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Abstract

We analyse discretization effects in the calculation of high-temperature meson spectral functions at
nonzero momentum and fermion mass on the lattice. We do so by comparing continuum and lattice spec-
tral functions in the infinite temperature limit. Complete analytical results for the spectral densities in the
continuum are presented, along with simple expressions for spectral functions obtained with Wilson and
staggered fermions on anisotropic lattices. We comment on the use of local and point split currents.

0 2005 Elsevier B.V. All rights reserved.

PACS 11.15.Ha; 11.10.Wx

1. Introduction

Motivated by the experimental progress in relativistic heavy ion collisions and the recreation
of the quark—gluon plasma, several questions have received substantial attention in the past few
years. What happens to hadrons in the deconfined quark—gluon plasma? Do bound states persist
What is rate of photon and dilepton production from a hot QGP? How effectively are energy—
momentum and charge transported? How long, or rather how short, are the typical relaxation
times for hydrodynamic fluctuations?

Since this information is encoded in spectral functions, it is prohibitively difficult to access it
directly from Euclidean correlators obtained with lattice QCD, due to the intricacy of performing
the analytical continuation from imaginary to real time. However, recent progress has been made
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by applying the maximal entropy method (MEN)] to this problem. An (incomplete) list of
high temperature studies includes the possible survival of hadronic bound states in the deconfined
quark—gluon plasmp2—4], thermal dilepton ratei§], and transport coefficienfs].!

In a spectral function investigation, the low-energy regiott T is of particular interest,
since it is expected to be the most affected by nonperturbative medium effects. However, the
reconstruction of spectral functions at small energieg T is hindered by the insensitivity
of Euclidean correlators to details of spectral functions at these en¢®jiekhis is especially
important for the calculation of transport coefficients where by definition the interest is in the
limiting value of current—current spectral densitieswas- 0. Experience with the reconstruction
of spectral densities in the low-energy region can be obtained by studying the simpler (but still
nontrivial) problem of meson spectral functions at nonzero momentum above the deconfinement
transition. Due to, e.g., the scattering of quarks with gauge bosons below the lightcone (Lan-
dau damping), these spectral functions are expected to have a nontrivial structure. Since in the
confined phase one expects to find mesons moving relative to the heatbath, described by simple
quasiparticle spectral functions, increasing the temperature from below to above the transition
temperature should result in a drastic change in those spectral functions.

Our aim in this paper is to provide a reference point for such an analysis on the lattice in
the infinite temperature limit. It is therefore similar in spirit as R&D], in which a study at
zero momentum was performed. The paper is organized as follows. In the next section we give
complete analytical expressions for continuum meson spectral functions at nonzero momentum
and fermion mass in the infinite temperature limit and discuss several features. In Sagon
derive simple expressions for meson spectral functions for Wilson and staggered lattice fermions.
We briefly comment on the value of the Euclidean correlator at the midpoint and on the use of
local and point split currents. The main results are shown in Sedtiwhere we contrast spectral
functions obtained with Wilson and staggered fermions with the continuum results. Sgction
contains a short summary.

2. Continuum

We consider meson spectral functions with quantum numberdefined as

o (t, %) = ([Ju(t,%), J}(0,0)]), 1)

with Jg(7,X) = ¢(r,X)'gq(r,X) and 'y = {1, s, y*, yHys).2 They are related to Euclidean
correlation functions,

G (t,%) ={Ju(1,%J}(0,0), @)
via the standard integral relation

o0

d
Gu(r.p) = / % K (t. 0)pu (@, ), 3)

0

1 We note here that Ref7] does not use an MEM analysis, but instead employs an ansatz which was proposed in
Ref.[8] and criticized in Ref[9].

2 In this section the gamma matrices obegfr = yo, yiT =—y!, and yg = y5. The anticommutation relations are
{y*, vV} =2¢g*" and{y#, y5} = 0 with g"¥ = diag+, —, —, —).
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with the kernel

—-1/2T
K(r. ) = C"Sgi‘r:r(;w /27/") N otnp@) + e [1+ np@)]. @)

wheren g (w) = 1/(e®/T — 1) is the Bose distribution. At lowest order in the loop expansion, the
Euclidean correlators read in momentum space

Gu(P)= —jtrS(K)FHS(P + K)yorty°, (5)
K

where P = (iw,, p) With w, = 27nT (n € Z) the Matsubara frequency in the imaginary-time
formalism, and

j:r;k/, k/: % (6)

K
The fermion propagators are given by

o
-1 dw pr(w, k)
S(K) = __ [ deprle O 7
K= 0y k—m /271 F— )
—0o0

wherew, = (2n + 1)nT (n € Z) is a fermionic Matsubara frequency apgd(w, k) the spectral
density of the fermion,

pr(K) = (K +m)p(K) = (K +m)2r sgrik®)s(k3 — f), (®)
with wx = vkZ + m2.
Using the spectral representation for the fermion propagators, it is straightforward to arrive at
pH(P)=2IMGy(iw, > w+i0",p)
=N, / UK +m) T (R +m)y°Iy o (K)p(R)[n (k) = np (r0)], 9
k,kO

with P = (w,p), R= P + K andnp(w) =1/(e®/T + 1) is the Fermi distribution.
To facilitate the comparison with the lattice expressions below, we give here the result with
the k0 integral performed,

Wk Wr

k-r m2
pH(P)=2nNc/{<a}})+ag) +as)wkw )[nF(wk)—nF(wr)]S(erwk—wr)
r
k

2
o _okr gm
+a; —a —a 1—np(wk) —nr(w)|d(w—wk —w

(H H Oy H wkwr)[ F(wk) F( r)] ( k r)

—(w— —a))}. (10)

3 yol“];yo appears since the original correlator is of the faura T, not (7 J).
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Table 1
CoefficientSal(L’[) for free spectral functions in different channéis In the case of/’ andy’ys, the sum is taken over

i =1,2,3. We definetby = —g,p"" andpa = —gvph "

I'y ag') a(g) ag})
0s 1 1 -1 1
PPS Y5 1 -1 -1
pOO VO 1 1 1
pii )/i 3 1 _3
PV yH 2 -2 —4
p3° vors 1 1 -1
PE v'vs 3 -1 3
PA Y*vs 2 -2 4

The first line corresponds to scattering and contributes only below the lighteghe (2,
Landau damping) while the second line corresponds to decay, contributing above threshold

(w? > p? + 4m?). The coefﬂuentSa(’) arise from the three nonzero traces over the gamma
matrices in Eq(9) and depend on the channel under consideration. They are listatbie 1
The remaining integrals can be performed as well. In terms of

1 4m?
pr=3lo£pB(P)]. B(P)=\[1- == s=0®—p?, (11)

the final expression in the continuum reads

N.T?
pr(P) = O (s — 4m?) -
| DAl = PP + (30— (302 - 22) 2Pl
— 12m%a)]
1
+ oL@ = PP ag) + (v = 7 BHP)a]

14 e P+/T
1te p-/T
+ (Cl;}) +ag))(‘3(P)[L|2(_e—ﬁ+/T) + Liz(—e_ﬁ*/T)]

ar . =PH/TY _ Ljaf(—eP-/T
+ 2L [Lia(oe /M) ~ Lis(-e M)}

2 (3
—4m“ay; ]In

N.T?2( 1
+6(=5)~ {—[( — P*BA(P))ayy

4pT
14 e P+/T
+ (0 = PP )ay — dmPag)|n ——
+ (ag') +a§>)(,§(p)[|_i2(_e—ﬁ+/T) ~Lig(—e?/T)]

2L [Lig(—e P+/T) — Lig(—er/ T L.
+ 2L [Lia(e74/7) — Lia(—e7 7)) | (12
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We now discuss several features. First consider the asymptotic behaviour as.|&vgdind that
all spectral functions increase wid?,
N,
; _ 2\ e 20 (D 2
wliTloopH(P)—@(s—4m )gw (aH —ay ), (13)
as expected from naive dimensional arguments, except when there is a cancellation. This happens
for I'y = y°, yOys, for which we find instead
. N,
lim p%P) = @(s - 4m2) —sz,
w—> 00 6
N,
; 00/ py — @ (e — A2\ Ve[ 2 2
wll_r)noopS (P)_O(s 4dm )671' (p + 6m ) (14)

For the vector current this behaviour can be understood from current conse@ajfior= 0.
Since at largev the effect of finite temperature is exponentially suppressed, we may use the zero
temperature decomposition,

p"’(P) = 2ImITR" (P) = 2(P?g" — P*P") Im ITg(P?), (15)
which explains the behaviour above. Current conservation also relates the other components of
P,
wp®(P)=p'p°(P),  wp¥(P)=p'pY(P),
?p®(P) = p' p/ p (P). (16)
Since the axial vector current is not conserved,
duj& = 2mjs+ anomaly (17)
similar relations do not hold fqaﬁé“’. However, in the free case considered here, we find
w?pd(w, 0) = 4m? ppg(w, 0). (18)

Any deviation from this is therefore due to thé 1), anomaly.
In the zero momentum limit, the spectral functions reduée to

pH(a), 0) = (H)(a)2 - 4m2) Ne Vw?— 4m2[1— 2np(a)/2)]

8w
< [02(ad — a) + an2(a? — o))
+ 21 wé (w)NC[(a(;) + ag))ll + (ag) - aS’))Iz], (29)
with

k2
I = —Z/n’F(a)k), L= —2/ ;n’F(wk). (20)

k

k k

4 A comparison with the coefficientsy andb g in Table 2.1 of Ref{10] yieIdSag) 7111(5) =2ay, ag) 711;3) =2by,
except for the axial curren{ig, A;), where we findby = (1, —2) instead ofb y = (0, 3). Note that the coefficients in
Ref.[10] disagree with relatio(i1l8). Note also that the normalization differs by a factor af @1d that the overall signs
for ps and p5 are opposite.
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In the massless cadeg = I, = T2/6. The term proportional té(w) is all that remains from
the scattering contribution below the lightcone in E). It gives ar independent contribution
to the Euclidean correlator since the kerk@lr, w) ~ 2T /w for small w. In particular, charge
conservation dictates the form pf° andG°° at zero momentum,

0w, 0) = 21 x w8 (w), G, 0)=Ty, (21)

which is not altered by interactions, although the value of the charge susceptibifityAt the
order computed herg, = 2N.I;. For completeness we give here the Euclidean correlator at zero
momentum and mass

N.T3 3 3 2u) — 25sin(2
Gy(1.0) =~ ag_) +ag) n _(ag_) _ ag)) U+ MCOQ-M) Sin(2u) 7 (22)
6 2 sindu
whereu =27 T (t — 1/2T).
Finally, it follows from the spectral decomposition
1
pr(P) == 3 |(nlJg ©lm)[*@m) 54 (P + Py = Pu)(e /T = e7n/T), (23)

n,m

whereZ is the partition function, that all spectral functions for a single curvgntare odd and
positive semi-definite for positive argument, i.@ax (w, p) > 0. Obviously, spectral functions
that are defined as the difference between such spectral functions, spgh=as’’ — p°° and
OA = pg — pgo can turn negative. Indeed, it is easy to see hdto, p) is negative for smally
if p2 < 2m?. All other spectral functions increase linearly wittfor smallw and nonzer.

Although not the topic of this paper, we briefly mention how corrections due to interactions
appear at very high temperature. First of all, for soft momentpm o ~ ¢T, a hard ther-
mal loop[11] calculation is needed, see, e.g., R¢1®—14]for such studies. The gap in the
spectrum forp? < w? < p? 4 4m? is filled when two loop diagrams are included, due to, e.g.,
bremsstrahlun@l5]. Around the lightcone the loop expansion breaks down due to the Landau—
Pomeranchuk—Migdal effect and an infinite series of ladder diagrams contribute at leading order
in the strong coupling constafit6,17] Finally for very soft momenta and energies, the structure
of current—current spectral functions is determined by general hydrodynamical considerations
[18]. So far a diagrammatic calculation in this regime has been carried out only in the case of the
spatial vector spectral function’ (w, 0) in the limit of exactly zero momentum and vanishing
energyo — 0, which is relevant for the electrical conductivity: see REES,20]for details on
the weak coupling result at leading-logarithmic order and Rdf for the largeN ¢ result.

3. Lattice
3.1. Wilson fermions

In this section we derive expressions for meson spectral functions on a Iattice/ﬁvbthN,
sites. The lattice spacing is denoted witln the spatial directions and with, in the temporal
direction,& = a/a; is the anisotropy parameter. The temperature is related to the extent in the
imaginary time direction7 = 1/(N.a;). We start with standard Wilson fermions. The lattice
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fermion propagator (with coefficients, rspace=r) reads

—iyaSinkg — i Kk + ra(1 — cosky) + Mk

S(K) = , 24
) SirP kg + K2 + [ra(1 — coska) + M2 &9
where
13 1[ &
K= > yisinki, M= g[” > (21— cosk;) +m}- (29)
i=1 i=1

We use periodic boundary conditions in spages 27n; /N, withn; = —N,/2+ 1, =N, /2+
2,...,N,/2—1,N,/2fori =1, 2,3, and antiperiodic boundary conditions in imaginary time,
ko =mw(2n4+1)/N; wWithng=—N,/2+1, —N,/2+2,...,N;/2—1, N, /2.

To make a smooth connection with the expressions in the continuum we folloilRg&nd
use the mixed representation of Carpenter and B§dR¢

3
S(t,K) = yaSa(t, K) + Y yiSi (1, K) + 18, (7, K). (26)
i=1
In order to avoid the doubler in the time direction, we proceed wjth 1, so that (for 0< t <
1/T1)
S4(t, k) = Sa(k) cosh7 Ex),
Si(t, k) = S; (k) sinh(7 Ex),
3z0

S, (t,k)=S,(kK)sinNTEK) — —————. 27
(r.k) (k) sinh(7 Ex) 215 MO (27)
Heret =1 — 1/2T and
_ sinh(Eg/§)
Sal) = 28 cos(Ey /2T)’
1 i sink;
Silk) = £ 28 coshEy/2T)’
_ 1—coshEk/§) + Mk
Sulk) = 28 cos(Ey /2T) (28)
with & = (1+ My) sinh(Ex/&). The single particle energly is determined b
2 2
COSNEy /&) =1+ Kit M (29)

21+ My)”
The final term inS, (z, k) is the sole remnant of the nonpropagating time doubler; below we
consider O< t < 1/T. The propagator satisfieg—z, k) = 55T (¢, k) 5.

The correlators we are interested in are of the form

N,
G (z,p)=—13 ) S@ IS0y, (30)
k

5 In this section the gamma matrices are hermitiqh: Yies y5Jr = ys, and obeY(y,, yv} = 28,0, {yu, v5} =0. They
are related to the gamma matrices of the previous sectipp sy, y; = —iy’. We use lattice units = 1.
6 The factor J£ is included so that in the continuum limft, — o, = vk2 +m?2 (with a = 1).
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where agaim = p + k. Inserting Eq(26) gives the Euclidean correlafor

4N,
L3

Gr(T.p)=—5 Y. [a}f&;(z, ST —al > S, k)5S (z.1)

k
- ag) Su (Ts k)S;(I’ r):| I (31)

where the coefficientzsg) are the same as before (Seble J).
We will now extract the spectral functions in a form that closely resembles the continuum ex-

pressions. In the termST we encounter products of hyperbolic functions. These can be written
as

sinh(T Ex) sSinh7 E})

= %1 / da)COSl‘(a)f)[(S(w — Ex — E)+8(w+ Ex+ Er)
—8(w — Ex + Er) — 8(o + Ex — E)], (32)

and similarly for the product of two hyperbolic cosines. Noting that the factor(adgshis the
sole place withr dependence and that it is of the same form as in the ké#het is straightfor-
ward to write the above expression Gt (z, p) as

o0

Gu(t,p)= / ;l—;”K(r, @) p 1SN (@, p), (33)
0

and read off the expressions for the lattice spectral functions,

: 47 N, w
Wilson c :
P)= E sinh{ —
pn (P =3 ” (2T>

x {[a}?&(k)&{(r) +a? Y 5k (1) +a;?)su(k)S;<r>}

x 8(w+ Ex — Er)

+ [a;P Sak)S5(1) —a? > 8 (k)S] (1) —aly Su(k)S] (r)]

x 8(w — Ex — Ey) i

+ (0 — —w)}. (34)

This result can be directly compared with the continuum expreqdid) using Eq.(28) and
realizing that

sinh(w/2T) {z[nF(Ek) —np(Ep)] if w=E; — Ex,

Cosh(Ex/2T) cosnE, /2T) |21~ nr(E) —nrED]  if 0= Er + Ex.

(35)

7 Note that we now start fromJ g (z, x)JJ (0, 0)) rather than from Eq2). This only affects the overall sign in some
channels, which has been adjusted to agree with the continuum one.
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3.2. Saggered fermions

In the case of staggered fermions we perform the analysis with naive fermions, since this
leads to equivalent resulf3]. Taking therefores = rspace= 0 yields the fermion propagator
(26) with
Sa(r, k) = Sa(K) (L — (=17 ) cosh( Ex),
Si(t,K) = S; (K)(1+ (=1)/%) sinh(F Ex),
Su(t, K) = S, (K) (14 (=) ™) sinh(7 Ey), (36)
whereS, (k) andS; (k) are as in Eq(28) with & = cosh Ek /&) sinh(Ey /&), and

2 oom
£ 26 cosNEy/2T)"

The single particle energg is now determined by

COSHEx/£) =/ 1+ K2 + (m/&)2. (38)

Using the same steps as before, the Euclidean meson correlator takes again {3& fard can
be written in a spectral representation as

Su(t, k) = 37)

ood _ _
Gu(r,p)= 2/ %K(f,w)[p?f"ve(w, p) — (=17 5w, p)]. (39)
0

with the same kernel as above.

The desired spectral functigiff%(w, p) is exactly as in Eq34), whereas the staggered part-
ner 572¥€(w, p) has the same form but with coefficieds’ = a'?, a? = —a'?, 2P = —4?.
This staggered contributiopy represents the spectral function in the channel related to the
original py by replacingl’y — I'y = yaysI'y [24]. Note that in particular the pseudoscalar
(scalar) spectral function mixes with the zeroth component of vector (axial vector) current
spectral function. In an actual MEM investigation, the staggered partners can be disentangled
using an independent analysis on even/odd timeslices, which yields the linear combinations
pEVe(w, p) F p(w, p). Finally, in order to compare the naive lattice spectral functions with
the continuum and the Wilson ones, we divialf" by a factor of 8, which takes care of the
space doublers.

3.3. Midpoint of the Euclidean correlator
In the midpointr = 1/2T (f = 0), the hyperbolic functions in the fermion propagafor, p)
take simple values, and it is easy to see that

4N,

Gu(1/2T.p) = 3

> a sak)Sy). (40)
k

This implies that the channel dependence of the value at the midpoint enters omi})via



102 G. Aarts, J.M. Martinez Resco / Nuclear Physics B 726 (2005) 93-108

Analogous expressions hold for naive fermions and in the continuum, so that one can write
Gu(1/2T,p) =ay C(p), (41)
with
1
cosk(wk /2T) cosiwy /2T)°

Ceontinuun{P) = N¢ /

1 1

Cuwilson(P) = ﬁ Z (1+ My) cosh(Ex/2T) (1 + M;) cosiE, /2T)’
cVe /Zodd( 1 1
naive cosr(E|< /&) COSNE/2T) coshE; /&) COSNE, /2T)’
Chal2e*\p) =0 (42)

Combining this result with the relation between the Euclidean correlator and the spectral function
om in EQ.(3), yields a constraint for the free spectral density

o0
do pg(w,p)

1/2T,p) = R 43
Gu(1/2T,p) 27 sinhw/2T) u C(P). (43)
0
In the case of naive fermions this gives
o
naive, _ do 1 naive, ~naive,
G (1/2T,p)=2 (i, P) F A (., P)], (44)

2n sinh(w/2T)
0

for N; /2 even/odd, from which we find
o .
/ do pV@,p) [ do pi"w,p) 1 oD e 2000 (45)
27 sinh(w/2T) ] 27 sinh(w/2T) 4 1 ~naive ’
0 0

Although the free spectral functions in the various channels are distinctly different, we conclude
that the integral opy (w, p)/ sinh(w/2T) is in all cases related t6(p) given above, both in the
continuum and on the lattice.

3.4. Point split current

The local vector current we have considered so far= lﬁ)/,up, is not exactly conserved on
the lattice. Instead, the conserved current is

Ju() =V + @) PP ) — )P Y (x + ), (46)

with P,jt = %(rﬂ + y,), ri =r anda, = jia,. Here we present a short analysis comparing the
two currents.

A correlator especially sensitive to the difference between the local and the conserved current
is G%(z, 0) at vanishing momentum, since its form is determined by charge conservation, see
Eq. (21). In particular it should be independent. On the lattice, the correlator for the local
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current is

GOO( 0)

4N,
Z[|S4(r k| —Z|Sl(r K[ = [Su(z. k)| } (47)

k
After some algebra, this can be written as

N. 1
GPson(T. 0) = — ’
wiison(%> 0) L3 Zk: (1+ My)2cosH(Ey/2T)

1— (=1)"/%r cosh2% Ex)
— costf(Ex /&) costf(Ex/2T)

GOO

nalve

(48)

For Wilson fermions we find a independent result at leading order. However, since the local
current is not related to a symmetry, dependence @& expected to arise when interactions
are present. This is easy to study in actual simulations. For naive fermions we indeed find a
dependent result.

With the conserved current the situation should be different. We find for Wilson fermions,
withrg =1,

4N,
Gon(1.0) = — Z{Sm — a7 K)S}(T +ar. K) = S,(t — ar. K) STz + a7, k)
k

~ Y 8i@ K)|? = Sa(x — ar KIS} (T +ar. k)

+Su(f—dr,k)51(f +ar,k)], (49)
and for naive fermions
00 2N, t 2
Grae®0) = 3 ) 1 Sa(t = az, K)S4( + ar, K) + |Sa(z, )|
k
— ST, K)[* = Su(x — ar, K)ST(t +ar, k)

_Z[S,-(r—af,k)S;r(r—i-aT,k)—i—|S,-(t, k)|2]}. (50)
Indeed, this yields the anticipated result for a conserved current,

1 N /
hon(r:0) = 50l 0= 15 Y. oo == T AT B (D)

In both case&%(z, 0) is nowr independent; this should remain to be the case when interactions
are included. Moreover, the lattice susceptibility takes the same form as in the continuum, see
below Eq.(21). The factor ¥2 in the naive case appears because of the contribution from the
time doublers.

If one is interested in the reconstruction of vector spectral functions for, e.g., thermal dilepton
production[5], it may be important to use the properly conserved current. It would therefore
be interesting to compare spectral functions obtained with local and point split currents in the
interacting case.
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Wilson staggered
[ B 7
—— S,N=I6 _

-—- PS, cont |
S,cont |

e B R W N - e e e - - -

PS, cont

' | ! |

0.6 - p/T=4, mT=1 -~ , 4+ — PS,N=I6 -

NQ | S, cont : 4+ -8, Nr=16 4

2 04r P+ -

é L //: - \.\\ I -+ ,’ A .
N > " I Vs . \

a02 » NS ! T - \‘\ 7]

O 1 | 1 \‘ 1 1 | 1 .
0 2 4 0 2 4 6

Fig. 1. Pseudoscalar and scalar spectral functigrss(w, p)/a)2 (above) angpgs(w, p)/T2 (below) as a function of
w/T for Ny =16,p/T =4,m/T =1 andé = 1.

4. Comparison

We now contrast the meson spectral functions obtained for free Wilson and staggered lattice
fermions with the continuum ones. The lattice meson spectral functions obtained above can be
analysed for finiteV, and N,. For smallN, the discreteness inherent in the definition of spec-
tral functions (see, e.g., the spectral decomposif&®)) is clearly visible. Following Ref[10]
we therefore take the thermodynamic limit, — oo and focus on the effect of finita/; .8 In
all figures the nonzero external momentwmn= 47 and the fermion masa = 7. For Wilson
fermions we show results with= 1. The anisotropy parametge= 1, except in the bottom part
of Fig. 3. We only show meson spectral functions obtained with local operators.

In Fig. 1 we show the scalar and pseudoscalar spectral functions for Wilson (left) and stag-
gered (right) fermions. In order to emphasize the effects of the lattice cuieft is divided by
w? in the top figures. The continuum result then reaches a constant vale) @r largew, see
Eqg. (13). Instead, on the lattice there is a maximal enesgyy, determined by the delta function
8(w — Ex — Ey). Since the external momentupmis small with respect to momenta at the edge
of the Brillouin zone, the maximum value for Wilson fermions (witkh= 1) is determined by

8 |n practice we takeV,, ~ 1500—2000, replace the delta functions in &) with block functions with widthAw and
height I/ Aw, and divide thev interval in N,, bins. We usedv,, = 1000. The bin width is determined yw = wmax/ New
wherewmax is discussed below. See aldd].
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T | | T
p/m=2 (nx,ny,nz)=(0,0,4)

— Wilson -

-— st
1.5+ threshold staggered —

1 | 1 | 1 | 1 | 1
8.01 0.02 0.03 0.04 0.05 0.06
1IN,

Fig. 2. Effect of finite lattice spacing on the ‘lightcone’ and ‘threshold’ for fixeld~ 25 andm = p/2. The continuum
values arev/p = 1 respectivelyn/p = /1 + 4m?2/p2 = /2.

fermion moment& = (;r/a, w/a, = /a) [10], which gives

Wilson 6
“max N, in( 14 24", (52)
T §
and for staggered fermions by fermion momekta (v /2a, 7 /2a, 7 /2a), which yields
naive 2 2,2 2,2
meaX%ZNfln VE2+34a mé ++/3+a’m . (53)

The maximum value is smaller for staggered fermions. The cusps in the plots originate from the
corners of the Brillouin zone. Both for continuum and staggered fermions, we find that the scalar
and pseudoscalar channel are indistinguishable for largéhe reason is that the finite fermion
mass is negligible for such large energies. In the case of Wilson fermions the Wilson mass term
breaks the chiral symmetry completely and the scalar and pseudoscalar spectral functions differ.
The spectral functions vanish for energjes< w < / p? + 4m2. The physically interesting
contribution below the lightcone appears as a divergent one in the top plots. We therefore show
ppss/ T2 in the plots on the bottom. The spectral functions increase linearly for smaiid
vanish at the lightcone. Due the finite fermion mass, the scalar and the pseudoscalar channel
are now physically distinct. The main lattice artifact in this region appears to be the mismatch
between the location of the lightcone in the continuum and the lattice theory. This is due to the
difference between continuum and lattice dispersion relations. To study this further, we define
the lattice ‘lightcone’ and ‘threshold’ via

lightcone: w = mkax(Ek — Ex4p),

threshold: w = rr?<in(E|< + Ex1p). (54)

In Fig. 2we show the result as a function of ¥, ~ a for fixed momentunp = (0, 0, 87 /aN,)
(pL =~ 25) andm = p/2. As expected, the continuum and lattice results agree for decreasing
1/N, (decreasing lattice spacing), but for finitehe corrections can be substantial.
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Fig. 3. Pseudoscalar spectral functigiss(e, p) /w2 as a function otv/ T for Ny = 24, 32,40 and¢ = 1 (above) and
vector spectral functions'! (v, p)/co2 as a function ofv/ T for (N7, &) = (16, 1), (32, 2), (64, 4) (below). In both cases
p/T=4m/T =1.

The effect of increasingy, is demonstrated ifrig. 3 for the pseudoscalar spectral function
ops for fixed £ = 1 (top) and for the vector spectral functipfi for fixed £ /N, = aT (bottom).
As expected from Eqg52) and (53) wmax increases withV; . In the anisotropic case, a large
N; seems to lead to a better improvement for Wilson than for staggered fermioRg. |4,
we present our results far?°. As we emphasized in E§14), due to current conservation this
spectral function does not increase with for large w, but instead reaches a constant value
p?/2n. This can indeed be seen Fig. 4 Due to this behaviour the contribution below the
lightcone is visible in the same plot. In this case it appears that staggered fermions reproduce the
continuum result substantially better than Wilson fermions.
Finally, we note that the following behaviour of the kernel and spectral funct}ﬁﬂ?sahdpgo
excluded)
2T
K(t,w)~ —,
w

0o—>0  pplw,p)~o,

pu(@,p)rw®,  K(t,w)~e @7 42TV (55)

makes it difficult to study spectral functions for both small and large energies in one plot. This
can be circumvented by instead showing the integrand at the midpeirit/27, i.e.,

w —> 00!

pH(w, P)
sinh(w/2T)’
which takes a finite value fab — 0 and vanishes exponentially for large In Fig. 4 we show
an example of this fopy a. Since the region with large is exponentially suppressed, we note

K(1/2T, 0)pr (@, p) = (56)
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Fig. 4. Spectral functionsp®(w,p)/T2 as a function ofw/T for Ny = 16 (above). Spectral functions
pv.A (0, p)/T2 sinh(w/2T) as a function ofv/ T for N; = 24 (below). In both cases/T =4,m/T =1 and¢ = 1.

that the lattice artifacts related to the finiteness of the Brillouin zone discussed above give an
exponentially small contribution. We conclude therefore that the Euclidean correlator at the mid-
point G i (1/2T, p) is largely insensitive to these artifacts. We also point out that it follows from
the analysis in SectioB.3that the area under the curves are identical: the larger spectral weight
of pa below the lightcone is exactly compensated by the larger spectral weight above
threshold.

5. Summary

We have studied meson spectral functions at nonzero momentum in the infinite temperature
limit, in the continuum and on the lattice using Wilson and staggered fermions. We found that
for large values of the energy, lattice spectral functions become sensitive to the effects of
discretizaton and deviate from the continuum expectation, in agreement with the conclusions
from Ref.[10]. For smallem, finite discretization affects predominantly the mismatch between
the continuum and lattice lightcone, which can be substantial. In the free field limit a simple
relationship between the Euclidean correlators in different channels at the midpoint was found.

A gualitative comparison between the results obtained with staggered and Wilson fermions
suggests that in the low-energy region lattice artifacts are less prominent for the staggered for-
mulation. The use of an anisotropic lattice, on the other hand, seems to be more beneficial for
Wilson fermions.
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