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Abstract

During cosmological inflation, it has been suggested that fields coupled to the inflaton can be excited by the slow-rolling inflaton into a quasi-
stable non-vacuum state. Within this scenario of “warm inflation”, this could allow for a smooth transition to a radiation dominated Universe
without a separate reheating stage and a modification of the slow roll evolution, as the heat-bath backreacts on the inflaton through friction. In
order to study this from first principles, we investigate the dynamics of a scalar field coupled to the inflaton and N light scalar boson fields, using
the 2PI-1/N expansion for nonequilibrium quantum fields. As a first step we restrict ourselves to Minkowski spacetime, interpret the inflaton as
a time-dependent background, and use vacuum initial conditions. We find that the dominant effect is particle creation at late stages of the evolution
due to the effective time-dependent mass. The further transfer of energy to the light degrees of freedom and subsequent equilibration only occurs
after the end of inflation. As a consequence, the adiabatic constraint, which is assumed in most studies of warm inflation, is not satisfied when
starting from an initial vacuum state.
© 2007 Elsevier B.V. All rights reserved.
1. Introduction

In recent years quantitative cosmological observations have
become available, resulting in a model for our Universe that is
consistent with an early period of inflation and predictions of
simple inflationary theories [1]. In the most elementary setup,
the dynamics of the inflaton mean field φ(t) = 〈ϕ(t,x)〉 is de-
termined by

(1.1)φ̈(t) + 3H(t)φ̇(t) + V ′[φ(t)
] = 0,

subject to the Friedmann equation H 2 = ( 1
2 φ̇2 + V [φ])/3M2

Pl,
where MPl is the Planck mass.

In warm inflation [2–7] the key idea is that interactions be-
tween the inflaton and other quantum fields are important dur-
ing inflation and that they result in continuous energy transfer
from the inflaton to these other fields. If this transfer is suffi-
ciently fast and equilibration is rapid, a quasi-stable state could
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be achieved, different from the inflationary vacuum. An ad-
ditional effective friction term would then be expected in the
inflaton equation of motion. A simple phenomenological mod-
ification of Eq. (1.1) incorporating this reads [2,3]

(1.2)φ̈(t) + [
3H(t) + Υφ(t)

]
φ̇(t) + V ′[φ(t)

] = 0,

where Υφ(t) is a time- and field-dependent friction coeffi-
cient.1,2

Since warm inflation necessarily involves multiple interact-
ing quantum fields, which are dynamically evolving in real
time, a full, quantitative understanding is difficult. In particu-
lar, a first-principle investigation requires all tools available to
study quantum field dynamics far from equilibrium beyond the
mean-field approximation. This may be contrasted with the the-
ory of preheating due to parametric resonance after inflation,
which can be understood from a combination of mean-field dy-
namics and the classical random field approximation [10–12].

1 For a critical analysis of warm inflation, see Ref. [8].
2 For a study of particle creation and friction during power law inflation, see

Ref. [9].
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For the purpose of this Letter, the scenario of warm inflation
separates naturally into three parts [5]:

1. The inflaton field ϕ is coupled to a second scalar field χ .
While the inflaton rolls down the effective potential, it in-
teracts with the χ field, resulting in the excitation of χ

degrees of freedom.
2. The field χ is coupled to other degrees of freedom, which

can be light fermion (ψ ) or scalar (σ ) fields. These fields
are excited as well and may thermalize. Various interaction
terms are possible.

3. The backreaction of the χ field on the inflaton leads to ef-
fective friction in the inflaton equation of motion, resulting
in overdamped inflaton dynamics.

A commonly used interaction term between the inflaton field
and the second field χ is given by 1

2g2ϕ2χ2. Due to the time
dependence of the inflaton φ(t), an effective time-dependent
mass term appears in the quantum dynamics of the χ field,
m2

χ + g2φ2(t), where mχ is the mass in absence of the infla-
ton. In this Letter, we consider a large field model, such that
the inflaton is rolling down its effective potential and φ(t) is
decreasing. As a first step, we treat the inflaton as a time-
dependent background and assume the most extreme case, in
which the slow-rolling of the inflaton is caused by the inter-
actions with the heat-bath rather than the expansion of the
Universe. Taking this overdamped limit with Υ � H , and as-
suming a quadratic potential V [ϕ] = 1

2m2
ϕϕ2 for simplicity, the

dominant solution of Eq. (1.2) in the overdamped regime reads
φ(t) = φ0 exp[−(m2

ϕ/Υ )t]. We assumed that Υ is time- and
field-independent. The inflaton is treated as a dynamical field in
a companion paper [13]. Here, our goal is to study the dynam-
ics of parts (1) and (2) described above, by combining a mode
function analysis [14] and the techniques of the two-particle
irreducible (2PI) effective action [15] for nonequilibrium quan-
tum fields [16]. Since the inflaton acts as a time-dependent
background, we find that there is particle production in the χ

sector, akin to particle production in curved spacetime [14]. In
Section 2 we study this process using a mode function analy-
sis. We find that details of χ particle creation depend crucially
on the size of the zero-temperature mass mχ and the momen-
tum k. Most importantly, we find that particle production only
takes place towards the end of the evolution and that the amount
of particles is, to a large extent, independent from the initial
conditions and the duration of the inflationary stage.

In order to determine the range of validity of the mode
function analysis and study the effect of interactions, we con-
tinue in Section 3 with a full far-from-equilibrium numerical
study in quantum field theory using the 2PI effective action,
and include interactions between the scalar field χ and N light
quantum fields. Specifically, we include N scalar fields σa

(a = 1, . . . ,N ) and use a truncation of the 2PI effective ac-
tion determined by the 2PI-1/N expansion to next-to-leading
order (NLO) [17,18]. This approximation has been well studied
in recent years and is known to give a quantitative descrip-
tion of both the early evolution far from equilibrium as well
as the later stages of equilibration and thermalization (see, e.g.,
Refs. [17,19–21]). We consider both a trilinear coupling χσ 2
a

and a quartic coupling χ2σ 2
a . Irrespective of the interaction

term, we find that as long as the inflaton is evolving, the mode
function analysis gives an accurate description of the dynamics
in the χ sector. In particular, processes leading to equilibration
and thermalization are not yet relevant.

In this first study, we ignore the expansion of the Universe
and work in Minkowski spacetime. If anything, neglecting the
dilution caused by expansion should increase the chances of
realizing a “warm” state.

2. Mode function analysis

As a first step, we perform a mode function analysis for
a free χ field, subject to a time-dependent mass

(2.1)M2
χ (t) = m2

χ + δm2e−γ t .

Here δm contains the details on the coupling to the infla-
ton. Specifically for the 1

2g2ϕ2χ2 interaction, we find that
δm2e−γ t = g2φ2(t), but these details are not required here. Us-
ing the standard decomposition, we write

(2.2)χ(t,x) =
∫

d3k

(2π)3

[
akfk(t)eik·x + a

†
kf ∗

k (t)e−ik·x],
and find that fk(t) is a solution of

(2.3)f̈k(t) + [
k2 + m2

χ + δm2e−γ t
]
fk(t) = 0.

A change of variables to x = (2δm/γ )e−γ t/2 shows that this is
a Bessel equation of the form

(2.4)x2f ′′
k (x) + xf ′

k(x) +
[
x2 + 4ω2

k

γ 2

]
fk(x) = 0,

where ωk =
√

k2 + m2
χ . We note that only the combination

ωk/γ appears in this equation, while the dependence on δm

will enter via the initial conditions. The general solution is

fk(t) = A+
k J2iωk/γ

(
2δm

γ
e−γ t/2

)

(2.5)+ A−
k J−2iωk/γ

(
2δm

γ
e−γ t/2

)
,

where Jν(z) is the Bessel function of the first kind. The con-
stants A±

k are determined by the initial conditions, which
are fixed by demanding that fk(0) = 1/

√
2Ωk and ḟk(0) =

−iΩkfk(0), where Ωk =
√

k2 + M2
χ (0) and Mχ(0) is the ini-

tial mass. This determines A±
k as

A±
k = ∓i√

2Ωk

π

γ sinh(2πωk/γ )

[
J̇∓2iωk/γ

(
2δm

γ

)

(2.6)+ iΩkJ∓2iωk/γ

(
2δm

γ

)]
,

where

(2.7)J̇∓2iωk/γ

(
2δm

γ

)
= d

dt
J∓2iωk/γ

(
2δm

γ
e−γ t/2

)∣∣∣∣
t=0

.
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Fig. 1. Particle number nk as a function of k/γ according to the Bogoliubov
relation for four values of the final mass mχ . The initial mass is Mχ(0)/γ = 20.

One may verify that the Wronskian fk(t)ḟ ∗
k (t)− ḟk(t)f ∗

k (t) = i

is preserved during the time evolution.
In order to identify the produced particle number at as-

ymptotically late times, we use some elementary properties of
Bessel functions and find that

(2.8)lim
t→∞J±2iωk/γ

(
2δm

γ
e−γ t/2

)
= C±

k e∓iωkt ,

with

(2.9)C±
k =

(
δm

γ

)±2iωk/γ 1

Γ (1 ± 2iωk/γ )
.

At late times, we find therefore that the mode functions oscillate
with the expected frequency ωk, and

(2.10)lim
t→∞fk(t) = A+

k C+
k e−iωkt + A−

k C−
k eiωkt .

A comparison with the standard form of the mode functions
at t → ∞, f̃k(t) = e−iωkt /

√
2ωk yields the Bogoliubov coeffi-

cient [14]

βk = i
[
f̃k(t)∂tfk(t) − fk(t)∂t f̃k(t)

]
(2.11)= −√

2ωkA−
k C−

k .

Therefore, the final particle number (starting in vacuum ini-
tially) is nk = |βk|2 = 2ωk|A−

k C−
k |2, which, after some algebra,

can be written as3

nk = 1

2Ωk

π

γ sinh(2πωk/γ )

{∣∣∣∣J̇2iπωk/γ

(
2δm

γ

)∣∣∣∣
2

(2.12)+ Ω2
k

∣∣∣∣J2iπωk/γ

(
2δm

γ

)∣∣∣∣
2}

− 1

2
.

The resulting particle numbers are shown in Fig. 1 for four dif-
ferent values of the asymptotic mass mχ and an initial mass

3 If the initial particle number is nonzero and equals 〈a†
kak〉 = n

(0)
k , we find

that nk = (1 + 2n
(0)

)ωk|C−|2(|A+|2 + |A−|2) − 1
2 .
k k k k
Fig. 2. Particle number nk as a function of time, according to the Bogoliubov
relation, for three values of the initial mass Mχ(0) and three momentum modes.
After shifting time by an amount 2 log[Mχ(0)/Mref

χ ], where Mref
χ /γ = 20 is

a reference mass, there is no dependence on the initial mass remaining. The
final mass is mχ/γ = 0.1.

Mχ(0)/γ = 20. We observe that a significant amount of par-
ticles are only produced when mχ/γ � 1, and only with mo-
mentum k/γ � 1.

In order to determine when particles are created during the
inflationary stage, we show the time-dependent particle num-
ber,

(2.13)nk(t) = 1

2ωk(t)

[∣∣ḟk(t)
∣∣2 + ω2

k(t)
∣∣fk(t)

∣∣2] − 1

2
,

where ωk(t) =
√

k2 + M2
χ (t), in Fig. 2. We comment on pos-

sible other definitions of particle number elsewhere [13]. The
time-dependent particle number is shown for three different
initial masses Mχ(0), the largest mass corresponding to the
longest period of inflation (recall that Mχ(0) ∼ φ0). However,
we find that a trivial shift of the time variable is sufficient to take
the initial mass dependence into account. In other words, the
amount of particles produced is independent of the initial condi-
tions and therefore the duration of the inflationary stage. Gener-
ically, particles can only be produced when |ω̇k(t)| � ω2

k(t),
which in our model translates to γ � Mχ(t). If we denote the
time when most particles are created with t∗, we find from
Fig. 2 that γ t∗ − 2 log[Mχ(0)/M ref

χ ] ≈ 8, where M ref
χ /γ = 20

is a reference mass. The size of the effective mass is then
Mχ(t∗)/γ ≈ 0.37 < 1, confirming that χ particles are only pro-
duced when Mχ(t)/γ is sufficiently small.

3. Interactions

In the mode function analysis of the previous section, inter-
actions besides the time-dependent mass are ignored. In order
to assess the validity of that analysis, we now include inter-
actions and consider the coupling of the scalar field χ to N

light degrees of freedom, either fermionic or bosonic. We start
with some parametric estimates and then present the numeri-



68 G. Aarts, A. Tranberg / Physics Letters B 650 (2007) 65–71
cal results obtained with the help of the 2PI-1/N expansion for
nonequilibrium quantum fields.

3.1. Parametric estimates

In order to get an estimate for the magnitude of various pa-
rameters, we use here an inflaton potential V [ϕ] = 1

2m2
ϕϕ2.

During slow-roll inflation, the Hubble parameter is approxi-
mately given by H ∼ mϕφ/MPl. In order to have inflation,
the initial amplitude should be φ0 ∼ a few MPl, and to satisfy
CMB constraints [1], we require that mϕ ∼ 10−6MPl. We then
find that H ∼ 10−6φ0 � 10−6MPl. In warm inflation, the ef-
fective damping term Υ in the inflaton equation wins over the
expansion rate. Taking Υ ∼ 100H yields Υ ∼ 10−4MPl. Us-
ing exponential time dependence, φ(t) = φ0 exp[−(m2

ϕ/Υ )t],
then yields a value of γ ∼ 10−8MPl for the rate in the time-
dependent mass (2.1). In order to have any particle production,
we found from the mode function analysis that mχ/γ � 0.1, or
mχ � 10−9MPl, which means that the χ particle can be some
degree of freedom beyond the Standard Model.

We now consider the couplings to the light degrees of free-
dom. First we consider the coupling to N fermion fields, with
the interaction term

(3.1)
N∑

a=1

h√
N

χψ̄aψa.

The factor
√

N is introduced to allow for a proper 1/N expan-
sion. Following Ref. [5], we impose h2 � 1 such that perturba-
tion theory is reasonable.4 From a standard one-loop calculation
one can compute the (zero-temperature) onshell decay width
for χ → ψψ , in the case that Mχ > 2Mψ . Here the masses
Mχ,ψ include possible background field dependence. The width
is given by

(3.2)Γ
χ

p = h2M2
χ

8π
√

p2 + M2
χ

(
1 − 4M2

ψ

M2
χ

)3/2

.

The important assumption made in most studies of warm infla-
tion is that the dynamics takes place in the so-called adiabatic
approximation, |φ̇/φ| � Γ

χ
p , leading to quick decay (and pos-

sibly thermalization) during inflation.5 In our model we have
to compare Γ

χ
p with γ . Taking for simplicity Mψ � Mχ and

p = 0, we find

(3.3)
Γ

χ

0

γ
= h2

8π

Mχ

γ
.

When it is assumed that Mχ ∼ gφ0 and φ0 � γ (as discussed
above), this ratio can be much larger than one. However, in the
mode function analysis we found that χ particles are only pro-
duced when the (time-dependent) mass Mχ is much smaller,
specifically Mχ/γ � 1. In that case the important conclusion is

4 This corresponds to Nh2 � 1 in the conventions of Ref. [5].
5 The origin of the adiabatic approximation can be traced back to Refs. [22,

23].
that the dynamics is not taking place in the adiabatic regime,
but rather in the opposite limit |φ̇/φ| � Γ

χ
p .

In the numerical study below, we couple the χ field to N

light bosonic fields, with the interaction term

(3.4)
N∑

i=1

h√
N

χσ 2
a .

In this case, the coupling constant h is dimensionful and it is
natural to write h = mχh̃, where h̃ is dimensionless. We con-
sider again the decay process χ → σσ and find for the onshell
width, assuming that Mχ > 2Mσ ,

(3.5)Γ
χ

p = h̃2m2
χ

8π
√

p2 + M2
χ

√
1 − 4M2

σ

M2
χ

.

To test the adiabatic approximation, we compare again Γ
χ

p
with γ . Taking Mσ � Mχ and p = 0, we find

(3.6)
Γ

χ

0

γ
= h̃2

8π

mχ

γ

mχ

Mχ

� 1.

Since all factors are strictly less than one, we are not in the
adiabatic limit. This is in agreement with the results from the
numerical analysis carried out below.

3.2. Nonequilibrium dynamics

To determine the range of validity of the mode function
analysis and estimates carried out above, we continue with a nu-
merical study using the 2PI effective action for quantum field
dynamics in real time. We refrain from providing details on
the 2PI effective action and the Schwinger–Keldysh formalism
for nonequilibrium field theory, instead we refer to Ref. [18],
whose notation we follow closely.

We consider the following action,

S[χ,σ ] = −
∫

d4x

{
1

2
(∂μχ)2 + 1

2

[
m2

χ + δm2e−γ t
]
χ2

+ λχ

4!N χ4 + 1

2
(∂μσa)

2 + 1

2
m2

σ σ 2
a

(3.7)+ λσ

4!N (σaσa)
2 + Vint[χ,σ ]

}
.

We consider two different interaction terms Vint[χ,σ ] between
the χ field and the scalar fields σa , a trilinear and a quartic
coupling. Both interaction terms preserve the O(N) symmetry
in the σ sector, such that the σ two-point function can be written
as Gσ ab(x, y) = δabGσ (x, y). We have scaled all couplings in
such a way that a proper 1/N expansion is possible. We use
N = 4 throughout.

Trilinear coupling. Motivated by Ref. [5], we start with the
trilinear coupling,

(3.8)Vint[χ,σ ] = h√
N

χσ 2
a + cχχ.
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Because this term breaks the symmetry χ → −χ , we have to
allow for a nonzero expectation value χ̄ (t) = √

N〈χ(t,x)〉.6
The term linear in χ is used to shift the minimum of the (ef-
fective) potential at the initial time to 〈χ〉 = 0. The 2PI part of
the effective action is written as Γ2[Gχ,Gσ ] = Γχσ [Gχ,Gσ ]+
Γσ [Gσ ], where the first term is given by the two-loop diagram

(3.9)Γχσ [Gχ,Gσ ] = ih2
∫

d4x d4y Gχ(x, y)G2
σ (x, y).

The second part, Γ2[Gσ ], is the standard NLO contribution for
N scalar fields. This contribution has been discussed in detail
in Refs. [17,18] and will not be shown here explicitly. Other
2PI diagrams are suppressed by 1/N and are not included. The
resulting equations of motion follow from a variation of the 2PI
effective action with respect to χ̄ , Gχ and Gσ , and read

d2

dt2
χ̄ +

[
m2

χ + δm2e−γ t + λχ

6
χ̄2 + λχ

2N
Gχ(x, x)

]
χ̄

(3.10)= −hGσ (x, x) − cχ ,

and for the two-point functions (j = χ,σ )

−[
�x + M2

j (t)
]
Gj(x, y)

(3.11)= i

∫
d4zΣj (x, z)Gj (z, y) + iδ4(x − y),

with the effective masses

M2
χ (t) = m2

χ + δm2e−γ t + λχ

2
χ̄2,

(3.12)M2
σ (t) = m2

σ + 2hχ̄ + λσ

N + 2

6N
Gσ (x, x).

The nonlocal contributions to the self-energies Σχ,σ follow
from variation of Γ2[Gχ,Gσ ] in the usual manner [13,18].

Quartic coupling. In order to assess the importance of the
possibility of onshell decay χ → σσ in the trilinear case, we
also consider the following quartic potential,

(3.13)Vint[χ,σ ] = h

2N
χ2σ 2

a .

In the 2PI effective action we include the two- and three-loop
diagrams

Γχσ [Gχ,Gσ ] = −h

2

∫
d4x Gχ(x, x)Gσ (x, x)

(3.14)+ ih2

2N

∫
d4x d4y G2

χ (x, y)G2
σ (x, y),

as well as Γσ [Gσ ] to NLO as above. Strictly speaking, we devi-
ate here from the 1/N expansion, since the three-loop diagram
only appears at next-to-next-to leading order. We include it nev-
ertheless, since it plays the same role as the two-loop diagram
in the trilinear case and results in χσ interaction beyond the
mean-field approximation. In this case the symmetry χ → −χ

is preserved, so that we can take 〈χ〉 = 0 consistently for the
entire evolution. Hence Eq. (3.10) is absent, while the effective

6 This was overlooked in Ref. [5].
masses appearing in Eq. (3.11) are

(3.15)M2
χ (t) = m2

χ + δm2e−γ t + hGσ (x, x),

(3.16)M2
σ (t) = m2

σ + λσ

N + 2

6N
Gσ (x, x) + h

N
Gχ(x, x).

The nonlocal self-energies follow again from the 2PI effective
action.

We solve the resulting equations numerically, following
the approach in [17,19–21]. Space is discretized on a three-
dimensional lattice with 323 sites and a physical size of
γL = 32. The length of the memory kernel is γ t = 20, contain-
ing 800 time steps. The masses are mχ/γ = 0.1 and mσ /mχ =
1/3. The coupling constants are λχ = 6, λσ = 6. In the trilinear
case the coupling h/mχ = 5/3, while in the quartic case we use
h = 1. We initialize the two-point functions in vacuum. Renor-
malization is carried out in such a way that the set of equations
is initialized at the fixed point of the renormalized mean field
equations [13,24].

Particle number is a derived concept and not always well de-
fined in an interacting field theory out of equilibrium. Instead
of comparing time-dependent particle numbers, we prefer to
study basic quantities appearing in the dynamical equations: the
equal-time two-point functions Gχ(t, t;k) and Gσ (t, t;k). In
Figs. 3 and 4 we show the evolution of the nine lowest momen-
tum modes in time (the evolution of the zero momentum mode
is not shown). In the top left corners, the dynamics without
interactions is presented, in which case Gχ(t, t;k) = |fk(t)|2
and Gσ (t, t;k) = 1

2 (k2 + m2
σ )−1. The latter is exactly time-

independent, because of our choice of initialization. In the other
three frames, we show the dynamics with trilinear interaction
(bottom left), and with quartic interaction using the Hartree
approximation, i.e. including the self-consistently determined
masses (3.15) and (3.16) but not the nonlocal terms (top right),
and the full evolution (bottom right).

As can be seen in Fig. 3, the evolution of Gχ is in all cases
nearly identical to the free case, except for a small additional
growth in the case that the nonlocal self energies are included.
From this we conclude that the mode function analysis de-
scribes the important aspects of this part of the dynamics ex-
tremely well, even in the presence of interactions. In particular,
the process of particle production can be studied in a satisfac-
tory manner using the techniques of Section 2.

The response of the σ propagator is shown in Fig. 4. Re-
call that without interactions, the equal-time propagator is con-
stant in time. In the trilinear case interactions with the χ field
have a small effect, in the low-momentum modes only and with
a characteristic time scale much longer than 1/γ . In particular,
there is no notion of equilibration and thermalization. This is
consistent with the estimates given above and also with pre-
vious studies of nonequilibrium scalar field dynamics using
the 2PI effective action [17,20,21], in which it was shown that
thermalization occurs only after a time of the order of at least
several hundred elementary oscillations. In the quartic case, the
situation is slightly different because of the presence of the χ

tadpole in the effective σ mass (3.16). During the evolution, the
mass Mσ grows as Gχ(x, x) increases due the time-dependent
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Fig. 3. Equal-time two-point function Gχ(t, t;k) as a function of time t in units of γ , for nine different momenta k (the ordering is such that the smallest momentum
corresponds to the largest value at γ t ≈ 10), using the analytical expression (top left), the trilinear interaction (bottom left), the quartic interaction term in the Hartree
approximation (top right), and the quartic interaction term (bottom right). In all cases the initial mass is Mχ(0)/γ = 20 and the final mass is mχ/γ = 0.1.

Fig. 4. Same as in Fig. 3, for the σ two-point function Gσ (t, t;k). The largest value at t = 0 corresponds to the smallest momentum, since Gσ (0,0;k) =
1 (k2 + m2

σ )−1.
2
inflaton background. The response of the σ propagator is cap-
tured very well in the Hartree approximation. Additional non-
local diagrams (Fig. 4, bottom right) play only a minor role at
this stage, since in the theory with a quartic coupling onshell
decay χ → χσσ is kinematically not allowed, while scattering
processes χχ → σσ are suppressed due to small amount of χ

particles present.

4. Outlook

In order to investigate the dynamics of warm inflation, we
studied the quantum evolution of a scalar field χ coupled to the
inflaton as well as N light scalar fields. In this first analysis we
treated the inflaton as a background field and ignored the expan-
sion of the Universe. We took vacuum initial conditions. From
a comparison with nonequilibrium quantum field dynamics us-
ing the 2PI-1/N expansion to next-to-leading order, we found
that the response in the χ sector can be accurately understood
from a mode function analysis and that further interactions with
light scalar fields are subdominant. The important conclusion
is that χ particle production only takes place towards the end
of the evolution, independent of the duration of the inflationary
stage. An immediate consequence is that under these conditions
the so-called adiabatic approximation, |φ̇/φ| � Γ χ , assumed
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in most studies of warm inflation, is violated. Therefore, the
dynamics during inflation takes place far from equilibrium and
processes important for thermalization become important only
later. These findings are complementary to those obtained in
Ref. [8].

Although our investigation used a specific ϕ2χ2 interaction
and assumed an exponential time dependence for the inflaton
background field, we believe that most of the results obtained
here are generic for systems initially in vacuum. In particular,
χ particles can only be produced when the rate of time varia-
tion of the effective mass is comparable with the effective mass
itself. This observation is a potential hurdle in all models where
the effective χ mass receives a contribution from interactions
with the inflaton and the inflaton initially has a large expectation
value (large field models). Concerning the time dependence, we
have also studied a linear evolution, φ(t) ∼ t , and found that the
specific time dependence is not crucial [13].

As a next step, we plan to treat the inflaton as a dynam-
ical quantum field, and use 2PI effective action techniques
to analyse the effective inflaton equation of motion, includ-
ing the backreaction from χ particles. Since we found in this
Letter that the role of the additional light degrees of freedom
is subdominant, we can focus entirely on the inflaton-χ sec-
tor.
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