω,p)/λ2(M) as a function of ω/T for fixed p/T = 2, mR/T = 1

and three values of the coupling λ(µ = T ). The vertical line indicates the lightcone.

in terms of the RG invariant coupling

1

λ(M)
=

1

λ(µ)
−

1

96π2
ln
M2

µ2
. (3.34)

The spectral function is shown in figure 9 for a typical choice of parameters. We scaled

out the trivial N/λ2(M) dependence. ImΠR(ω,p) and therefore ρD(ω,p) are nonzero

below the lightcone (ω2 < p2) and above threshold (ω2 > p2 + 4M2). We note that for

larger coupling constant the contribution below the lightcone diminishes. Fixing mR and

increasing λ(T ) results in a larger value for M (see figure 8). As a result the contribution

above threshold starts at larger ω when increasing λ(T ).

3.3 Thermal width

The thermal width is given by

Γp = −
ImΣR(P )

p0

∣

∣

∣

p0=±ωp

= −
ImΣR(ωp,p)

ωp

. (3.35)

The LO part of Σ does not contribute. We write the self energy at NLO as

ΣNLO(P ) = −
∑

∫

R
G(R)D(R − P ) . (3.36)

After performing the Matsubara sum and the analytical continuation, we find ImΣR in

terms of spectral functions as

ImΣR(P ) =
1

2

∫

R
ρ(R)ρD(R− P )

[

n(r0)− n(r0 − p0)
]

. (3.37)
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Figure 10: Width Γp/Γ∞ as a function of λ(T ) for fixed p/T = 5 and four values of mR/T .

A convenient way to proceed is to introduce k = |r− p| as

1 =

∫ ∞

0
dk δ(k − |r− p|) =

∫ r+p

|r−p|
dk

k

rp
δ(cos θpr − zpr) , (3.38)

where cos θpr = p̂ · r̂ is the cosine of the angle between p and r and

zpr =
r2 + p2 − k2

2rp
. (3.39)

We perform the r0 integral using ρ(R) and the θpr integral using the delta function intro-

duced above. The final result for the width then reads

Γp =
1

16π2pωp

∫ ∞

0
dr

r

ωr

∫ r+p

|r−p|
dk k

{

ρD(ωr + ωp, k) [n(ωr)− n(ωr + ωp)]− (3.40)

− ρD(ωr − ωp, k) [n(ωr)− n(ωr − ωp)]

}

.

The remaining two integrals can be performed numerically. Note that to obtain ρD, a

numerical evaluation of the real part of the bubble is required as well.

In figure 10 we show the width as a function of the coupling constant for fixed p/T = 5

and several choices of mR/T . In order to remove the trivial parameter dependence, we

rescaled Γp with

Γ∞ =
λ2(M)T 2

2403πNp
, (3.41)

the thermal width at ultrahard momentum p À T in the weakly coupled, massless limit

at leading order in the 1/N expansion (see section 6). We observe that for small mass the

dependence on the coupling constant is substantial, whereas for larger mass it becomes

negligible.

– 14 –



J
H
E
P
0
2
(
2
0
0
4
)
0
6
1

�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������
���������
���������

1
2+=

Figure 11: Relation between 3 and 4-point vertex function.
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Figure 12: Integral equation for the full 3-point vertex.

4. Shear viscosity

Now we have all the ingredients necessary to compute the shear viscosity. In order to

do the Matsubara frequency sums, it is convenient to transform the integral equation for

the 4-point function into an equivalent one for a 3-point vertex, defined in figure 11. The

corresponding integral equation is depicted in figure 12. We denote the effective vertex as

Γij,ab (P +Q,P ) where P is the (euclidean) momentum on the siderails and Q = (iωq,0)

the momentum that enters from the left. The integral equation then reads

Γij,ab(P +Q,P ) = D0
ij,ab(p) +

1

2

∑

∫

R
G(R +Q)Γij,cd(R+Q,R)G(R)Λcd;ab(R,P ;Q), (4.1)

where the kernel Λcd;ab(R,P ;Q) for vanishing Q was presented in eqs. (2.31), (2.32) and

the bare coupling between the scalar field and the πij operator follows from eq. (2.5):

D0
ij,ab(p) = 2δab

[

pipj −
1

3
δijp

2

]

. (4.2)

The correlator we need to obtain the shear viscosity takes the form

�����
�����
�����
�����
�����

�����
�����
�����
�����
�����

Figure 13: The corre-

lator 〈πijπij〉 in terms

of the full vertex.

of an effective one-loop diagram (see figure 13),

Gππ(Q) =
1

2

∑

∫

P
G(P +Q)Γij,ab(P +Q,P )G(P )D0

ij,ab(p) . (4.3)

The effective vertex can be taken of the form6

Γij,ab(P +Q,P ) = 2δab

[

pipj −
1

3
δijp

2

]

Γ(P +Q,P ), (4.4)

which yields

Gππ(Q) =
4

3
N
∑

∫

P
p4G(P +Q)Γ(P +Q,P )G(P ). (4.5)

In order to do the sums over the Matsubara frequencies, we follow the technique

presented in ref. [25], which makes use of the following relation

T
∑

n

f(iωn) =
∑

cuts

∫ ∞

−∞

dξ

2πi
n(ξ)Discf −

∑

poles

n(zi)Res(f, zi) , (4.6)

6In principle, there could be an additional term proportional to δij . However this would not contribute

when contracted with the traceless bare vertex.

– 15 –



J
H
E
P
0
2
(
2
0
0
4
)
0
6
1

which requires knowledge of the analytical structure of the function to be summed. Be-

cause of the inclusion of the NLO contribution to the self energy in the propagators, the

propagator G(p0,p) has a cut along the entire real p0 axis, i.e. when Im(p0) = 0 in the

complex p0 plane. It follows from the integral equation eq. (4.1) that the effective vertex

has the same analytic structure, namely, Γ(P +Q,P ) has cuts when Im(p0 + q0) = 0 and

Im(p0) = 0. With this information we can do the Matsubara frequency sum in eq. (4.5),

make the analytical continuation iωq → q0+i0 afterwards to arrive at the retarded function

and take the limit q0 → 0 (see refs. [25, 26] for further illustration). Only the product of

retarded and advanced propagators suffers from pinching poles and dominates at leading

order in the 1/N expansion. Therefore only one particular analytical continuation of the

full vertex is needed. Defining

D(p0,p) = lim
q0→0

Re Γ(p0 + q0 + i0, p0 − i0;p) , (4.7)

the result for the spectral density reads

lim
q0→0

ρππ(q
0,0) = −

8

3
Nq0

∫

P
p4n′(p0)GR(P )GA(P )D(p0,p) . (4.8)

Using eq. (3.6) for the product of GR and GA and definition (2.3) for the shear viscosity,

we get

η = −
N

15

∫

P
n′(p0)p4

ρ(P )

2p0Γp

D(p0,p) = −
N

15

∫

p

n′(ωp)
p4

ω2
p

D(p)

Γp

, (4.9)

where we used that n′(−ωp) = n′(ωp) and we defined

D(p) = D(±ωp, p) . (4.10)

To arrive at our final expression for the viscosity, we proceed as in the case of gauge

theories [25, 26] and define the dimensionless quantity

χ(p) =
p2

ωp

D(p)

Γp

. (4.11)

The shear viscosity then reads

η = −
N

15

∫

p

p2

ωp

n′(ωp)χ(p) = −
N

30π2

∫ ∞

0
dp

p4

ωp

n′(ωp)χ(p) . (4.12)

Since the thermal width is inversely proportional to N , it follows that χ(p) ∼ N in the

large N limit.

5. Integral equation

As we have shown in the previous section, in order to obtain the shear viscosity, we need a

particular analytic continuation of the effective vertex in the limit q0 → 0 and p0 = ±ωp.

In this section we first explicitly write down the integral equation in this kinematical limit.

We then show how to cast it in a form suitable for a variational treatment. We also point

out the relation between the integral equation and kinetic theory.
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Figure 14: Choice of momentum labeling. We also denote k = |r− p|.

With momenta flowing as illustrated in figure 14, the integral equation reads

Γij,ab(P +Q,P ) = D0
ij,ab(p) +

1

2

∑

∫

R
G(R+Q)Γij,cd(R+Q,R)G(R)Λcd;ab(R,P ;Q) , (5.1)

where the rung is

Λcd,ab(R,P ;Q) = −
λ0
3N

δabδcd + (δacδbd + δadδbc)D(R − P ) +

+2δabδcd
∑

∫

L
D(L)D(L+Q)G(R − L)G(L− P ). (5.2)

To arrive at a scalar equation we contract with D0
ij,ab(p) and divide by a common

factor to find

Γ(P +Q,P ) = 1 +
1

2N

∑

∫

R

r2

p2
P2(p̂ · r̂)G(R +Q)Γ(R +Q,R)G(R)Λcc,aa(R,P ;Q) . (5.3)

Here, the second Legendre polynomial P2(x) = (3x2 − 1)/2 arises from the contraction

D0
ij,ab(p)Γij,cd(R+Q,R) =

8

3
p2r2P2(p̂ · r̂)δabδcdΓ(R+Q,R) , (5.4)

We now perform the Matsubara frequency sums following again the technique in ref. [25].

The lowest order term in the rung does not contribute since it is a constant and it has

no discontinuity. For doing the sum for the second term in the rung, we need to know

that the auxiliary correlator D(R − P ) has a branch cut below the lightcone and above

threshold (see section 4.2). However, when using eq. (4.6), we may assume that the cut

runs along the entire real axis, since the contribution from where the cut is absent cancels

automatically. Finally, for the last piece of the rung there are two sums. These can be

performed sequentially, provided that the analytical continuation is made at the very end.

The analytical structure is as follows. The G’s that depend on R + Q and R as well as

the vertex have branch cuts along the entire real energy axis, for the D’s we may take

branch cuts along the entire real energy axis, and the G’s that depend on R−L and P −L

contribute just simple poles (since they do not require the inclusion of the thermal width).

When performing the sum over ωl, one picks up contributions from the poles of the G’s

and from the cuts of the D’s. We found that after making the analytical continuation only

the poles from the G’s contribute.
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From eq. (4.7) it follows that we need the following analytic continuation

iωp → p0 − i0 , iωq → q0 + i0 , iωp + iωq → p0 + q0 + i0 . (5.5)

Preserving again only the dominant contribution with pinching poles for vanishing q0, we

arrive at

D(P ) = 1 +

∫

R

r2

p2
P2(p̂ · r̂)

[

n(r0 − p0)− n(r0)
]

GR(R)D(R)GA(R)Λ(R,P ) , (5.6)

with

Λ(R,P ) = ρD(R−P ) +N

∫

L

[

n(p0 − l0)− n(r0 − l0)
]

ρ(P −L)ρ(R−L) |DR(L)|
2 . (5.7)

We note that the kernel obeys Λ(R,P ) = −Λ(P,R), Λ(−R,P ) = −Λ(R,−P ).

We now use eq. (3.6) for the product of GR and GA, eqs. (4.10), (4.11) to introduce

χ(p), and take p0 = ±ωp (both choices yield the same equation) to write the integral

equation in the final form

ωpΓpχ(p) = p2 +
1

2

∫

R

[

n(r0 − ωp)− n(r
0)
] ωr

r0
P2(p̂ · r̂)χ(r)ρ(R)Λ(R,P ) . (5.8)

Solving for χ(p), one obtains the shear viscosity from eq. (4.12).

5.1 Variational approach

Since the integral equation cannot in general be solved analytically, one has to rely on

numerical methods. A convenient approach to follow is the one employed in refs. [19, 21, 22],

where the problem of obtaining a transport coefficient in kinetic theory from an integral

equation is formulated as a variational problem. Here we show how to cast the integral

equation in a form that is suitable for a variational treatment.

After multiplying eq. (5.8) with

p2

ωp

n′(ωp) , (5.9)

the integral equation can be written rather compactly as

F(p)χ(p) = S(p) +

∫ ∞

0
drH(p, r)χ(r) , (5.10)

with

F(p) = p2n′(ωp)Γp , S(p) =
p4

ωp

n′(ωp) , (5.11)

and a symmetric kernel

H(p, r) = H(r, p) , (5.12)

whose explicit form is presented below. Since H is symmetric, eq. (5.10) can be derived by

extremizing the functional

Q[χ] =

∫ ∞

0
dp

[

S(p)χ(p)−
1

2
F(p)χ2(p) +

1

2

∫ ∞

0
drH(p, r)χ(r)χ(p)

]

. (5.13)
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From eq. (4.12) we see that the actual value of this functional at the extremum,

Q[χ = χext] =
1

2

∫ ∞

0
dp S(p)χ(p) , (5.14)

is directly proportional to the viscosity

η = −
N

15π2
Q[χ = χext] . (5.15)

In the rest of this section we explicitly evaluate H(p, r).

We treat separately the diagram with the single line and with the box diagram and

write H = Hline+Hbox. We start with the diagram containing the single line. The integral

to evaluate reads
∫

R

[

n(r0 − ωp)− n(r
0)
] ωr

r0
P2(p̂ · r̂)χ(r)ρ(R)ρD(R− P ) . (5.16)

We proceed in exactly the same way as in the case of the width in section 3.3 and introduce

k = |r−p| via eq. (3.38). We perform the r0 integral using ρ(R) and the integral over the

angle between p and r using the delta function in eq. (3.38). Multiplying the result with

eq. (5.9), we can immediately read the contribution to H(p, r) introduced above, and we

find

Hline(p, r) =
n′(ωp)

16π2
p

ωp

r

ωr

∫ p+r

|p−r|
dk kP2(zpr)

{

ρD(ωr−ωp, k) [n(ωr−ωp)−n(ωr)]− (5.17)

− ρD(ωr + ωp, k) [n(ωr + ωp)− n(ωr)]

}

,

where zpr is given in eq. (3.39). Using the relations

n(ωr+ωp)−n(ωr) =
Tn′(ωr)

1 + n(ωr) + n(ωp)
, n(ωr−ωp)−n(ωr) =

Tn′(ωr)

n(ωr)− n(ωp)
, (5.18)

and the fact that ρD(ωr − ωp, k) is odd under interchange of p and r, it is straightforward

to verify that the result is symmetric in p and r.

For the diagram containing the box rung, we have to evaluate

∫

R,L

[

n(r0 − ωp)− n(r
0)
] [

n(ωp − l
0)− n(r0 − l0)

]

×

×P2(p̂ · r̂)χ(r)
ωr

r0
ρ(R)ρ(P − L)ρ(R− L) |DR(L)|

2 . (5.19)

There are three angular integrations that are nontrivial. We denote the cosine of the angle

between p and l as cos θpl, between r and l as cos θrl, and the azimuthal angle between the

p, l plane and the r, l plane as φ. The 8-dimensional integral can then be written as

2π

(2π)8

∫ ∞

0
dr r2

∫ ∞

−∞
dr0

∫ ∞

0
dl l2

∫ ∞

−∞
dl0
∫ 1

−1
dcos θpl

∫ 1

−1
dcos θrl

∫ 2π

0
dφ . (5.20)
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The integration over cos θpl will be performed using the delta functions in ρ(P − L), the

one over cos θrl using ρ(R − L) and that over r0 using ρ(R). The product of the three

spectral functions yields a set of constraints, since

ρ(R)ρ(P − L)ρ(R− L)
∣

∣

∣

p0=ωp

∼
∑

si=±
δ(r0 + s1ωr)δ

(

ωp − l
0 + s2ωp−l

)

δ
(

r0 − l0 − s3ωr−l

)

∼
∑

si=±
δ(ωp + s1ωr + s2ωp−l + s3ωr−l) . (5.21)

Out of the eight combinations, only three can contribute for kinematical reasons, namely

those corresponding to 2↔ 2 processes. We treat these three cases separately and write

Hbox = H
(1)
box +H

(2)
box +H

(3)
box . (5.22)

1. (s1, s2, s3) = (−,+,−). The cosines are cos θpl = zpl, cos θrl = z−rl , where

zpl =
l2 − l20
2pl

+
ωpl

0

pl
, zs1rl =

l2 − l20
2rl

− s1
ωrl

0

rl
. (5.23)

The constraints from the spectral functions can be satisfied provided

l0 >
√

l2 + 4M2 , |l−| < p, r < |l+| , (5.24)

where here and below

l± =
1

2

[

l ± l0β(L)
]

, β(L) =

√

1−
4M2

l20 − l
2
. (5.25)

The only place where the angle φ appears is in p̂ · r̂, which when expressed in terms

of the angles we use, reads

p̂ · r̂ = sin θpl sin θrl cosφ+ cos θpl cos θrl . (5.26)

It is then also straightforward to perform the φ-integral and we find

∫ 2π

0
dφP2(p̂ · r̂) = 2πP2(cos θpl)P2(cos θrl) . (5.27)

Multiplying the resulting expression with eq. (5.9) we can read off the first contribu-

tion to H(p, r) from the box diagram:

H
(1)
box(p, r) =

N

128π3
p

ωp

r

ωr

n′(ωp) [n(ωr − ωp)− n(ωr)]×

×

∫ ∞

0
dl

∫ ∞
√
l2+4M2

dl0 P2(zpl)P2(z
−
rl) |DR(L)|

2 [n(ωp−l
0)− n(ωr−l

0)
]

×

×Θ(p− |l−|)Θ(|l+| − p)Θ(r − |l−|)Θ(|l+| − r) . (5.28)
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2. (s1, s2, s3) = (−,−,+). The cosines are cos θpl = zpl, cos θrl = z−rl and the constraints

are

l20 < l2 , p > |l+| , r > |l+| . (5.29)

Therefore the second contribution reads

H
(2)
box(p, r) =

N

128π3
p

ωp

r

ωr

n′(ωp) [n(ωr − ωp)− n(ωr)]×

×

∫ ∞

0
dl

∫ l

−l
dl0 P2(zpl)P2(z

−
rl) |DR(L)|

2 [n(ωp − l
0)− n(ωr − l

0)
]

×

×Θ(p− |l+|) Θ (r − |l+|) . (5.30)

3. (s1, s2, s3) = (+,−,−). In this case the cosines are cos θpl = zpl, cos θrl = z+rl , with

the constraints

l20 < l2 , p > |l+| , r > |l−| . (5.31)

The third contribution then reads

H
(3)
box(p, r) =

N

128π3
p

ωp

r

ωr

n′(ωp) [n(ωr + ωp)− n(ωr)]×

×

∫ ∞

0
dl

∫ l

−l
dl0 P2(zpl)P2(z

+
rl) |DR(L)|

2 [n(l0 − ωp)− n(l
0 + ωr)

]

×

×Θ(p− |l+|) Θ (r − |l−|) . (5.32)

Using relations (5.18) and making the substitution l0 → −l0 in the third contribution, one

finds that Hbox(p, r) = Hbox(r, p). In conclusion, H(p, r) = H(r, p), which allows to obtain

the integral equation from the functional Q.

5.2 Kinetic theory

Here we briefly mention the relation between our results and the corresponding kinetic

theory, by analyzing the kernel in the integral equation.

The kernel Λ(R,P ) can be written in a form that allows for a direct comparison with

kinetic theory. We start by changing variables L→ P − L and find

Λ(R,P ) = ρD(R− P ) +N

∫

L

[

n(l0)− n(r0 − p0 + l0)
]

ρ(L)ρ(R − P + L) |DR(P − L)|
2 .

(5.33)

If we use for the spectral density the following identity

ρD(R− P ) = −2 ImΠR(R− P ) |DR(R− P )|2 , (5.34)

where (see eq. (3.29))

ImΠR(R− P ) = −
N

4

∫

L

[

n(l0)− n(r0 − p0 + l0)
]

ρ(L)ρ(R − P + L) , (5.35)

introduce the variable L′ according to
∫

L′
(2π)4δ4(R− P + L− L′) , (5.36)
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Figure 15: Scattering processes in kinetic theory, time runs horizontally.

and use the delta function to interchange momentum labels, the kernel can be written as

Λ(R,P ) =
N

2

∫

L,L′

[

n(l0)− n(l′0)
]

ρ(L)ρ(L′)(2π)4δ4(R− P + L− L′)×

×
[

|DR(R− P )|2 +
∣

∣DR(R − L
′)
∣

∣

2
+ |DR(R+ L)|2

]

. (5.37)

The second line is precisely the sum of the squares of the matrix elements |M|2 for scattering

(R,L)→ (P,L′) in kinetic theory, where the auxiliary correlator carries the interaction (see

figure 15). There are no interference terms (these would appear from the square of the sum

of matrix elements): interference only contributes at the next order in the 1/N expansion.

6. Weak coupling

In the limit of weak coupling, the integral equation simplifies considerably and it is possible

to obtain an approximate analytical solution. At weak coupling, we make the replacements

DR/A(P )→ −
λ

3N
, ρD(P )→ −

(

λ

3N

)2

2 ImΠR(P ) , (6.1)

so that the kernel becomes

Λ(R,P )→ −6

(

λ

3N

)2

ImΠR(R− P ) , (6.2)

and the width reads

Γp =
1

ωp

(

λ

3N

)2 ∫

R
ρ(R) ImΠR(R− P )

[

n(r0)− n(r0 − ωp)
]

. (6.3)

We will use the integral equation in the form

ωpΓpχ(p) = p2 +
1

2

∫

R

[

n(r0 − ωp)− n(r
0)
] ωr

r0
P2(p̂ · r̂)χ(r)ρ(R)Λ(R,P ) . (6.4)

Both on the left and the right-hand side of this equation two integrals (over r and k = |r−p|)

remain to be done. The imaginary part of the single bubble ImΠR is known analytically,

see eq. (3.31). For this reason the weakly coupled case is considerably easier than the full

problem.

For the massless weakly coupled theory, we will now show that it is possible to find

an approximate analytical solution in the limit p → ∞. Consider first the thermal

width on the LHS. Evaluating the two remaining integrals in that limit one finds (see
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also [23, appendix G] for the case N = 1)

lim
p→∞

Γp =
1

2304π

λ2T 2

pN

[

1 +
24ζ(3)

π2
T

p
+O(e−p/T )

]

. (6.5)

Neglecting for a moment the ladder contribution on the RHS of the integral equation, it is

easy to solve for χ(p) and we find

lim
p→∞

χ(p) = 2304π
N

λ2
p2

T 2

[

1 +O

(

T

p

)]

. (no ladders) . (6.6)

To include the ladders we now use the same momentum dependence for χ but with an

arbitrary prefactor

χ(p) = κp2 . (6.7)

Inserting this ansatz on the RHS of the integral and performing the integrals while consis-

tently dropping terms that are suppressed with respect to the leading p2 behavior, we find

the following result for the complete integral equation:

λ2T 2

2304πN
κp2 [1 +O(T/p)] = p2 +

λ2T 2

3456πN
κp2 [1 +O(T/p)] . (6.8)

The solution for ultrahard p is therefore

lim
p→∞

χ(p) = 6912π
N

λ2
p2

T 2
. (6.9)

A comparison between the asymptotic solution without ladders, eq. (6.6), and with ladders,

eq. (6.9), reveals that the effect of summing ladders is simply algebraic: the full vertex D(p)

in eq. (4.11) equals 3.

Using this asymptotic form of χ(p) in expression (4.12) for the viscosity yields

η∞ =
27648ζ(5)

π

N2T 3

λ2
≈ 9125.6

N2T 3

λ2
, (6.10)

where the subscript indicates that this solution has been obtained for ultrahard momen-

tum p.

We can compare this result with the numerical results obtained for the shear viscosity

in refs. [23, 19] for the weakly coupled massless N = 1 theory. In order to do this we must

find the full N dependence at weak coupling, not just the leading order result ∝ N 2. For

this we use again the 2PI effective action, but now employing the loop expansion to three

loops. The important formulas are summarized in the appendix. The result is that the full

N dependence of the shear viscosity is quite simple, and we find

η∞ =
27648ζ(5)

π

N3

N + 2

T 3

λ2
≈ 3041.9

3N3

N + 2

T 3

λ2
. (6.11)

The numerical constant is extremely close to the ones obtained numerically in ref. [23]

(3040) and ref. [19] (3033.5).
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7. Variational solution

In order to obtain the shear viscosity for general values of the coupling constant and mass

parameter, we solve the problem of extremizing the functional Q in eq. (5.13) variationally.

Following Arnold, Moore and Yaffe [19, 21, 22], we expand χ(p) in a finite set of suitably

chosen basis functions φ(m)(p):

χ(p) = N

Nvar
∑

m=1

amφ
(m)(p) , (7.1)

where we factored out an explicit factor of N , so that the integrals below are N -indepen-

dent. Using this Ansatz in the functional Q yields

Q[χ] = N
∑

m

am

[

Sm +
1

2

∑

n

an (−Fmn +Hmn)

]

, (7.2)

with

Sm =

∫ ∞

0
dp S(p)φ(m)(p) ,

Fmn = N

∫ ∞

0
dp F(p)φ(m)(p)φ(n)(p) ,

Hmn = N

∫ ∞

0
dp

∫ ∞

0
drH(p, r)φ(m)(p)φ(n)(r) . (7.3)

Note that Sm is a 1-dimensional integral, Fmn and Hmn for the line diagram are 3-

dimensional integrals, and Hmn for the box diagram is a 4-dimensional integral. Extrem-

izing the functional with respect to the variational parameters am gives a simple linear

algebra problem. The shear viscosity is given by

η = −
N2

30π2

∑

m

Smam , am =
∑

n

(F −H)−1mnSn . (7.4)

Given the asymptotic solution χ(p) ∼ (p/T )2, our choice for the trial functions is

φ(m)(p) =
(p/T )2

(1 + p/T )m−1

m−1
∑

k=0

(−1)k
( p

T

)k
. (7.5)

For fixed Nvar these basis functions are a linear combination of the functions used in

refs. [19, 21, 22]. For given basis functions the integrals in eq. (7.3) can now be performed

numerically. We found that the presence of the mass M in the integration boundaries for

p and r in Hbox (see section 5.2) reduces the effort required for the numerical integration

compared to the massless case. Using straightforward quadrature, the errors due to the

numerical integration are smaller than the width of the lines in figures 16 and 17. Also, the

results shown in these figures are obtained using three basis functions. Again, the effect of

using this truncated basis set is smaller than the width of the lines.
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Figure 16: Shear viscosity η/η∞ as a function ofmR/T , for four values of λ(µ = T ). Weak denotes

the result in the limit λ→ 0, i.e. keeping only the single bubble in the rung.

In figure 16 we present the shear viscosity as a function of the renormalized mass

in vacuum. To remove the trivial N 2T 3/λ2 dependence, we scaled the result with the

approximate analytical solution η∞ (see eq. (6.10)). The line labeled ‘weak’ shows the

result in the weak coupling limit λ → 0, i.e. preserving only the single bubble in the

rung. The other lines represent the solution to the full problem for various values of λ(T ).

We have chosen µ = T to present our results, but the shear viscosity is RG invariant.

We observe that the shear viscosity has a characteristic dependence on the mass, but a

negligible dependence on the coupling constant, after the dominant 1/λ2 behavior has been

scaled out.

In order to analyze this in more detail, we show in figure 17 the shear viscosity as

a function of the coupling constant λ(T ) for various values of the renormalized mass at

zero temperature. Recall that because of the scaling with η∞, we concentrate here on the

subdominant λ dependence. We find an appreciable dependence on the coupling constant

only for vanishing mass. Comparison with the thermal width in figure 10 shows that for

small mR, the shear viscosity and the inverse width have a similar dependence on the

coupling constant, as expected.

8. Conclusions

We have presented a diagrammatic calculation of the shear viscosity in the O(N) model at

first nontrivial order in the large N limit. The 1/N expansion of the 2PI effective action

at next-to-leading order leads in a straightforward manner to the diagrams contributing

to the shear viscosity at leading order and provides automatically the integral equation

required to sum them.
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Figure 17: Shear viscosity η/η∞ as a function of λ(µ = T ), for 4 different values of mR/T .

In the weakly coupled massless theory, the integral equation could be analyzed an-

alytically in the limit of ultrahard momentum. Using this result we found for the shear

viscosity in the O(N) model

η∞ =
9216ζ(5)

π

3N3

N + 2

T 3

λ2
≈ 3041.9

3N3

N + 2

T 3

λ2
. (8.1)

This result is extremely close to the numerical values determined earlier for the single

component theory (N = 1).

For the general case we computed the shear viscosity numerically through a variational

approach. The results are presented in figures 16 and 17. Factoring out the basic 1/λ2

dependence, the results show that the remaining dependence on the coupling constant is

very weak, while the effect on the mass parameter is larger. For the allowed range of

parameters, we conclude that the shear viscosity is close to the result obtained in the

weak-coupling analysis.

From a more general point of view, we found that the availability of an effective ac-

tion that sums the appropriate diagrams is extremely useful. While the computation of

transport coefficients is still quite involved, it is streamlined by the organization inherent

in the 2PI effective action. From the wider perspective of nonequilibrium quantum fields,

it is satisfying that 2PI effective action techniques can be applied both far from equilib-

rium, relying mostly on numerical tools, as well as (very) close to equilibrium, as we have

demonstrated here.

As we have argued recently [14], the first nontrivial truncation of the 2PI effective

action also sums the relevant diagrams to obtain the shear viscosity and the electrical

conductivity in gauge theories to leading-logarithmic order in the weak coupling limit

– 26 –



J
H
E
P
0
2
(
2
0
0
4
)
0
6
1

or to leading order in a 1/Nf expansion, where Nf is the number of fermion fields. A

diagrammatic analysis of transport coefficients in gauge theories beyond the leading-log

approximation at weak coupling is not yet available. A convenient starting point for such

an analysis may be based on a more general nPI effective action approach [39].
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A. Three-loop expansion

In order to find the full N dependence of the shear viscosity in the O(N) model in the weak

coupling limit and not just its leading behavior at large N , we summarize here the results

for the three-loop expansion of the 2PI effective action. We write Γ2[G] =
∑∞

l=2 Γ
(l)
2 [G],

with

Γ
(2)
2 [G] = −

λ

8

N + 2

3

∫

x
G2(x, x) , (A.1)

Γ
(3)
2 [G] =

iλ2

48

N + 2

3N

∫

xy
G4(x, y) . (A.2)

Since mass and coupling constant renormalization do not enter here, we denote the coupling

constant with λ. We also immediately specialized to Gab = δabG. The corresponding self

energies are

Σ
(2)
ab (x, y) = −i

λ

2

N + 2

3N
δabG(x, x)δC(x− y) , (A.3)

Σ
(3)
ab (x, y) = −

λ2

6

N + 2

3N2
δabG

3(x, y) , (A.4)

and the kernel reads

Λ
(2)
ab;cd(x, y;x

′, y′) = −i
λ

3N
[δabδcd + δacδbd + δadδbc]×

× δC(x− y)δC(x− y
′)δC(x

′ − y) , (A.5)

Λ
(3)
ab;cd(x, y;x

′, y′) = −
λ2

18N2
[4δabδcd + (N + 6)(δacδbd + δadδbc)]×

×G2(x, y)δC(x− x
′)δC(y − y

′) . (A.6)

In particular we find that

Λ(3)
aa;cc(x, y;x

′, y′) = −λ2
N + 2

3N
G2(x, y)δC(x− x

′)δC(y − y
′) . (A.7)
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Using these expressions it is straightforward to find the N dependence of the shear viscosity

in the O(N) model for arbitrary N . Starting from the large N result in the weak coupling

limit, the thermal width Γp and the kernel Λ are related to the thermal width and the

kernel presented in section 6 as

Γp

∣

∣

∣

∣

arbitraryN

=
N + 2

N
Γp

∣

∣

∣

∣

largeN

, (A.8)

Λ(R,P )

∣

∣

∣

∣

arbitraryN

=
N + 2

N
Λ(R,P )

∣

∣

∣

∣

largeN

. (A.9)

The N dependence that subsequently appears in the integral equation can be absorbed in

χ(p) as

χ(p)

∣

∣

∣

∣

arbitraryN

=
N

N + 2
χ(p)

∣

∣

∣

∣

largeN

, (A.10)

so the final effect in the viscosity is quite simple:

η

∣

∣

∣

∣

arbitraryN

=
N

N + 2
η

∣

∣

∣

∣

largeN

. (A.11)

In the weakly coupled massless limit we arrive therefore at the analytical result,

η∞ =
9216ζ(5)

π

3N3

N + 2

T 3

λ2
, (A.12)

for the shear viscosity in the O(N) model.
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