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Abstract. Theoretical studies of quarkonia can elucidate some of the important properties of
the quark–gluon plasma, the state of matter realised when the temperature exceeds O(150) MeV,
currently probed by heavy-ion collisions experiments at BNL and the LHC. We report on our
results of lattice studies of bottomonia for temperatures in the range 100 MeV � T � 450 MeV,
introducing and discussing the methodologies we have applied. Of particular interest is the
analysis of the spectral functions, where Bayesian methods borrowed and adapted from nuclear
and condensed matter physics have proven very successful.

1. The plasma of quarks and gluons

Heavy ions colliding at ultrarelativistic energies produce a tiny fireball of a plasma of quarks
and gluons — the state of matter thought to have existed slightly after the Big Bang. This
experimental program started at the SPS in the 1980s, continued at RHIC and it is now running
at the LHC, where the experiments ALICE, ATLAS and CMS are collecting and analyzing data
from the collisions of lead nuclei. The most recent runs reached temperatures of about 500
MeV — approximately 5× 1012 K — well above the temperature of the crossover from ordinary
matter to the plasma of quarks and gluons, estimated to be at about 155 MeV [1,2].

The analysis of the transition from ordinary matter to the quark-gluon plasma, and the nature
of the plasma itself — the spectral properties and the residual interactions — is a very active
field of theoretical research [3]. We are concerned with temperatures well above those where
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the synthesis of the lightest nuclei takes place, so strong interactions alone suffice to describe
the system. Hence, the appropriate microscopic description is the relativistic field theory of
the strong interactions, Quantum Chromodynamics, QCD. We also know that αs, the QCD
coupling at the scale of the temperatures of interest, can be as large as 0.5 and even larger, so
that perturbation theory, which will ultimately be valid for very high temperatures, does not
work, at least quantitatively, in the region which we wish to explore here. We therefore need a
non-perturbative method, and we choose numerical simulations of QCD discretized on a lattice.

This note is devoted to the presentation of lattice results obtained by the FASTSUM
collaboration, in particular those appearing in Refs. [4–7]. It updates and expands previous
reviews [8, 9].

1.1. Why bottomonium?

Why is bottomonium such an interesting probe of the medium? We will be concerned with
phenomena occurring at, or above, the crossover to a chirally symmetric, deconfined phase.
In general both chiral symmetry restoration and deconfinement affect the spectrum of the
theory: chiral symmetry will be seen in the light sector, by the degeneracy of the chiral
partners. The heavier quarks, however, will be blind to chiral symmetry: mu, md � ms �
Tc � ΛQCD � mc, mb. For instance a sizeable fraction of the strange mass is due to the
breaking of chiral symmetry, and for charm and bottom this contribution is completely negligible
— modifications of the spectrum of charmonia and bottomonia come entirely from the gauge
dynamics. In very short summary, then, quarkonia are ideal probes of the gluodynamics. Since
their size is small, however, the sensitivity to deconfinement is not immediate: the short-range
component of the potential, which is responsible for their binding, and hence the fundamental
bound states, might well survive in the plasma, while the excited states dissolve. We talk of
sequential suppression of quarkonia, and the goal of our studies is to make quantitative these
very qualitative considerations.

Charmonia — which are easier to produce experimentally — have been studied since early
SPS days. We know by now [10] that the experimental results for charmonia are also sensitive
to cold nuclear matter effects which reduce the primordial charmonium number significantly —
for instance by about 60% at SPS. There are also competing temporal scales — thermalization
of the plasma and formation time of the bound states, as well as the intriguing observation that
charmonia production rates at SPS and RHIC are quite similar. The latter effect can be at
least in part explained by taking into account a regeneration mechanism for charmonia (feed-
down): the higher dissociation rate at RHIC is compensated by a richer feed-down. All these
considerations make the study of charmonium suppression patterns extremely fascinating but
also challenging.

Bottomonium production, on the other hand, is much less prone to regeneration effects, and
as such is a more promising observable for the spectral analysis of the quark–gluon plasma [10].
Since bottomonium production requires the larger energies available at the LHC, such data have
become available only very recently. In the last few years, results showing sequential Upsilon
suppression in PbPb collision at LHC energies have appeared [11, 12], and we will comment on
those at the end.

2. Lattice QCD, relativistic and non–relativistic

Lattice calculations are performed in a discretized Euclidean space-time, which introduces
technical scales: the lattice spacing a and the lattice spatial size, L. Each characteristic physical
scale l should obviously fulfil the constraint a � l � L. Accommodating quarks with vastly
different masses then poses a computational challenge.

Our strategy is to treat as accurately as possible the light quarks: in all our studies
gauge configurations with dynamical light Wilson-type quark flavours are produced on highly
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Figure 1. (Color online) Effective exponents γeff(τ) for the Υ (left) and χb1 (center), as
a function of Euclidean time for various temperatures. The dotted line indicates the non-
interacting result in the continuum, which is approached by the χb1 results at the higher
temperature T = 2.1Tc [4]. Effective mass for the χb1 (right), as a function of Euclidean time
for various temperatures [5].

anisotropic lattices. Details of the lattice action and parameters can be found in Refs. [13, 14].
For the b quarks we use non-relativistic QCD (NRQCD). In our work we use a mean-field
improved action with tree-level coefficients, which includes terms up to and including O(v4),
where v is the typical velocity of a bottom quark in bottomonium,v2

b � 0.1. There is no (rest)
mass term in the NRQCD action so one can dispense with the demanding constraint a � 1/mb.
In general, NRQCD relies on the separation of scales between the bottom quark and any other
physical scale of the theory: in our work we study temperatures up to 2Tc � 400 MeV, hence
mb � T and the application of NRQCD is fully justified.

3. Correlators in the plasma

In our studies we considered the S wave states Υ and ηb and the P wave states χb0, χb1, χb2

and hb. We found that the correlators in the different P wave channels behave in a very similar
way, hence from now on for the P wave states we present results for the χb1 channel only. The
gauge configurations are generated with a dynamical first generation of quarks. More recently
the strange quark has been added as well [15]: the general features of the results are unchanged,
and a systematic, detailed analysis of the effect of a dynamical strange quark is in progress.

There is a further important simplification in NRQCD: to compute propagators we only need
to solve an initial value problem, in contrast to the relativistic case where the same computation
requires the inversion of a large sparse matrix. In the hadronic phase we expect that the large
Euclidean time behaviour of the propagators is dominated by an exponential decay. In the QGP
phase, one can use as guidance the behaviour found for free quarks in NRQCD [4, 5, 16], which
yields the spectral functions

ρfree(ω) ∝ (ω − ω0)
α Θ(ω − ω0), where α =

{
1/2, S wave.

3/2, P wave.
(1)

Here we supplemented [15] the free results by a threshold, ω0, to account for the additive shift
in the quarkonium energies which describes the residual interactions in the thermal medium.
The correlation functions then have the following behaviour

Gfree(τ) ∝
∫

dω e−ωτρ(ω) ∝ e−ω0τ

τα+1
. (2)
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To visualize the temperature dependence and at the same time monitor the approach to a
quasi-free behaviour we construct effective power plots [4], using the definition

γeff(τ) = −τ
G′(τ)

G(τ)
= −τ

G(τ + aτ ) − G(τ − aτ )

2aτG(τ)
, (3)

where the prime denotes the (discretized) derivative. For a pure power law decay this yields a
constant, γeff(τ) = α + 1. Taking into account the threshold ω0, one finds γeff(τ) = α + 1 + ω0τ .
The results are shown in figure 1. We see that the Υ displays a very mild temperature
dependence, while for the χb1 the asymptotic behaviour of the effective power tends to flatten out
with increasing temperature: this indicates that ω0 — the slope — decreases with temperature.
In the same panel also shown are the effective exponents in the continuum non-interacting limit
(ω0 = 0). In the case of the χb1, we observe that the effective exponent — which can be read
off the intercept of the asympotic straight line with the τ = 0 axis — seems to approach the
non-interacting result. Note that, even for T → ∞ where ω0 = 0, the effective exponents on the
lattice only become a straight line, γeff(τ) → α + 1, at large enough τ due to the presence of
lattice discretisation effects at smaller temporal separations.

A complementary description is offered by the effective masses,

aτmeff(τ) = − log[G(τ)/G(τ − aτ )], (4)

which are shown in the rightmost panel of figure 1. When the correlator takes the form of
a sum of exponentials, the ground state will show up as a plateau at large Euclidean times,
provided that it is well separated from the excited states. This is indeed the case at the lowest
temperature and leads to the zero-temperature spectrum discussed in Refs. [4,5]. Above Tc, we
observe that the effective masses no longer follow the trend given by the correlator below Tc, but
instead bend away from the low-temperature data. The results shown in figure 1 imply that the
spectrum of the χb1 has changed drastically. If isolated bound states persist, the ground state
has to be much lighter and excited states cannot be well separated. A more natural explanation
is that there is no exponential decay and bound states have melted, immediately above Tc. This
interpretation is supported by the spectral function analysis presented next.

4. Spectral functions

Spectral functions play an important role in understanding how elementary excitations are
modified in a thermal medium, from many-body physics — see the talk by Giuseppina Orlandini
at this meeting [17] — to QCD, which is discussed here.

In general, the spectral decomposition of a (relativistic) zero-momentum Euclidean
propagator G(τ) at finite temperature T is given by

G(τ) =

∫
∞

−∞

dω

2π
K(τ, ω)ρ(ω), (5)

where ρ(ω) is the spectral function and the kernel K is given by

K(τ, ω) =
cosh [ω(τ − 1/2T )]

sinh (ω/2T )
. (6)

In NRQCD the kinematical temperature dependence is always absent. This can be seen in a
number of ways. Following Ref. [16], we write ω = 2M+ω′ and drop terms that are exponentially
suppressed when M � T . The spectral relation (5) then reduces to its zero-temperature limit,

G(τ) =

∫
∞

−2M

dω′

2π
exp(−ω′τ)ρ(ω′), (7)
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Figure 2. (Color online) Spectral functions ρ(ω), normalised with the heavy quark mass, in
the vector (Υ) channel (upper panel) and in the pseudoscalar (ηb) channel (lower panel) for all
temperature available. The subpanels are ordered from cold (top left) to hot (bottom right).
Every subpanel contains two adjacent temperatures to facilitate the comparison [5].

even at nonzero temperature. Since the interesting physics takes place around the two-quark
threshold, ω ∼ 2M , the region of interest is around ω′ ∼ 0 and the lower limit becomes
irrelevant. In summary, in the heavy-quark limit the spectral relation simplifies considerably, and
temperature effects seen in the correlators are thus only due to changes in the light-quark–gluon
system.

Despite these simplifications, the calculation of the NRQCD spectral functions using
Euclidean propagators as an input remains a difficult, ill-defined problem. We will tackle it
by using the Maximum Entropy Method (MEM) [18], which has proven successful in a variety
of applications. We have carefully studied the systematics, including the dependence on the set
of lattice data points in time, and on the default model m(ω) which enters in the parametrisation
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Figure 3. (Color online) Spectral function in the χb1 channel at the lowest temperature (left)
and at all temperatures (center). The dotted line on the left indicates the position of the ground
state obtained with a standard exponential fit. Comparison with the free lattice spectral function
above Tc (right) [7].

of the spectral function,

ρ(ω) = m(ω) exp
∑

k

ckuk(ω), (8)

where uk(ω) are basis functions fixed by the kernel K(τ, ω) and the number of time slices,
while the coefficients ck are to be determined by the MEM analysis [18]. We find that the
results are insensitive to the choice of default model, provided that it is a smooth function of
ω. It remains of interest, and it is an open avenue of research, to experiment with alternative
prescriptions [19, 20], also on ensembles generated with different lattice actions [21].

The results for the spectral functions for the S wave states, Υ and ηb [5] can be seen in
figure 2, which shows that as the temperature is increased the ground state peaks of both states
remain visible. One caveat applies also here: the apparent width at zero temperature is most
likely due to a lattice/MEM artefact, and this calls for an analysis of the discretization effects on
the spectral function, which is one of our ongoing projects [22]. The peaks associated with the
excited states become suppressed at higher temperature and are no longer discernible quickly
above Tc.

Turning now to the P wave states, the result at the lowest temperature is given in figure 3
(left). The dotted vertical line indicates the mass of the lowest-energy state obtained with an
exponential fit. We see from this that the narrow peak in the spectral function corresponds to
the ground state. The second, wider structure is presumably a combination of excited states
and lattice artefacts, see below. We note that we have not been able to extract the mass of
the first excited state with an exponential fitting procedure. The spectral functions for all
temperatures are shown in figure 3 (center). We find no evidence of a ground state peak for any
of the temperatures above Tc. This is consistent with the interpretation of the correlator study
presented above and supports the conclusion that the P wave bound states melt in the QGP.

In order to interpret the remaining structure, we compare it with the spectral function
computed on the lattice, in the absence of interactions [5]. In figure 3, rightmost panel, we
show the free lattice spectral functions, together with the spectral functions above Tc. In that
plot we have adjusted the threshold to match our lattice results, and once this is done the lattice
spectral function and the free one almost coincide. This lends further support to the conclusion
drawn in Ref. [4] from an analysis of the correlators: the system in the P wave channels is
approaching a system of noninteracting quarks, and the residual interactions can be described
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Figure 4. (Color online) Position of the ground state peak ΔE, normalised by the heavy quark
mass (left), and the upper limit on the width of the ground state peak, normalised by the
temperature (right), as a function of T/Tc in the vector (Υ) channel. Similar results have been
obtained for the pseudoscalar (ηb) channel [5].

by a shift in the quarkonium energies, which does not affect the shape of spectral functions.

5. Comparison with analytic studies and momentum dependence

In this section we restrict our analysis to the S waves. From the computed spectral functions
we can determine the mass (from the peak position) and (an upper bound on) the width of the
ground state at each temperature.

In figure 4 we show the temperature dependence of the mass shift ΔE, normalised by the
heavy quark mass and the temperature dependence of the width, normalised by the temperature.

We now contrast our results with analytic predictions derived assuming a weakly coupled
plasma [20, 23–28]. According to Ref. [26], the thermal contribution to the width is given, at
leading order in the weak coupling and large mass expansion, by

Γ

T
=

1156

81
α3

s � 14.27α3
s, (9)

i.e. the width increases linearly with the temperature. If we take as an estimate from our results
that Γ/T ∼ 1, we find that this corresponds to αs ∼ 0.4, which is a reasonable result (it would
be of interest to compute αs directly on our configurations). In the same spirit the thermal mass
shift is given in Ref. [26] by

δEthermal =
17π

9
αs

T 2

M
� 5.93αs

T 2

M
. (10)

In these simulations we have Tc ∼ 220 MeV, M ∼ 5 GeV. Taking these values together with
αs ∼ 0.4 as determined above, Eq. (10) becomes

δEthermal

M
= 5.93αs

(
Tc

M

)2 (
T

Tc

)2

∼ 0.0046

(
T

Tc

)2

. (11)

In order to contrast our results with this analytical prediction, we have compared the
temperature dependence of the peak positions to the simple expression

ΔE

M
= c + 0.0046

(
T

Tc

)2

, (12)

where c is a free parameter. This is shown by the dashed line in figure 4 (left panel). The
numerical results and the analytic ones are not inconsistent, within the large errors.
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Table 1. Nonzero momenta [6]. Also indicated are the corresponding velocities v = |p|/MS

of the ground states in the vector (Υ) and pseudoscalar (ηb) channels, using the ground state
masses determined previously [4], MΥ = 9.460 GeV and Mηb

= 9.438 GeV.

n (1,0,0) (1,1,0) (1,1,1) (2,0,0) (2,1,0) (2,1,1) (2,2,0)
|p| (GeV) 0.634 0.900 1.10 1.23 1.38 1.52 1.73
v [Υ(3S1)] 0.0670 0.0951 0.116 0.130 0.146 0.161 0.183
v [ηb(

1S0)] 0.0672 0.0954 0.117 0.130 0.146 0.161 0.183
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Figure 5. (Color online) Position of the ground state peak M(p)/M(0) (left) and the upper
limit on the width of the ground state peak, normalized by the temperature, Γ/T (right), as
a function of the velocity squared (v2) in the vector (Υ) channel Analogous results have been
obtained for the the pseudoscalar (ηb) channel. The dotted line in the left figure represents
M(p)/M(0) = 1 + 1

2
v2 [6].

The analysis from effective theories predicts significant momentum effects at large momenta.
Moreover current CMS results have been obtained at large momenta. There is therefore both
phenomenological and experimental motivation to extend these studies to non-zero momenta
[6]. The momenta and velocities that are accessible on the lattice are constrained by the
discretization and the spatial lattice spacing. The lattice dispersion relation reads

a2
sp

2 = 4
3∑

i=1

sin2 pi

2
, pi =

2πni

Ns
, −Ns

2
< ni ≤ Ns

2
. (13)

To avoid lattice artefacts, only momenta with ni < Ns/4 are used: we consider the combinations
(and permutations thereof) given in Table 1. The largest momentum, using n = (2, 2, 0), is
|p| � 1.73 GeV, corresponding to v = |p|/MS � 0.2. Therefore, the range of velocities we
consider is non-relativistic.

As in the zero-momentum case, we extract masses and widths from our correlators using
MEM, and we display them in figure 5. We observe that the peak position increases linearly
with v2, as expected. Assuming the lowest-order, non-relativistic expression M(p) = M(0) +
p2/2M(0), one finds

M(p)

M(0)
= 1 +

p2

2M2(0)
= 1 +

1

2
v2, (14)

which is indicated with the dotted lines in the left figures.
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The dependence on the velocity can be compared with EFT predictions. In Ref. [28] a study
of the velocity dependence was carried out in the context of QED, working in the rest frame of
the bound state (i.e. the heat bath is moving). In order to compare with our setup, we consider
the case in which the temperature is low enough for bound states to be present and where the
velocities are non-relativistic. In that case, one finds [28], in the rest frame of the bound state
and at leading order in the EFT expansion,

Γv

Γ0

=

√
1 − v2

2v
log

(
1 + v

1 − v

)
, (15)

where Γ0 is the width at rest. Interpreting the width as an inverse lifetime, one can express this
result in the rest frame of the heat bath by dividing with the Lorentz factor γ = 1/

√
1 − v2. An

expansion for non-relativistic velocities then yields

Γv

Γ0

= 1 − 2v2

3
+ O (

v4
)
. (16)

If we apply this result to our study of bottomonium, we find that the effect of the nonzero
velocity shows up as a correction at the percent level (recall that v2 � 0.04), which is beyond
our level of precision but consistent with the observed v independence within errors. Similarly,
additional thermal effects in the dispersion relation are currently beyond our level of precision.
In summary, the observations in our low-momentum range are consistent with Ref. [28], and
in order to observe the predicted non-trivial momentum dependence we need to explore larger
momenta.

6. From lattice to experiments

We have presented our results for bottomonium in the quark-gluon plasma, for temperatures up
to 2.1Tc, at the threshold of the region currently explored by LHC heavy-ion experiments. Our
analysis uses full relativistic dynamics for the light quarks, and a non-relativistic approach for
the bottom quarks. The results are amenable to a successful comparison with effective models
which we hope to further pursue in the future.

Our results demonstrate a pattern of suppression of bottomonia which apparently compares
well with recent CMS results [11, 12], once we take into account that the temperatures reached
in the collisions studied by CMS are similar to the ones of our lattices. However the systems
under investigation are vastly different: Quantum Chromodynamics in thermal equilibrium in
one case, and an expanding fireball, with an extremely complex experimental setup, in the
other. For instance, our studies include processes between a b quark and thermal light quarks
(and gluons), but do not include the thermal scattering of b quarks. Unravelling the details and
the limitations of this comparison is a subject of active research, certainly beyond the scope of
this note.
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