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Abstract

We analyse discretization effects in the calculation of high-temperature meson spectral funct
nonzero momentum and fermion mass on the lattice. We do so by comparing continuum and lattic
tral functions in the infinite temperature limit. Complete analytical results for the spectral densities
continuum are presented, along with simple expressions for spectral functions obtained with Wils
staggered fermions on anisotropic lattices. We comment on the use of local and point split currents
 2005 Elsevier B.V. All rights reserved.

PACS: 11.15.Ha; 11.10.Wx

1. Introduction

Motivated by the experimental progress in relativistic heavy ion collisions and the recre
of the quark–gluon plasma, several questions have received substantial attention in the p
years. What happens to hadrons in the deconfined quark–gluon plasma? Do bound states
What is rate of photon and dilepton production from a hot QGP? How effectively are en
momentum and charge transported? How long, or rather how short, are the typical rela
times for hydrodynamic fluctuations?

Since this information is encoded in spectral functions, it is prohibitively difficult to acce
directly from Euclidean correlators obtained with lattice QCD, due to the intricacy of perfor
the analytical continuation from imaginary to real time. However, recent progress has bee
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by applying the maximal entropy method (MEM)[1] to this problem. An (incomplete) list o
high temperature studies includes the possible survival of hadronic bound states in the dec
quark–gluon plasma[2–4], thermal dilepton rates[5], and transport coefficients[6].1

In a spectral function investigation, the low-energy regionω � T is of particular interest
since it is expected to be the most affected by nonperturbative medium effects. Howev
reconstruction of spectral functions at small energiesω � T is hindered by the insensitivit
of Euclidean correlators to details of spectral functions at these energies[9]. This is especially
important for the calculation of transport coefficients where by definition the interest is
limiting value of current–current spectral densities asω → 0. Experience with the reconstructio
of spectral densities in the low-energy region can be obtained by studying the simpler (b
nontrivial) problem of meson spectral functions at nonzero momentum above the deconfin
transition. Due to, e.g., the scattering of quarks with gauge bosons below the lightcone
dau damping), these spectral functions are expected to have a nontrivial structure. Sinc
confined phase one expects to find mesons moving relative to the heatbath, described b
quasiparticle spectral functions, increasing the temperature from below to above the tra
temperature should result in a drastic change in those spectral functions.

Our aim in this paper is to provide a reference point for such an analysis on the lat
the infinite temperature limit. It is therefore similar in spirit as Ref.[10], in which a study a
zero momentum was performed. The paper is organized as follows. In the next section w
complete analytical expressions for continuum meson spectral functions at nonzero mom
and fermion mass in the infinite temperature limit and discuss several features. In Sectio3 we
derive simple expressions for meson spectral functions for Wilson and staggered lattice fe
We briefly comment on the value of the Euclidean correlator at the midpoint and on the
local and point split currents. The main results are shown in Section4, where we contrast spectr
functions obtained with Wilson and staggered fermions with the continuum results. Sec5
contains a short summary.

2. Continuum

We consider meson spectral functions with quantum numbersH , defined as

(1)ρH (t,x) = 〈[
JH (t,x), J

†
H (0,0)

]〉
,

with JH (τ,x) = q̄(τ,x)ΓH q(τ,x) andΓH = {1, γ5, γ
µ, γ µγ5}.2 They are related to Euclidea

correlation functions,

(2)GH (τ,x) = 〈
JH (τ,x)J

†
H (0,0)

〉
,

via the standard integral relation

(3)GH (τ,p) =
∞∫

0

dω

2π
K(τ,ω)ρH (ω,p),

1 We note here that Ref.[7] does not use an MEM analysis, but instead employs an ansatz which was propo
Ref. [8] and criticized in Ref.[9].

2 In this section the gamma matrices obeyγ 0† = γ 0, γ i† = −γ i , andγ
†
5 = γ5. The anticommutation relations a

{γ µ,γ ν } = 2gµν and{γ µ,γ5} = 0 with gµν = diag(+,−,−,−).
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(4)K(τ,ω) = cosh[ω(τ − 1/2T )]
sinh(ω/2T )

= eωτnB(ω) + e−ωτ
[
1+ nB(ω)

]
,

wherenB(ω) = 1/(eω/T − 1) is the Bose distribution. At lowest order in the loop expansion,
Euclidean correlators read in momentum space3

(5)GH (P ) = −
∑∫
K

trS(K)ΓH S(P + K)γ 0Γ
†
H γ 0,

whereP = (iωn,p) with ωn = 2πnT (n ∈ Z) the Matsubara frequency in the imaginary-tim
formalism, and

(6)
∑∫
K

= T
∑
n

∫
k

,

∫
k

=
∫

d3k

(2π)3
.

The fermion propagators are given by

(7)S(K) = −1

iω̃nγ 0 − γ · k − m
= −

∞∫
−∞

dω

2π

ρF (ω,k)

iω̃n − ω
,

whereω̃n = (2n + 1)πT (n ∈ Z) is a fermionic Matsubara frequency andρF (ω,k) the spectra
density of the fermion,

(8)ρF (K) = ( /K + m)ρ(K) = ( /K + m)2π sgn
(
k0)δ(k2

0 − ω2
k

)
,

with ωk = √
k2 + m2.

Using the spectral representation for the fermion propagators, it is straightforward to ar

ρH (P ) = 2 ImGH

(
iωn → ω + i0+,p

)
(9)= Nc

∫
k,k0

tr( /K + m)ΓH (/R + m)γ 0Γ
†
H γ 0ρ(K)ρ(R)

[
nF

(
k0) − nF

(
r0)],

with P = (ω,p), R = P + K andnF (ω) = 1/(eω/T + 1) is the Fermi distribution.
To facilitate the comparison with the lattice expressions below, we give here the resu

thek0 integral performed,

ρH (P ) = 2πNc

∫
k

{(
a

(1)
H + a

(2)
H

k · r
ωkωr

+ a
(3)
H

m2

ωkωr

)[
nF (ωk) − nF (ωr)

]
δ(ω + ωk − ωr)

+
(

a
(1)
H − a

(2)
H

k · r
ωkωr

− a
(3)
H

m2

ωkωr

)[
1− nF (ωk) − nF (ωr)

]
δ(ω − ωk − ωr)

(10)− (ω → −ω)

}
.

3 γ 0Γ
†
H

γ 0 appears since the original correlator is of the form〈JJ†〉, not 〈JJ 〉.
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Table 1
Coefficientsa(i)

H
for free spectral functions in different channelsH . In the case ofγ i andγ iγ5, the sum is taken ove

i = 1,2,3. We definedρV = −gµνρµν andρA = −gµνρ
µν
5

ΓH a
(1)
H

a
(2)
H

a
(3)
H

ρS 1 1 −1 1
ρPS γ5 1 −1 −1

ρ00 γ 0 1 1 1
ρii γ i 3 −1 −3
ρV γ µ 2 −2 −4

ρ00
5 γ 0γ5 1 1 −1

ρii
5 γ iγ5 3 −1 3

ρA γ µγ5 2 −2 4

The first line corresponds to scattering and contributes only below the lightcone (ω2 < p2,
Landau damping), while the second line corresponds to decay, contributing above thr
(ω2 > p2 + 4m2). The coefficientsa(i)

H arise from the three nonzero traces over the gam
matrices in Eq.(9) and depend on the channel under consideration. They are listed inTable 1.

The remaining integrals can be performed as well. In terms of

(11)p̄± = 1

2

[
ω ± pβ(P )

]
, β(P ) =

√
1− 4m2

s
, s = ω2 − p2,

the final expression in the continuum reads

ρH (P ) = Θ
(
s − 4m2)NcT

2

π

×
{

β(P )

24T 2

[(
3ω2 − p2β2(P )

)
a

(1)
H + (

3p2 − (
3ω2 − 2p2)β2(P )

)
a

(2)
H

− 12m2a
(3)
H

]
+ 1

4pT

[(
ω2 − p2β2(P )

)
a

(1)
H + (

p2 − ω2β2(P )
)
a

(2)
H

− 4m2a
(3)
H

]
ln

1+ e−p̄+/T

1+ e−p̄−/T

+ (
a

(1)
H + a

(2)
H

)(
β(P )

[
Li2

(−e−p̄+/T
) + Li2

(−e−p̄−/T
)]

+ 2T

p

[
Li3

(−e−p̄+/T
) − Li3

(−e−p̄−/T
)])}

+ Θ(−s)
NcT

2

π

{
1

4pT

[(
ω2 − p2β2(P )

)
a

(1)
H

+ (
p2 − ω2β2(P )

)
a

(2)
H − 4m2a

(3)
H

]
ln

1+ e−p̄+/T

1+ ep̄−/T

+ (
a

(1)
H + a

(2)
H

)(
β(P )

[
Li2

(−e−p̄+/T
) − Li2

(−ep̄−/T
)]

(12)+ 2T

p

[
Li3

(−e−p̄+/T
) − Li3

(−ep̄−/T
)])}

.
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We now discuss several features. First consider the asymptotic behaviour at largeω. We find that
all spectral functions increase withω2,

(13)lim
ω→∞ρH (P ) = Θ

(
s − 4m2)Nc

8π
ω2(a(1)

H − a
(2)
H

)
,

as expected from naive dimensional arguments, except when there is a cancellation. This
for ΓH = γ 0, γ 0γ5, for which we find instead

lim
ω→∞ρ00(P ) = Θ

(
s − 4m2)Nc

6π
p2,

(14)lim
ω→∞ρ00

5 (P ) = Θ
(
s − 4m2)Nc

6π

(
p2 + 6m2).

For the vector current this behaviour can be understood from current conservation∂µjµ = 0.
Since at largeω the effect of finite temperature is exponentially suppressed, we may use th
temperature decomposition,

(15)ρµν(P ) = 2 ImΠ
µν
R (P ) = 2

(
P 2gµν − P µP ν

)
ImΠR

(
P 2),

which explains the behaviour above. Current conservation also relates the other compon
ρµν ,

ωρ00(P ) = piρi0(P ), ωρ0j (P ) = piρij (P ),

(16)ω2ρ00(P ) = pipjρij (P ).

Since the axial vector current is not conserved,

(17)∂µj
µ
5 = 2mj5 + anomaly,

similar relations do not hold forρµν
5 . However, in the free case considered here, we find

(18)ω2ρ00
5 (ω,0) = 4m2ρPS(ω,0).

Any deviation from this is therefore due to the U(1)A anomaly.
In the zero momentum limit, the spectral functions reduce to4

ρH

(
ω,0

) = Θ
(
ω2 − 4m2) Nc

8πω

√
ω2 − 4m2

[
1− 2nF (ω/2)

]
× [

ω2(a(1)
H − a

(2)
H

) + 4m2(a(2)
H − a

(3)
H

)]
(19)+ 2πωδ(ω)Nc

[(
a

(1)
H + a

(2)
H

)
I1 + (

a
(2)
H − a

(3)
H

)
I2

]
,

with

(20)I1 = −2
∫
k

n′
F (ωk), I2 = −2

∫
k

k2

ω2
k

n′
F (ωk).

4 A comparison with the coefficientsaH andbH in Table 2.1 of Ref.[10] yieldsa
(1)
H

−a
(2)
H

= 2aH , a(2)
H

−a
(3)
H

= 2bH ,
except for the axial currents(A0,Ai), where we findbH = (1,−2) instead ofbH = (0,3). Note that the coefficients in
Ref. [10] disagree with relation(18). Note also that the normalization differs by a factor of 2π and that the overall sign
for ρS andρ5 are opposite.
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In the massless caseI1 = I2 = T 2/6. The term proportional toωδ(ω) is all that remains from
the scattering contribution below the lightcone in Eq.(10). It gives aτ independent contributio
to the Euclidean correlator since the kernelK(τ,ω) ∼ 2T/ω for small ω. In particular, charge
conservation dictates the form ofρ00 andG00 at zero momentum,

(21)ρ00(ω,0) = 2πχωδ(ω), G00(τ,0) = T χ,

which is not altered by interactions, although the value of the charge susceptibilityχ is. At the
order computed here,χ = 2NcI1. For completeness we give here the Euclidean correlator at
momentum and mass

(22)GH (τ,0) = NcT
3

6

[
a

(1)
H + a

(2)
H + 3

2

(
a

(1)
H − a

(2)
H

)3u + ucos(2u) − 2 sin(2u)

sin3 u

]
,

whereu = 2πT (τ − 1/2T ).
Finally, it follows from the spectral decomposition

(23)ρH (P ) = 1

Z

∑
n,m

∣∣〈n|JH (0)|m〉∣∣2(2π)4δ4(P + Pn − Pm)
(
e−p0

n/T − e−p0
m/T

)
,

whereZ is the partition function, that all spectral functions for a single currentJH are odd and
positive semi-definite for positive argument, i.e.,ωρH (ω,p) � 0. Obviously, spectral function
that are defined as the difference between such spectral functions, such asρV = ρii − ρ00 and
ρA = ρii

5 − ρ00
5 can turn negative. Indeed, it is easy to see thatρV(ω,p) is negative for smallω

if p2 < 2m2. All other spectral functions increase linearly withω for smallω and nonzerop.
Although not the topic of this paper, we briefly mention how corrections due to interac

appear at very high temperature. First of all, for soft momentum|p| ∼ ω ∼ gT , a hard ther-
mal loop [11] calculation is needed, see, e.g., Refs.[12–14] for such studies. The gap in th
spectrum forp2 < ω2 < p2 + 4m2 is filled when two loop diagrams are included, due to, e
bremsstrahlung[15]. Around the lightcone the loop expansion breaks down due to the Lan
Pomeranchuk–Migdal effect and an infinite series of ladder diagrams contribute at leadin
in the strong coupling constant[16,17]. Finally for very soft momenta and energies, the struc
of current–current spectral functions is determined by general hydrodynamical conside
[18]. So far a diagrammatic calculation in this regime has been carried out only in the case
spatial vector spectral functionρii(ω,0) in the limit of exactly zero momentum and vanishi
energyω → 0, which is relevant for the electrical conductivity: see Refs.[19,20] for details on
the weak coupling result at leading-logarithmic order and Ref.[21] for the largeNf result.

3. Lattice

3.1. Wilson fermions

In this section we derive expressions for meson spectral functions on a lattice withN3
σ × Nτ

sites. The lattice spacing is denoted witha in the spatial directions and withaτ in the tempora
direction,ξ = a/aτ is the anisotropy parameter. The temperature is related to the extent
imaginary time direction,T = 1/(Nτaτ ). We start with standard Wilson fermions. The latt
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fermion propagator (with coefficientsr4, rspace= r) reads5

(24)S(K) = −iγ4 sink4 − iKk + r4(1− cosk4) +Mk

sin2 k4 +K2
k + [r4(1− cosk4) +Mk]2 ,

where

(25)Kk = 1

ξ

3∑
i=1

γi sinki, Mk = 1

ξ

[
r

3∑
i=1

(1− coski) + m

]
.

We use periodic boundary conditions in space,ki = 2πni/Nσ with ni = −Nσ /2+ 1,−Nσ /2+
2, . . . ,Nσ /2 − 1,Nσ /2 for i = 1,2,3, and antiperiodic boundary conditions in imaginary tim
k4 = π(2n4 + 1)/Nτ with n4 = −Nτ/2+ 1,−Nτ/2+ 2, . . . ,Nτ /2− 1,Nτ /2.

To make a smooth connection with the expressions in the continuum we follow Ref.[10] and
use the mixed representation of Carpenter and Baillie[22]

(26)S(τ,k) = γ4S4(τ,k) +
3∑

i=1

γiSi(τ,k) + 1Su(τ,k).

In order to avoid the doubler in the time direction, we proceed withr4 = 1, so that (for 0� τ <

1/T )

S4(τ,k) = S4(k)cosh(τ̃Ek),

Si(τ,k) = Si(k)sinh(τ̃Ek),

(27)Su(τ,k) = Su(k)sinh(τ̃Ek) − δτ0

2(1+Mk)
.

Hereτ̃ = τ − 1/2T and

S4(k) = sinh(Ek/ξ)

2Ek cosh(Ek/2T )
,

Si(k) = 1

ξ

i sinki

2Ek cosh(Ek/2T )
,

(28)Su(k) = −1− cosh(Ek/ξ) +Mk

2Ek cosh(Ek/2T )
,

with Ek = (1+Mk)sinh(Ek/ξ). The single particle energyEk is determined by6

(29)cosh(Ek/ξ) = 1+ K2
k +M2

k

2(1+Mk)
.

The final term inSu(τ,k) is the sole remnant of the nonpropagating time doubler; below
consider 0< τ < 1/T . The propagator satisfiesS(−τ,k) = γ5S

†(τ,k)γ5.
The correlators we are interested in are of the form

(30)GH (τ,p) = −Nc

L3

∑
k

trS(τ,k)ΓH S(−τ, r)ΓH ,

5 In this section the gamma matrices are hermitian,γ
†
µ = γµ, γ

†
5 = γ5, and obey{γµ,γν } = 2δµν , {γµ,γ5} = 0. They

are related to the gamma matrices of the previous section asγ4 = γ 0, γi = −iγ i . We use lattice unitsa = 1.
6 The factor 1/ξ is included so that in the continuum limitEk → ωk =

√
k2 + m2 (with a = 1).
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where againr = p + k. Inserting Eq.(26)gives the Euclidean correlator7

GH (τ,p) = 4Nc

L3

∑
k

[
a

(1)
H S4(τ,k)S

†
4(τ, r) − a

(2)
H

∑
i

Si(τ,k)S
†
i (τ, r)

(31)− a
(3)
H Su(τ,k)S†

u(τ, r)

]
,

where the coefficientsa(i)
H are the same as before (seeTable 1).

We will now extract the spectral functions in a form that closely resembles the continuu
pressions. In the termsSS† we encounter products of hyperbolic functions. These can be w
as

sinh(τ̃Ek)sinh(τ̃Er)

= 1

4

∞∫
−∞

dω cosh(ωτ̃ )
[
δ(ω − Ek − Er) + δ(ω + Ek + Er)

(32)− δ(ω − Ek + Er) − δ(ω + Ek − Er)
]
,

and similarly for the product of two hyperbolic cosines. Noting that the factor cosh(ωτ̃ ) is the
sole place withτ dependence and that it is of the same form as in the kernel(4), it is straightfor-
ward to write the above expression forGH (τ,p) as

(33)GH (τ,p) =
∞∫

0

dω

2π
K(τ,ω)ρWilson

H (ω,p),

and read off the expressions for the lattice spectral functions,

ρWilson
H (P ) = 4πNc

L3

∑
k

sinh

(
ω

2T

)

×
{[

a
(1)
H S4(k)S

†
4(r) + a

(2)
H

∑
i

Si(k)S
†
i (r) + a

(3)
H Su(k)S†

u(r)

]

× δ(ω + Ek − Er)

+
[
a

(1)
H S4(k)S

†
4(r) − a

(2)
H

∑
i

Si(k)S
†
i (r) − a

(3)
H Su(k)S†

u(r)

]

× δ(ω − Ek − Er)

(34)+ (ω → −ω)

}
.

This result can be directly compared with the continuum expression(10), using Eq.(28) and
realizing that

(35)
sinh(ω/2T )

cosh(Ek/2T )cosh(Er/2T )
=

{
2[nF (Ek) − nF (Er)] if ω = Er − Ek,

2[1− nF (Ek) − nF (Er)] if ω = Er + Ek.

7 Note that we now start from〈JH (τ,x)JH (0,0)〉 rather than from Eq.(2). This only affects the overall sign in som
channels, which has been adjusted to agree with the continuum one.
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3.2. Staggered fermions

In the case of staggered fermions we perform the analysis with naive fermions, sinc
leads to equivalent results[23]. Taking thereforer4 = rspace= 0 yields the fermion propagato
(26)with

S4(τ,k) = S4(k)
(
1− (−1)τ/aτ

)
cosh(τ̃Ek),

Si(τ,k) = Si(k)
(
1+ (−1)τ/aτ

)
sinh(τ̃Ek),

(36)Su(τ,k) = Su(k)
(
1+ (−1)τ/aτ

)
sinh(τ̃Ek),

whereS4(k) andSi(k) are as in Eq.(28)with Ek = cosh(Ek/ξ)sinh(Ek/ξ), and

(37)Su(τ,k) = −1

ξ

m

2Ek cosh(Ek/2T )
.

The single particle energyEk is now determined by

(38)cosh(Ek/ξ) =
√

1+K2
k + (m/ξ)2.

Using the same steps as before, the Euclidean meson correlator takes again the form(31)and can
be written in a spectral representation as

(39)GH (τ,p) = 2

∞∫
0

dω

2π
K(τ,ω)

[
ρnaive

H (ω,p) − (−1)τ/aτ ρ̃naive
H (ω,p)

]
,

with the same kernel as above.
The desired spectral functionρnaive

H (ω,p) is exactly as in Eq.(34), whereas the staggered pa

ner ρ̃naive
H (ω,p) has the same form but with coefficientsã

(1)
H = a

(1)
H , ã

(2)
H = −a

(2)
H , ã

(3)
H = −a

(3)
H .

This staggered contributioñρH represents the spectral function in the channel related to
original ρH by replacingΓH → Γ̃H = γ4γ5ΓH [24]. Note that in particular the pseudosca
(scalar) spectral function mixes with the zeroth component of vector (axial vector) cu
spectral function. In an actual MEM investigation, the staggered partners can be disen
using an independent analysis on even/odd timeslices, which yields the linear combin
ρnaive

H (ω,p) ∓ ρ̃naive
H (ω,p). Finally, in order to compare the naive lattice spectral functions w

the continuum and the Wilson ones, we divideρnaive
H by a factor of 8, which takes care of th

space doublers.

3.3. Midpoint of the Euclidean correlator

In the midpointτ = 1/2T (τ̃ = 0), the hyperbolic functions in the fermion propagatorS(τ,p)

take simple values, and it is easy to see that

(40)GH (1/2T ,p) = 4Nc

L3

∑
k

a
(1)
H S4(k)S

†
4(r).

This implies that the channel dependence of the value at the midpoint enters only viaa
(1).
H
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Analogous expressions hold for naive fermions and in the continuum, so that one can

(41)GH (1/2T ,p) = a
(1)
H C(p),

with

Ccontinuum(p) = Nc

∫
k

1

cosh(ωk/2T )

1

cosh(ωr/2T )
,

CWilson(p) = Nc

L3

∑
k

1

(1+Mk)cosh(Ek/2T )

1

(1+Mr)cosh(Er/2T )
,

C
Nτ /2odd
naive (p) = 4Nc

L3

∑
k

1

cosh(Ek/ξ)cosh(Ek/2T )

1

cosh(Er/ξ)cosh(Er/2T )
,

(42)C
Nτ /2even
naive (p) = 0.

Combining this result with the relation between the Euclidean correlator and the spectral fu
ρH in Eq.(3), yields a constraint for the free spectral density

(43)GH (1/2T ,p) =
∞∫

0

dω

2π

ρH (ω,p)

sinh(ω/2T )
= a

(1)
H C(p).

In the case of naive fermions this gives

(44)Gnaive
H (1/2T ,p) = 2

∞∫
0

dω

2π

1

sinh(ω/2T )

[
ρnaive

H (ω,p) ∓ ρ̃naive
H (ω,p)

]
,

for Nτ/2 even/odd, from which we find

(45)

∞∫
0

dω

2π

ρnaive
H (ω,p)

sinh(ω/2T )
=

∞∫
0

dω

2π

ρ̃naive
H (ω,p)

sinh(ω/2T )
= 1

4
a

(1)
H C

Nτ /2odd
naive (p).

Although the free spectral functions in the various channels are distinctly different, we con
that the integral ofρH (ω,p)/sinh(ω/2T ) is in all cases related toC(p) given above, both in th
continuum and on the lattice.

3.4. Point split current

The local vector current we have considered so far,jµ = ψ̄γµψ , is not exactly conserved o
the lattice. Instead, the conserved current is

(46)jµ(x) = ψ̄(x + âµ)P +
µ ψ(x) − ψ̄(x)P −

µ ψ(x + âµ),

with P ±
µ = 1

2(rµ ± γµ), ri ≡ r and âµ = µ̂aµ. Here we present a short analysis comparing
two currents.

A correlator especially sensitive to the difference between the local and the conserved
is G00(τ,0) at vanishing momentum, since its form is determined by charge conservatio
Eq. (21). In particular it should beτ independent. On the lattice, the correlator for the lo
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(47)G00(τ,0) = 4Nc

L3

∑
k

[∣∣S4(τ,k)
∣∣2 −

∑
i

∣∣Si(τ,k)
∣∣2 − ∣∣Su(τ,k)

∣∣2].

After some algebra, this can be written as

G00
Wilson(τ,0) = Nc

L3

∑
k

1

(1+Mk)2 cosh2(Ek/2T )
,

(48)G00
naive(τ,0) = 2Nc

L3

∑
k

1− (−1)τ/aτ cosh(2τ̃Ek)

cosh2(Ek/ξ)cosh2(Ek/2T )
.

For Wilson fermions we find aτ independent result at leading order. However, since the l
current is not related to a symmetry, dependence onτ is expected to arise when interactio
are present. This is easy to study in actual simulations. For naive fermions we indeed fiτ

dependent result.
With the conserved current the situation should be different. We find for Wilson ferm

with r4 = 1,

G00
Wilson(τ,0) = 4Nc

L3

∑
k

{
S4(τ − aτ ,k)S

†
4(τ + aτ ,k) − Su(τ − aτ ,k)S†

u(τ + aτ ,k)

−
∑

i

∣∣Si(τ,k)
∣∣2 − S4(τ − aτ ,k)S†

u(τ + aτ ,k)

(49)+ Su(τ − aτ ,k)S
†
4(τ + aτ ,k)

}
,

and for naive fermions

G00
naive(τ,0) = 2Nc

L3

∑
k

{
S4(τ − aτ ,k)S

†
4(τ + aτ ,k) + ∣∣S4(τ,k)

∣∣2
− ∣∣Su(τ,k)

∣∣2 − Su(τ − aτ ,k)S†
u(τ + aτ ,k)

(50)−
∑

i

[
Si(τ − aτ ,k)S

†
i (τ + aτ ,k) + ∣∣Si(τ,k)

∣∣2]}.

Indeed, this yields the anticipated result for a conserved current,

(51)G00
Wilson(τ,0) = 1

2
G00

naive(τ,0) = Nc

L3

∑
k

1

cosh2(Ek/2T )
= −Nc

L3

∑
k

4T n′
F (Ek).

In both casesG00(τ,0) is nowτ independent; this should remain to be the case when interac
are included. Moreover, the lattice susceptibility takes the same form as in the continuu
below Eq.(21). The factor 1/2 in the naive case appears because of the contribution from
time doublers.

If one is interested in the reconstruction of vector spectral functions for, e.g., thermal di
production[5], it may be important to use the properly conserved current. It would ther
be interesting to compare spectral functions obtained with local and point split currents
interacting case.
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Fig. 1. Pseudoscalar and scalar spectral functionsρPS,S(ω,p)/ω2 (above) andρPS,S(ω,p)/T 2 (below) as a function o
ω/T for Nτ = 16,p/T = 4,m/T = 1 andξ = 1.

4. Comparison

We now contrast the meson spectral functions obtained for free Wilson and staggered
fermions with the continuum ones. The lattice meson spectral functions obtained above
analysed for finiteNσ andNτ . For smallNσ the discreteness inherent in the definition of sp
tral functions (see, e.g., the spectral decomposition(23)) is clearly visible. Following Ref.[10]
we therefore take the thermodynamic limitNσ → ∞ and focus on the effect of finiteNτ .8 In
all figures the nonzero external momentump = 4T and the fermion massm = T . For Wilson
fermions we show results withr = 1. The anisotropy parameterξ = 1, except in the bottom pa
of Fig. 3. We only show meson spectral functions obtained with local operators.

In Fig. 1 we show the scalar and pseudoscalar spectral functions for Wilson (left) and
gered (right) fermions. In order to emphasize the effects of the lattice cutoff,ρPS,S is divided by
ω2 in the top figures. The continuum result then reaches a constant value (3/4π ) for largeω, see
Eq.(13). Instead, on the lattice there is a maximal energyωmax, determined by the delta functio
δ(ω − Ek − Er). Since the external momentump is small with respect to momenta at the ed
of the Brillouin zone, the maximum value for Wilson fermions (withr = 1) is determined by

8 In practice we takeNσ ∼ 1500–2000, replace the delta functions in Eq.(34)with block functions with width�ω and
height 1/�ω, and divide theω interval inNω bins. We usedNω = 1000. The bin width is determined by�ω = ωmax/Nω

whereωmax is discussed below. See also[10].
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Fig. 2. Effect of finite lattice spacing on the ‘lightcone’ and ‘threshold’ for fixedpL ≈ 25 andm = p/2. The continuum
values areω/p = 1 respectivelyω/p =

√
1+ 4m2/p2 = √

2.

fermion momentak = (π/a,π/a,π/a) [10], which gives

(52)
ωWilson

max

T
≈ 2Nτ ln

(
1+ 6+ am

ξ

)
,

and for staggered fermions by fermion momentak = (π/2a,π/2a,π/2a), which yields

(53)
ωnaive

max

T
≈ 2Nτ ln

√
ξ2 + 3+ a2m2 + √

3+ a2m2

ξ
.

The maximum value is smaller for staggered fermions. The cusps in the plots originate fro
corners of the Brillouin zone. Both for continuum and staggered fermions, we find that the
and pseudoscalar channel are indistinguishable for largeω. The reason is that the finite fermio
mass is negligible for such large energies. In the case of Wilson fermions the Wilson mas
breaks the chiral symmetry completely and the scalar and pseudoscalar spectral function

The spectral functions vanish for energiesp < ω <
√

p2 + 4m2. The physically interesting
contribution below the lightcone appears as a divergent one in the top plots. We therefor
ρPS,S/T 2 in the plots on the bottom. The spectral functions increase linearly for smallω and
vanish at the lightcone. Due the finite fermion mass, the scalar and the pseudoscalar
are now physically distinct. The main lattice artifact in this region appears to be the mis
between the location of the lightcone in the continuum and the lattice theory. This is due
difference between continuum and lattice dispersion relations. To study this further, we
the lattice ‘lightcone’ and ‘threshold’ via

lightcone: ω = max
k

(Ek − Ek+p),

(54)threshold: ω = min
k

(Ek + Ek+p).

In Fig. 2we show the result as a function of 1/Nσ ∼ a for fixed momentump = (0,0,8π/aNσ )

(pL ≈ 25) andm = p/2. As expected, the continuum and lattice results agree for decre
1/Nσ (decreasing lattice spacing), but for finitea the corrections can be substantial.
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Fig. 3. Pseudoscalar spectral functionsρPS(ω,p)/ω2 as a function ofω/T for Nτ = 24,32,40 andξ = 1 (above) and
vector spectral functionsρii (ω,p)/ω2 as a function ofω/T for (Nτ , ξ) = (16,1), (32,2), (64,4) (below). In both case
p/T = 4,m/T = 1.

The effect of increasingNτ is demonstrated inFig. 3 for the pseudoscalar spectral functi
ρPS for fixed ξ = 1 (top) and for the vector spectral functionρii for fixed ξ/Nτ = aT (bottom).
As expected from Eqs.(52) and (53), ωmax increases withNτ . In the anisotropic case, a larg
Nτ seems to lead to a better improvement for Wilson than for staggered fermions. InFig. 4,
we present our results forρ00. As we emphasized in Eq.(14), due to current conservation th
spectral function does not increase withω2 for large ω, but instead reaches a constant va
p2/2π . This can indeed be seen inFig. 4. Due to this behaviour the contribution below t
lightcone is visible in the same plot. In this case it appears that staggered fermions reprod
continuum result substantially better than Wilson fermions.

Finally, we note that the following behaviour of the kernel and spectral functions (ρ00 andρ00
5

excluded)

ω → 0: ρH (ω,p) ≈ ω, K(τ,ω) ≈ 2T

ω
,

(55)ω → ∞: ρH (ω,p) ≈ ω2, K(τ,ω) ≈ e−ωτ + eω(τ−1/T ),

makes it difficult to study spectral functions for both small and large energies in one plot
can be circumvented by instead showing the integrand at the midpointτ = 1/2T , i.e.,

(56)K(1/2T ,ω)ρH (ω,p) = ρH (ω,p)

sinh(ω/2T )
,

which takes a finite value forω → 0 and vanishes exponentially for largeω. In Fig. 4 we show
an example of this forρV,A. Since the region with largeω is exponentially suppressed, we no
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Fig. 4. Spectral functionsρ00(ω,p)/T 2 as a function of ω/T for Nτ = 16 (above). Spectral function
ρV,A(ω,p)/T 2 sinh(ω/2T ) as a function ofω/T for Nτ = 24 (below). In both casesp/T = 4,m/T = 1 andξ = 1.

that the lattice artifacts related to the finiteness of the Brillouin zone discussed above g
exponentially small contribution. We conclude therefore that the Euclidean correlator at th
pointGH (1/2T ,p) is largely insensitive to these artifacts. We also point out that it follows f
the analysis in Section3.3 that the area under the curves are identical: the larger spectral w
of ρA below the lightcone is exactly compensated by the larger spectral weight ofρV above
threshold.

5. Summary

We have studied meson spectral functions at nonzero momentum in the infinite temp
limit, in the continuum and on the lattice using Wilson and staggered fermions. We foun
for large values of the energyω, lattice spectral functions become sensitive to the effect
discretizaton and deviate from the continuum expectation, in agreement with the conc
from Ref.[10]. For smallerω, finite discretization affects predominantly the mismatch betw
the continuum and lattice lightcone, which can be substantial. In the free field limit a s
relationship between the Euclidean correlators in different channels at the midpoint was f

A qualitative comparison between the results obtained with staggered and Wilson fer
suggests that in the low-energy region lattice artifacts are less prominent for the stagge
mulation. The use of an anisotropic lattice, on the other hand, seems to be more benefi
Wilson fermions.
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