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Abstract

At high temperature the infrared modes of a weakly coupled quantum field theory can be treated nonperturbatively in real
time using the classical field approximation. We use this to introduce a nonperturbative approach to the calculation of finite-
temperature spectral functions, employing the classical KMS condition in real time. The method is illustrated for the one-particle
spectral function in a scalar field theory in 2+ 1 dimensions. The result is compared with resummed two-loop perturbation
theory and both the plasmon mass and width are found to agree with the analytical prediction. 2001 Published by Elsevier
Science B.V.

PACS: 11.10.Wx; 11.15.Kc

1. Introduction

Finite-temperature field theory has received consid-
erable attention during recent years (see [1] for a com-
prehensive textbook). An important motivation is the
physics of the quark–gluon plasma, currently under in-
vestigation at RHIC, as are baryogenesis and reheat-
ing after inflation in the early universe. Thermal field
theory also provides a necessary reference point for
the more complicated case of nonequilibrium quantum
fields.

In thermal equilibrium a prominent role is played
by spectral functions since other correlators can be
recovered from it via the Kubo–Martin–Schwinger
(KMS) periodicity condition [2]. Thermal field the-
ory problems can, therefore, be reduced to a calcula-
tion of the appropriate spectral function. In particu-
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lar, the one-particle spectral function contains infor-
mation on the quasiparticle structure of the theory,
needed to describe transport properties of hot matter
in the quark–gluon plasma with the help of a Boltz-
mann equation [3]. For the calculation of transport co-
efficients, such as the shear viscosity, the presence of
a medium-dependent finite width in the one-particle
spectral function is crucial [4]. Resummed perturba-
tive descriptions of the equation of state of the hot
QCD plasma may require a consistent inclusion of
nontrivial quasiparticle spectral functions [5].

In spite of the apparent importance of spectral
functions, nonperturbative computational schemes are
rather scarce. A first-principle approach is offered
by lattice field theory. However, the necessity to use
a Euclidean formulation hinders access to dynami-
cal quantities such as spectral functions and other
real-time correlators. Experience in the recovery of
mesonic spectral functions in QCD from Euclidean-
time correlators has been gained in the last few years
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using the Maximum Entropy Method (MEM) [6]. At
high temperature this approach becomes especially
difficult due to the compactness of the Euclidean-time
direction. A formulation directly in real time avoids
these problems. Unfortunately a fully nonperturbative
approach to real-time quantum field correlators is still
lacking.1

At high temperature and weak coupling a nonpertur-
bative approach to real-time quantities is provided by
the classical approximation, originally proposed in the
context of high-temperature sphaleron transitions and
electroweak baryogenesis [8]. Indeed, at high enough
temperature the infrared sector of a thermal field the-
ory behaves classically as can be guessed from the
Bose–Einstein distribution function at low spatial mo-
menta:

n(ωp)= 1

exp(h̄ωp/T )− 1
→ T

h̄ωp

(1)= ncl(ωp), h̄ωp � T ,

with ωp = √
p2 +m2 andT the temperature (we take

h̄= 1 from now on). As is well known, a proper defin-
ition of classical thermal field theory requires an inher-
ent ultraviolet cutoff, provided for instance by a spa-
tial lattice, to regulate the Rayleigh–Jeans divergence.
The importance of the interplay between the ultravio-
let lattice modes and the physical infrared modes has
been realized first in Ref. [9]. Much progress in the un-
derstanding of the classical approximation and quan-
tum and classical thermal field theory has been made
subsequently, both numerically [10] and analytically
[11–13], culminating in Bödeker’s effective theory for
hot infrared non-Abelian field dynamics [14]. A recent
review discussing various aspects of the classical ap-
proximation can be found in Ref. [15].

In this Letter we introduce a nonperturbative ap-
proach to the calculation of spectral functions us-
ing the classical field approximation (Section 2). We
demonstrate the method with a calculation of the one-
particle spectral function in a scalar field theory in
2 + 1 dimensions in Section 3. In Section 4 we cal-
culate the resummed perturbative spectral function

1 Recent progress in nonequilibrium quantum field dynamics
using the 2PI effective action, including a calculation of the out-of-
equilibrium spectral function for a scalar field in 1+ 1 dimensions,
can be found in [7].

and contrast it with the nonperturbative numerical re-
sult. Our findings are summarized in Section 5. For a
discussion of the classical analogue of thermal field
theory for a weakly coupled scalar field we refer to
Ref. [13].

2. Classical approximation

We consider an arbitrary bosonic operatorO and
define the spectral function asi times the expectation
value of the commutator

(2)ρ(x − y)= i〈[O(x),O†(y)
]
−
〉
.

The brackets denote expectation values at finite tem-
peratureT ,

(3)〈O〉 = 1

Z
Tr e−H/T O, Z = Tr e−H/T ,

where the trace is taken over the Hilbert space.
OperatorsO(x)=O(t,x) are time dependent with the
time evolution determined by the HamiltonianH ,

(4)O(t,x)= eiHtO(0,x)e−iH t .
The spectral function obeysρ†(x)= −ρ(−x) and is,
in our convention, real for an Hermitian operator:

(5)O† =O → ρ†(x)= ρ(x).
In equilibrium two-point functions depend on the
relative coordinates only and it is convenient to go to
momentum space,

(6)ρ(p)=
∫

d4x e−ip·xρ(x),

where p · x = −p0x0 + p · x, p0 = ω = E and
x0 = t . We find that in momentum spaceρ(p) ≡
iρim(p) is purely imaginary. The imaginary part obeys
p0ρim(p

0,p) > 0 andρim(−p)= −ρim(p).
For a straightforward discussion of the classical

approximation it is convenient [13] to introduce also
the Keldysh or statistical two-point function [16],

(7)F(x − y)= 1

2

〈[
O(x),O†(y)

]
+
〉
,

obeyingF †(x)= F(−x), F †(p)= F(p). In terms of
the usual Wightman functions [1],

G>(x − y)= 〈
O(x)O†(y)

〉
,

(8)G<(x − y)= 〈
O†(y)O(x)

〉
,
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the spectral and statistical two-point functions read

ρ(x)= i[G>(x)−G<(x)],
(9)F(x)= 1

2

[
G>(x)+G<(x)].

In equilibrium the importance of the spectral func-
tion is manifest since all two-point functions intro-
duced above can be expressed in it, due to the KMS
condition. We find in particular [13]

F(p)= −i
[
n
(
p0) + 1

2

]
ρ(p),

(10)n
(
p0) = 1

exp(p0/T )− 1
,

wheren(p0) is the Bose–Einstein distribution func-
tion. This relation is exact. The question is whether the
spectral function can be computed nonperturbatively.

The classical approximation allows access to non-
perturbative correlation functions in real time, both
in and out of thermal equilibrium. In a classical the-
ory operators commute and the basic classical equilib-
rium correlation function in a bosonic (scalar) theory
is given by

S(x − y)= 〈
O(x)O†(y)

〉
cl

(11)≡ 1

Zcl

∫
DπDφe−H/T O(x)O†(y),

with the classical partition functionZcl = ∫
DπDφ

× exp(−H/T ) andO(x)=O[φ(x),π(x)]. This cor-
relator is the classical equivalent of the Keldysh two-
point function (7). The functional integral is over clas-
sical phase-space at some (arbitrary) initial time,

(12)
∫
DπDφ =

∫ ∏
x

dπ(x)dφ(x),

weighted with the Boltzmann weight, providing initial
conditionsφ(0,x) = φ(x) and π(0,x) = π(x). The
subsequent time evolution is determined from Hamil-
ton’s equations of motion forφ(x) andπ(x). The de-
finitions are given for a scalar field theory, but they
can easily be carried over to (non)Abelian gauge the-
ories [10]. The most convenient formulation employs
the temporal gauge, with the Gauss constraint imposed
on the initial conditions. It is subsequently preserved
by the classical equations of motion.

The classical spectral function is obtained by re-
placing−i times the commutator in Eq. (2) with the

classical Poisson brackets,

(13)ρcl(x − y)= −〈{
O(x),O†(y)

}〉
cl,

defined with respect to the initial fields
{
A(x),B(y)

}

(14)=
∫

d3z

[
δA(x)

δφ(z)
δB(y)

δπ(z)
− δA(x)

δπ(z)
δB(y)

δφ(z)

]
.

Due to the formal correspondence between commuta-
tors and Poisson brackets the quantum and classical
spectral function obey the same basic properties.

At first sight a calculation of the classical spectral
function from the definition in terms of the Poisson
bracket appears rather hard. Fortunately, in thermal
equilibrium we may use the KMS condition to sim-
plify the procedure. The classical KMS condition is
based on the same principle as the usual KMS con-
dition in a quantum theory: the thermal Boltzmann
weight and the time evolution are controlled by the
same HamiltonianH . An easy way to find the classical
KMS condition is to consider the high-temperature (or
h̄→ 0) limit of the quantum KMS condition. The clas-
sical equivalent of Eq. (10) reads (compare Eq. (1))

(15)S(p)= −i T
p0
ρcl(p).

One may also derive this relation directly in the
classical theory without reference to the quantum case
[13,17]. This leads to the classical KMS condition
formulated in real space,

(16)ρcl(t,x)= − 1

T
∂tS(t,x).

This relation will form the basis of the remainder
of this Letter. It allows us to calculate the spectral
function in real time from a relatively easily accessible
unequal-time correlation function.

3. Scalar field on the lattice

As an example we discuss the simple case of a real
scalar fieldφ in 2+1 dimensions with the Hamiltonian

(17)

H =
∫

d2x

[
1

2
π2 + 1

2
(∇φ)2 + 1

2
m2φ2 + λ

4!φ
4
]
.
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We focus on the one-particle spectral function and take
O(x) = O†(x) = φ(x). Using Eqs. (16) and (11) we
find directly

(18)ρcl(t,x)= − 1

T

〈
π(t,x)φ(0,0)

〉
cl.

The right-hand-side of Eq. (18) can be computed
numerically in a straightforward manner, as follows.
The classical field theory is defined on a spatial lattice
with N × N sites and lattice spacinga and we use
periodic boundary conditions. To solve the dynamics
we use a leapfrog discretization with time stepa0< a.
The canonical momentaπ(t + 1

2a0,x) are defined
at intermediate time steps, which suggests to use a
symmetrized definition of the spectral function on the
lattice

(19)ρcl,lat(t,x)

= − 1

T

〈
π

(
t + 1

2a0,x
)1

2

[
φ(0,0)+ φ(a0,0)

]〉
cl
.

To generate thermal initial conditions we use the
Kramers equation algorithm, a variant of the hybrid
Monte Carlo method [18]. The evolution in real time
is calculated using classical equations of motion. In a
simulation we switch, therefore, between noisy evolu-
tion to create independent thermal configurations and
Hamiltonian evolution to calculate observables. The
results presented below are obtained using 2000 inde-
pendently thermalized initial configurations for each
temperature. The mass scalem is used as the dimen-
sionful scale and the results presented are obtained
with N = 128, am = 0.2 anda0/a = 0.1 (note that
the finite time step affects the equal-time canonical re-
lation ∂tρcl(t,x)|t=0 = δ(x)). In a classical theory the
coupling constantλ can be scaled out of the equations
of motion and the remaining dimensionless combina-
tion is λT/m2 (recall thatλ has a dimension of mass
in 2 + 1 dimensions). Without loss of generality we
take, therefore,λ/m= 1 throughout. LargerT corre-
sponds then to a larger effective interaction strength.
In the simulations the temperature is determined from
the average kinetic energyT = a2〈π2(t,x)〉cl and the
temperatures we consider are such thataT = O(1).

In Fig. 1 we present the classical spectral func-
tion at zero spatial momentum, obtained from a vol-
ume average of Eq. (19), in real time at a temperature
T/m = 7.2. We see oscillating approximately expo-
nentially damped behaviour. The spectral function in

Fig. 1. Classical spectral functionρcl(t,0) at zero momentum in
real time. The inset shows the absolute value on a log scale.
The temperature isT /m = 7.2. Without loss of generality we use
λ/m= 1 throughout.

Fig. 2. Spectral functionρcl(ω,0), obtained from the real-time
result of Fig. 1 by a sine-transform, versus the frequencyω. The
inset shows a magnification with the data points indicated. The
dotted line is a fit to a Breit–Wigner function.

frequency space can be obtained from a sine-transform

(20)ρcl(ω,p)= 2

tmax∫
0

dt ρcl,lat(t,p)sinωt,

where we used the antisymmetry of the spectral
function under time reflection and absorbed thei of
the previous section directly in the definition. The
result is shown in Fig. 2. The spectral function consists
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of a single peak with the narrow width. The inset
shows that the peak is well described by a Breit–
Wigner spectral function (see Section 4). We have
tried to find other contributions at larger frequency, but
these could not be seen in the numerical data. In the
numerical simulation the late-time regime becomes
more and more difficult to establish, resulting typically
in wiggly nondamped behaviour. This limits the time
interval that can be used in the sine-transform to a
maximal time tmax and constrains the resolution in
frequency-space to(ω = π/tmax. For the result in
Fig. 2 the resolution is(ω/m= π/300≈ 0.01, as can
be seen from the inset.

4. Perturbative expectation

The spectral function in the quantum theory can be
expressed in terms of the retarded self energyΣR =
ReΣR + i ImΣR as [19,20]

ρim(ω,p)= −2 ImΣR(ω,p)

×
{[
ω2 − p2 −m2 − ReΣR(ω,p)

]2

(21)+ [
ImΣR(ω,p)

]2
}−1

.

The theory exhibits a quasiparticle structure, with
the quasiparticle often referred to as the plasmon, in
the limit that the rateΓ (ω,p) = − ImΣR(ω,p)/ω
is much smaller than(p2 + m2 + ReΣR)1/2. In this
case the spectral function is well approximated with
a Breit–Wigner function, which at zero momentum
reads

(22)ρBW(ω,0)= 2ωΓ

(ω2 −M2)2 +ω2Γ 2
.

HereM is the plasmon mass andΓ its width (at zero
momentum)

(23)Γ = − ImΣR(M,0)
M

.

In this limit contributions from multiparticle states
beyond the three-particle threshold are tiny.

A perturbative calculation of the retarded self en-
ergy is standard in thermal field theory (see, e.g., [20]
for a clear discussion in 3+ 1 dimensions). For the
(2+ 1)-dimensional case we consider here we find the

following. At one-loop order the tadpole diagram

(24)Σ
(1)
R = λ

2

∫
d2p

(2π)2
n(ωp)+ 1

2

ωp

contributes to the mass shift only. Resummation of
the tadpole diagram in the limit of high temperature
and weak coupling results in a gap equation for the
resummed mass parameterM:

(25)M2 = λT

4π
log

T

M
(one-loop resummed),

where the zero-temperature mass is neglected. In 2+1
dimensions the one-loop mass is sensitive to both the
ultraviolet momentum scale (cutoff byT ) and the
infrared momentum scale (cutoff byM). A finite width
in the spectral function arises at two-loop order from
the imaginary part of the setting-sun diagram. We
focus here on on-shell 2→ 2 scattering for which the
contribution reads

ImΣ(2)
R (ωp,p)

= −λ
2

4

∫
dΦ123(p)2πδ(ωp +ωk −ωq −ωr)

×
{
n(ωk)

[
1+ n(ωq)

][
1+ n(ωr)

]

− [
1+ n(ωk)

]
n(ωq)n(ωr)

}
,

with

dΦ123(p)= d2k

(2π)22ωk

d2q

(2π)22ωq

d2r

(2π)22ωr

(26)× (2π)2δ(p − k − q − r).

The on-shell dispersion relations contain the one-loop
resummed mass parameter,ωp = √

p2 +M2. It is easy
to check that the momentum integrals are dominated
by the infrared modes. These soft modes are classical.
The leading contribution at high temperature and
weak coupling can therefore be obtained by replacing
n(ω)→ T/ω = ncl(ω). At zero momentump = 0 the
integrals can be performed analytically and after a
straightforward calculation we find the plasmon width
in 2+ 1 dimensions to be

(27)Γ = cλ
2T 2

M3 , c= 3− 2
√

2

32π
≈ 0.00171.

In Fig. 3 the classical spectral function and fits to
a Breit–Wigner function are shown for various tem-
peratures. From the fits one may extract estimates for
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the classical plasmon mass and width. This provides
a possibility to compare nonperturbatively determined
classical plasmon masses and widths with perturbative
calculations and address the applicability of one-loop
resummed perturbation theory at finite temperature.

The calculations in the quantum theory can easily be
carried over to the classical approximation used in the
numerical calculation [13]. The one-loop gap equation
for the classical mass parameterMcl reads

(28)M2
cl =m2 + λ

2

∫
d2p

(2π)2
T

p2 +M2
cl

.

The integral is logarithmically divergent in the ultravi-
olet, which reflects the logT contribution in Eq. (25)
in the quantum theory. In the classical theory the di-
vergence is regulated by the lattice cutoff. If desired, it
can be matched (renormalized) by adjusting the mass
parameterm in the effective classical theory [12]. In
order to compare the one-loop and the nonperturbative
calculation we write the gap equation on the lattice,

M2
cl =m2 + λT

2

1

L2

∑
n1,n2

1

p̂2 +M2
cl

,

(29)p̂2 =
2∑
i=1

2

a2 (1− cosapi),

with pi = 2πni/Li , −Ni/2+1� ni �Ni/2 andLi =
aNi = L (i = 1,2), and solve it numerically.2 The
result is presented in Fig. 4 for various temperatures.
Maybe surprisingly we see that the nonperturbative
determination of the plasmon mass and the resummed
one-loop result differ at most a few percent, indicating
the relative unimportance of higher-loop contributions
for this quantity. Note that for our parameters the
effective massMcl is small in lattice units (aMcl ∼
0.3).

An analytical expression for the width of the spec-
tral function in the classical approximation can be ob-
tained directly from the calculation carried out above.
As indicated, the perturbative width of the spectral
function in the quantum theory is dominated by soft
momenta and coincides, therefore, with the classical

2 In the infinite volume limit the lattice gap equation can be
written as M2

cl = m2 + λT /(4π)kF(π/2, k), with 1/k = 1 +
a2M2

cl/4 andF(π/2, k) the complete elliptic function of the first
kind.

Fig. 3. Spectral functionsρcl(ω,0) for various temperaturesT .
Fits to a Breit–Wigner function are shown with dotted lines. The
height, position and width of the peak are approximately related as
ρcl(M,0)∼ 2/MΓ .

Fig. 4. Mass Mcl (circles) and width Γcl (squares) of the
zero-momentum spectral function as a function of the temperature.
The width is multiplied with 25 for clarity. The data points are ob-
tained from fits to a Breit–Wigner function, with the statistical error
estimated from a jackknife analysis. The lines are the predictions for
Mcl from the one-loop gap equation (full) andΓcl from the on-shell
two-loop contribution (dashed).

result to leading order:Γcl is given by Eq. (27) af-
ter the replacementM →Mcl. A comparison between
the perturbatively and nonperturbatively determined
widths is presented in Fig. 4 as well. Again agreement
between the two calculations can be seen, indicating
that the dominant contribution is produced by the low-
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est order two-loop result. We emphasize that the width
is a typical real-time quantity and, therefore, not easily
accessible by other nonperturbative methods.

5. Summary

We have used the classical field approximation at
high temperature and weak coupling to formulate a
nonperturbative method for the calculation of spec-
tral functions at finite temperature, with the help of
the classical KMS condition. We focused on the one-
particle spectral function in a scalar field theory in
2 + 1 dimensions. For the temperatures investigated
our numerical results indicate that the one-particle
spectral function is a simple narrow peak: the spec-
tral function is completely dominated by the plasmon.
To compare with perturbation theory we calculated the
one-loop resummed plasmon mass and the two-loop
contribution to the width. Agreement between the non-
perturbative numerical simulation and the perturbative
expressions was found. These results provide a justifi-
cation for the use of resummed perturbation theory for
a weakly coupled scalar field in equilibrium as well as
for kinetic approaches based on two-loop approxima-
tions close to equilibrium.

It would be interesting to extend the analysis to
more complicated spectral functions. Transport coef-
ficients can be expressed in terms of spectral functions
of composite operators. These are in general more
sensitive to the ultraviolet scale and, therefore, to the
Rayleigh–Jeans divergence in a classical limit. Nev-
ertheless, it might be interesting to test perturbative
ideas against a nonperturbative numerical calculation.
When sufficient care concerning the gauge symmetry
is taken, methods applied here might also offer the
possibility to gain further insight in nonperturbative
aspects of hot gauge plasmas.
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