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Abstract

The integration of deep learning techniques and physics-driven designs 
is reforming the way we address inverse problems, in which accurate 
physical properties are extracted from complex observations. This is 
particularly relevant for quantum chromodynamics (QCD) — the theory 
of strong interactions — with its inherent challenges in interpreting 
observational data and demanding computational approaches. This 
Perspective highlights advances of physics-driven learning methods, 
focusing on predictions of physical quantities towards QCD physics 
and drawing connections to machine learning. Physics-driven learning 
can extract quantities from data more efficiently in a probabilistic 
framework because embedding priors can reduce the optimization 
effort. In the application of first-principles lattice QCD calculations 
and QCD physics of hadrons, neutron stars and heavy-ion collisions, 
we focus on learning physically relevant quantities, such as perfect 
actions, spectral functions, hadron interactions, equations of state and 
nuclear structure. We also emphasize the potential of physics-driven 
designs of generative models beyond QCD physics.

Sections

Introduction

Physics-driven learning

QCD physics

Conclusions and outlook

1Department of Physics, Swansea University, Swansea, UK. 2Department of Physics, The University of Tokyo, 
Tokyo, Japan. 3Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS), RIKEN, Wako, Japan. 
4Institute for Theoretical Physics, TU Wien, Vienna, Austria. 5Department of Physics, Tsinghua University, Beijing, 
China. 6School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, Guangdong, China. 
7Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany.  e-mail: lingxiao.wang@riken.jp

http://www.nature.com/natrevphys
https://doi.org/10.1038/s42254-024-00798-x
http://crossmark.crossref.org/dialog/?doi=10.1038/s42254-024-00798-x&domain=pdf
http://orcid.org/0000-0002-6038-3782
https://orcid.org/0000-0003-0899-740X
https://orcid.org/0000-0003-2206-9810
http://orcid.org/0000-0001-9511-3523
https://orcid.org/0000-0002-3042-3093
http://orcid.org/0000-0003-3757-3403
https://orcid.org/0000-0001-9859-1758
mailto:lingxiao.wang@riken.jp


Nature Reviews Physics

Perspective

applications of physics-driven learning are not limited to QCD physics. 
For machine learning experts and other physicists interested in inverse 
problems, this Perspective also presents a concise plan of how to embed 
physics knowledge into the learning procedure.

Physics-driven learning
Physical concepts have been fundamental in the development of 
ML15. Mathematical frameworks and problem-solving techniques in 
physics have inspired algorithms and models of deep learning, includ-
ing energy-based models16, maximum entropy thermodynamics17, 
non-equilibrium stochastic dynamics18 and physics-inspired neural 
network design and optimization19. The influential physics-driven learn-
ing paradigm is helpful both in solving inverse problems and in feeding 
back AI innovations, such as developing more physically interpretable 
generative models and aligning deep models, to the physical world.

In solving inverse problems for QCD physics, Bayesian infer-
ence and deep learning have emerged as indispensable tools, each 
contributing uniquely to the resolution of the involved challenges.

Bayesian inference provides a rigorous probabilistic frame-
work for understanding and quantifying uncertainties inherent in 
QCD physics. Using Bayesian statistics, one systematically incorpo-
rates prior knowledge to update beliefs on the considered physics 
based on observations and the posterior distribution p(θ|D) of the 
para meters θ. The observations D have to be obtained using Bayes’ 
theorem20, p(θ|D) = p(D|θ)p(θ)/p(D), where p(D|θ) is the likelihood, 
p(θ) is the prior and p(D) is the evidence. This allows the integration 
of prior knowledge about the physics, providing a coherent method 
to update the causal parameters of the studied physics as new data 
become available, which also enables the estimation of parameter 
uncertainties and the construction of credible intervals.

As a branch of ML, deep learning11,12 offers a complementary solu-
tion for inverse problems, with its capacity to model complex and 
non-linear relationships using deep neural networks. In the context 
of QCD, deep learning can be used to approximate the inverse map-
ping from observations to the underlying physics. This is achieved by 
training deep models on data sets generated from theoretical model 
simulations or experimental measurements. The network learns to 
infer the latent parameters θ from observations D, performing inverse 
engineering, which usually works under the principle of maximum 
likelihood estimation. With this objective, one can choose different 
architectures of artificial neural networks (ANNs), such as convolutional  
neural networks (CNNs)21, recurrent neural networks22, residual 
networks23, graph neural networks24 and transformers25 for various 
inverse problems.

However, Bayesian inference is often stalled by the need to 
optimize a large number of parameters, making it computationally 
expensive and impractical for identifying detailed information within 
physical quantities. Deep learning models, conversely, are typically 
designed for data-driven tasks and lack the explicit physical constraints, 
making them less suitable for accurately decoding physical quantities. 
This mismatch highlights the need for new methods tailored to the 
accurate requirements of physical systems. Meanwhile, solving inverse 
problems involves inferring causes from observations, which can be 
particularly difficult when data are incomplete or noisy. These prob-
lems are often ill-posed or ill-conditioned, which means that solutions 
may not exist, may not be unique or may not be stable7. Regularization 
techniques are routinely used to obtain meaningful solutions.

Integrating physics priors into deep learning methods is a 
promising strategy to address these challenges simultaneously and 

Key points

 • Inverse problems in physical sciences determine causes or 
parameters from observations.

 • Physics-driven learning integrates domain-specific physical 
knowledge into machine learning to solve inverse problems.

 • Physics-driven learning can help to extract physical properties and 
build probability distributions from data.

 • In quantum chromodynamics, physics-driven learning can deduce 
hadron forces, dense matter equations of state, and nuclear structure.

 • Physics-driven designs can innovate the development of deep 
learning and generative models.

Introduction
Quantum chromodynamics (QCD) is the fundamental theory describing 
the strong interactions of quarks and gluons, which make up hadrons 
such as protons and neutrons1. Characterized by its non-perturbative 
nature at low energies, QCD physics derives phenomena such as con-
finement (permanent binding of quarks and gluons within hadrons) 
and asymptotic freedom (weaker quark interactions at high energies). 
QCD physics is crucial for understanding nuclear and extreme matter; 
first-principle lattice QCD calculations2, compact star observations3 
and relativistic nuclear collision experiments4 are approaches 
promising to further this understanding.

Exploring QCD physics and decoding its associated pheno mena 
involve many challenging inverse problems5,6, which are needed to 
determine causes or parameters from consequent observations. 
Unlike forward problems, which predict outcomes from known factors, 
inverse problems start from results to do reverse engineering7. They are 
essential in fields wherein direct measurements are impractical, such 
as medical imaging, geophysics and astrophysics. Inverse problems 
in QCD physics involve identifying strong interaction properties from 
intricate measurements. Examples include extracting hadron spectral 
functions8 from lattice observables, reconstructing dense matter equa-
tions of state (EoSs) from compact star observations9, and identifying 
quark–gluon plasma (QGP) properties from heavy-ion collision (HIC) 
experiments6.

Machine learning (ML) techniques, as a modern branch of arti-
ficial intelligence (AI), are becoming increasingly important in QCD 
physics6,10, providing tools to identify intricate patterns and extract 
structures from complex data sets11,12. Bayesian inference can deduce 
causal parameters from uncertain observations, and deep models are 
trained to learn physical properties from well-prepared data. Recently, 
advanced developments in physics-driven learning have integrated 
physical priors into machine learning explicitly6,13,14, thereby improv-
ing deep models to produce physically interpretable and accurate 
results. This Perspective aims to build a bridge between solving inverse 
problems in physics and advancing machine learning techniques. 
For QCD physicists, we present the latest advances and applications 
of physics-driven learning in areas such as first-principle lattice cal-
culations, hadron physics, neutron stars and heavy-ion collisions. 
We emphasize that the more interpretable machine learning tech-
niques will benefit the inverse problem solutions. Meanwhile, the 
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effectively6,26. Designing deep models explicitly with physics knowledge 
can introduce physics regularization, reduce the parameter space and 
implement efficient gradient-based optimization methods. The deep 
models can serve as universal approximators12 to represent the under-
lying physics quantities, learning from observations within a Bayesian 
perspective and optimizing within auto-differential processes described 
by physical equations. This emerging paradigm is called physics-driven 
deep learning, and its goal is to construct better solutions of inverse 
problems. The physical knowledge that can be integrated includes 
symmetries, physics principles, well-developed physics equations, 
and physical data from simulations or experiments, as shown in Fig. 1.

• Symmetry, a cornerstone of modern physics, can be used to 
improve learning performance explicitly. In general, embedding 
symmetries introduces a scheme for sharing parameters in deep 
models11, thus reducing the number of parameters and preventing 
over-fitting27. Symmetries, such as translational, rotational and per-
mutation invariance, can be inherently incorporated into network 
architectures including CNNs12,28, Euclidean neural networks29 and 
graph neural networks30. In QCD physics, it is particularly important 
to embed gauge invariance and equivariance in deep models31–33.

• Physics principles, such as causality, continuity, positive definite-
ness and asymptotic behaviour, are also crucial in ensuring that 
solutions are physically meaningful. These properties can be 
implemented into model designs — either through customized 
loss functions or specialized activation functions34,35 — to ensure 
that the output respects these fundamental constraints.

• Physics equations, in particular differential equations governing 
systems, can serve as priors. These laws provide essential con-
straints that guide the learning process, ensuring that solutions 
adhere to physical realities. In contrast to the physics-informed 
neural networks36, in which physical equations are always intro-
duced as additional regularization terms, physical equations can 
be explicitly coded into the optimization of deep learning. For 
instance, ordinary or partial differential equations are automatically 
differentiable37 and can, therefore, be encoded into the forward pro-
cess of a deep-learning model, and their gradients can be computed 
in reverse optimizations for training. Overall, this approach leads 
to more robust and physically controllable outcomes14.

• Physical data, whether obtained from experiments or simula-
tions38, serve as a form of regularization, which helps to align the 
model outputs with physical truths39. In particular, for ill-posed 
inverse problems and those that require initial verification of the 
existence of the inverse mapping, such a regularization not only 
can ground the learning process in reality but can also mitigate 
the risk of obtaining non-physical solutions.

Developing deep learning models with specific physics knowledge 
can further enhance their capability and effectiveness15,40. For example, 
domain-specific insights can be incorporated into the design of deep 
generative models whose backbone is the inverse modelling of underly-
ing probability distributions12. Whether starting from exact likelihood 
estimation or not, one can approximate the underlying distributions 
in data and generate reliable samples. These models can benefit from 
existing and well-verified physics rules.

QCD physics
In this section, we provide examples of physics-driven learning in the 
context of QCD in four areas of interest: lattice QCD, hadron physics, 
neutron stars and heavy-ion collisions.

Lattice QCD
Lattice QCD (LQCD) provides a first-principle, non-perturbative 
approach to study strong interactions2. Progress over the past 50 years 
has been driven by a combined improvement of algorithms and an 
increase in computational power, executing simulations on the largest 
supercomputers. The workhorse of LQCD is the Markov Chain Monte 
Carlo algorithm, to generate large ensembles of field configurations in 
four-dimensional space-time. However, this algorithm cannot access 
the full QCD phase diagram; the low-temperature, moderate-to-
high-density region is still out of bounds owing to the sign problem: 
at nonzero baryon chemical potential, the quark determinant is com-
plex and the Monte Carlo-based importance sampling method cannot 
be used41.

ML provides a new tool to investigate and enhance LQCD simula-
tions, and indeed ML is already used to study many aspects of LQCD, 
including configuration generation and observable measurement and 
analysis42. Many applications are still exploratory and most are devel-
oped in theories that are easier to solve than QCD; nevertheless, there 
is promise and we will discuss selected examples here. An important 
aspect is the precision and accuracy of the solutions: to compete with 
or improve on well-established methods, it is necessary to demonstrate 
that ML-driven algorithms33 can deliver high-precision results with 
controllable systematic and statistical uncertainties.

Before starting an LQCD simulation, one needs to determine 
parameters in the lattice action. To minimize discretization effects, one 
can use perfect or fixed-point actions, which are classically free from 
discretization errors but, in principle, come with an infinite number of 
couplings43,44. In pioneering works, ML has been used to learn action 
parameters45 with the aim of improving lattice simulations46 and gaining 
explainable insight into lattice systems47. Generically, such networks 
had to learn gauge symmetry, or it was included through manually 
selected small Wilson loop structures. A more scalable approach to 
learning fixed-point actions has recently been emerged48,49 by using lat-
tice gauge-equivariant CNNs (L-CNNs) to determine parametrizations, 
which have been shown to be superior to the ones considered previ-
ously. L-CNNs are essential in achieving this improved performance, 
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Fig. 1 | Physics-driven designs for deep learning. In a deep neural network 
model, the weights {w} = w1, w2, …, wn connect the inputs {x} = x1, x2, …, xn and the 
outputs y with summation Σ and non-linear activation functions f(u). In a single 
layer, the equation can be written as y f x w= (Σ )i

n
i i=1 . Symmetries can be encoded 

by sharing weights {w}, and other principles can be represented by different 
activation functions f(u). Owing to its differentiable properties, physics 
equations can be explicitly utilized in the back propagation algorithm within an 
automatic differentiable framework37. Physical data provide guidance for the 
outputs from deep models when computing the loss functions.
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as Fig. 2 shows, because they provide32 a very general formulation of a 
lattice action, for example, as functions of arbitrarily sized Wilson loops, 
while maintaining exact gauge symmetry in the network architecture. 
Similar to the universal approximation theorem for neural networks, 
L-CNNs can in principle approximate any gauge-covariant function on 
the lattice, thus offering a powerful tool for capturing a wide range of 
gauge-invariant features. This generality allows L-CNNs to be adapted 
to different physical problems by tailoring the network architecture to 
specific tasks, such as action parametrization, energy minimization or 
even generative modelling of gauge field configurations.

Owing to its link with generative AI, ensemble generation has 
received most of the attention. Early applications50,51 of this approach 
used generative adversarial networks to generate field configura-
tions in a two-dimensional scalar field theory. By now, normalizing 
flow is the best developed approach and has been reviewed exten-
sively elsewhere33,52. Another way to perform ensemble generation 
is based on diffusion models, and they are of interest for a number of 
reasons: the underlying idea comes from physics18,53 and lattice field 
theorists find stochastic updates easy to understand. Indeed, the 
relation between diffusion models and stochastic quantization54 — a 
well-known technique to generate quantum field configurations from 
a stochastic process in a fictitious time dimension — has been pointed 
out recently55, and first applications to scalar and U(1) gauge field 
theories in two dimensions have been implemented55–57. Unlike the 
normalizing flow approach, diffusion models learn from configura-
tions that were previously generated with any alternative approach, 
such as hybrid Monte Carlo methods, but the trained diffusion model 
can subsequently be incorporated in the Markov Chain to increase the 
size of ensembles. Further connections of diffusion models to the path 
integral58 and renormalization group flows59 have been pointed out as 
well. Despite the computational efficiency of ensemble generation, 
exactness is particularly important if this method is to compete with 
well-established Monte Carlo-based methods. Additional accept–reject 

procedures33 and importance sampling estimates60 can both help to 
improve exactness.

Because of the prominence of the renormalization group in QCD, 
exploring it from an inverse perspective is a natural choice. In this 
machine learning context, the idea is for the inverse renormalization 
group, originally proposed for spin systems61, to learn a transformation 
that undoes a standard renormalization group transformation by using 
transposed convolutions62. If the inverse transformation is local, it can 
be applied over and over again, generating ever larger lattices that get 
closer to criticality. This idea was first applied to scalar fields in two 
dimensions62 and also to a hard-to-simulate disordered system — the 
three-dimensional Edwards–Anderson model63, which describes spin 
glasses with randomly interacting spins on a three-dimensional lattice. 
The crucial step to make this work is to design a ‘good’ renormaliza-
tion group step, which requires understanding of the physics in the 
critical regime.

An exciting area wherein machine learning and lattice field theory 
(LFT) intersect lies in their shared ability to describe systems with many 
fluctuating degrees of freedom. The two approaches share notable 
similarities that can be mutually beneficial, even though their starting 
points differ widely: QCD is a fundamental theory in which the prob-
ability distribution (or action) is dictated by symmetries and renormali-
zation conditions, whereas ML models typically learn or approximate 
distributions from data. One example in which concepts in ML and 
LFT intersect nontrivially is the development of gauge-equivariant 
networks, in which local (gauge) symmetries, which are essential in 
lattice systems32,64–66, are respected by ML architectures67,68. More-
over, ML is increasingly being used to learn order parameters and 
determine the phase structure in simulated theories69, which has been 
successfully extended to lattice gauge theories70,71. There is also grow-
ing interest in analysing deep models through the lens of (quantum) 
field theory, particularly building on the relationship between deep 
neural networks in the infinite width limit and Gaussian processes or 
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Fig. 2 | A lattice gauge-equivariant convolutional neural network (L-CNN). 
This architecture processes data defined on a lattice, representing quantum 
field theory in discretized space-time. Each layer in the L-CNN is carefully 
constructed to preserve gauge symmetry, a property crucial for ensuring 
physically consistent predictions in quantum field theory. The network first 
processes the input lattice data given by gauge links u using simple Wilson 
loops on the lattice such as plaquettes (Plaq) or Polyakov loops (Poly) to 
create objects w that transform locally. These objects are then combined into 
progressively more complex Wilson loops while maintaining the symmetry 

through specialized convolutional (L-Conv) and bilinear (L-Bilin) operations. 
Additional gauge equivariant activation functions (L-Act) or exponentiation 
layers (L-Exp) can modify the local fields in a gauge equivariant manner. Finally, 
the network generates gauge-invariant (inv.) outputs through a trace layer 
(Trace) that can be processed by standard convolutional layers to produce the 
desired physical predictions. Unlike conventional convolutional neural networks 
(CNNs), this design is robust to random and adversarial gauge transformations, 
making it essential for simulations of fundamental physics. Reprinted from 
ref. 32, CC BY 4.0.
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free fields72,73. Specifically, LFT concepts can be integrated into deep 
models by adding LFT interactions to nodes74, or LFT analyses can 
provide new perspectives, as demonstrated in the case of Gaussian 
restricted Boltzmann machines75 or via the relation to Dyson Brownian 
motion and random matrix theory76. We expect the synthesis of LFT 
insights with ML frameworks to advance both fields and to deepen the 
understanding of complex systems.

Hadron physics
Much understanding of the subatomic world is rooted in hadron phys-
ics. Recently, machine learning techniques have become useful tools to 
further this understanding as they help to understand hadron spectra, 
search for exotic hadrons and study hadron interactions.

The theoretical extraction of hadron spectra from LQCD, which is 
an inverse problem, is a challenging task because there is only a finite 
amount of LQCD data with statistical noise. Apart from the standard 
method of extracting hadron masses using long-range temporal cor-
relations, the maximum entropy method8,77, based on Bayesian infer-
ence, provides a robust framework for the extraction of hadron spectral 
functions from LQCD data using information entropy for regulariza-
tion. Recently, automatic differentiation methods (Fig. 3) based on 
maximum likelihood estimation have been developed. The spectral 
function is first represented by a neural network ansatz, then the dif-
ference between the predictions and the real observations is computed 
as a loss function ℒ, whose minimization can be back-propagated to 
optimize parameters {θ} in neural networks, as ℒ θ∂ /∂ . In the forward 
process, the physical integral is explicitly encoded as a sum to compute 
the predictions. The principles that the spectral function has to be 
continuous and positive are also explicitly incorporated into the 
flexible neural network representations35,78.

The exploration of exotic hadrons has become an exciting frontier 
in hadron physics79. Exotic states, including tetraquarks, pentaquarks 
and other multiquark states, challenge the traditional meson and 

baryon picture. Candidates of exotic hadrons are often found experi-
mentally as peaks near certain decay thresholds, and it is important 
to identify theoretically whether they correspond to bound, virtual 
or resonant poles in the complex plane. Bound poles represent stable 
systems in which particles are permanently bound, virtual poles reflect 
transient interactions that affect scattering without forming stable 
states, and resonant poles represent unstable, short-lived states that 
decay into other particles. One can detect such poles from partial wave 
amplitudes using deep neural networks80,81 by taking into account the 
general properties of the S-matrix, such as analyticity and unitarity. 
ML studies on the properties of the narrow pentaquark Pc(4312)82 and 
other exotic states83 are currently an active field or research, and neu-
ral network wavefunctions for hadrons84,85 may help to identify and 
characterize these exotic states.

Hadronic interactions have a crucial role not only in the investiga-
tion of the structure of exotic hadrons but also in the understanding of 
how atomic nuclei form and of the physics inside neutron stars3. One 
approach to study hadron interactions is the HAL QCD method86–88, 
which has been proposed as a way to build effective potentials between 
hadrons from their spatial correlations (equal-time Nambu–Bethe–
Salpeter amplitude) measured on the lattice. This approach could 
bridge the gap between LQCD theory and experimental data89,90. Deriv-
ing the potential from spatial correlations in LQCD is also an inverse 
problem with which physics-driven learning can help: symmetric 
neural networks, trained on LQCD data with constraints of asymptotic 
behaviours, can model general non-local potentials in the Schrödinger 
equation91,92.

Neutron stars
One of the unsolved questions in modern physics is the state of baryonic 
matter in highly compressed environments, such as those achieved in 
heavy-ion collisions and occurring in neutron stars93 with their high 
densities. The typical observed values of neutron star masses range 
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reconstruct hadron spectral functions from 
observations78. Neural networks have outputs 
as a list representation of spectrum ρ(ωi). The 
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between real observations and predicted ones is used 
to compute the loss function ℒ ~
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for optimizing the weights {θ} of neural networks 
with gradient θ∂ /∂ℒ . The activation functions of the 
neural network can be set, for example, as Softplus, 
to meet the positive definition principle. Adapted 
from ref. 78, CC BY 4.0.

http://www.nature.com/natrevphys
https://creativecommons.org/licenses/by/4.0/


Nature Reviews Physics

Perspective

from 1.4 to 2 times the solar mass with radii 11–13 km, corresponding to 
a maximum density of up to 1012 kg cm−3. Identifying the internal struc-
tures of such neutron stars from theoretical predictions and experi-
mental observations is crucial to unravel the nature of high-density 
QCD3,9. Because General Relativity (GR) and QCD are well-established 
theories, the bulk properties of the neutron stars should be uniquely 
solvable as a well-posed problem (see Fig. 4). Nevertheless, knowing the 
theories that lead to the correct answer is different from knowing 
the answer itself. In the case of neutron stars, a relation between the 
pressure and the energy density, called the equation of state, is essen-
tial to the hydrostatic equations that describe the balance between 
the inward gravitational force and the outward pressure derivative. 
Although Monte Carlo simulations of QCD on the lattice can effectively 
explore EoSs at finite temperatures and zero baryon densities, the sign 
problem introduces large uncertainties as baryon densities increase, 
preventing their direct application to neutron star EoS.

For a given QCD EoS, one can deal with equations in GR to uniquely 
fix the distribution of the masses and the radii of the neutron stars, 
ensuring that the mass–radius relation in principle draws a single 
curve. Conversely, one can reconstruct the QCD EoS from the experi-
mentally observed mass–radius relation if it is well constrained, as 
shown in Fig. 4. However, both the quality and quantity of observed 
data is insufficient, making this typical inverse problem ill-posed. 
To nevertheless facilitate a solution, one can estimate the most prob-
able candidate among all EoS possibilities. A naive strategy along 
these lines would be the following: generate random EoSs with an 
assumed prior distribution, weigh the likelihood to get observations 

from these EoSs, and subsequently quantify the posterior distribution94. 
These procedures are systematized in a form of Bayesian analysis95,96.

Alternatively, deep neural networks can be trained in a supervised 
manner with inference97, and there are proposals to use a hybrid of 
Bayesian inference and neural networks98,99 to reduce EoSs. In addition, 
to embed physics priors more explicitly, neural network-represented 
EoSs have been implemented in the automatic differentiation 
framework100,101, into which the hydrostatic equations are coded. Other 
physics-driven ideas to address this inverse problem include physical 
data augmentation102 and the redesign of activation functions at the 
output layer of neural network-represented EoSs to satisfy the principle 
of causality and microscopic stability condition34.

Heavy-ion collisions
Relativistic heavy-ion collisions provide the unique chance to create 
and explore the extreme state of QCD matter in terrestrial laborato-
ries, such as the Relativistic Heavy-Ion Collider and the Large Hadron 
Collider. In HICs, charged ions are accelerated to nearly the speed of 
light, collide and produce thousands of hadrons, photons and leptons, 
which are tracked by the detectors. Analyses of the final-state particles 
indicate that a new state of matter — the quark–gluon plasma — may be 
formed in the early stage of the collision. The formation of the QGP is an 
important test of the quark model and QCD theory because it happens 
in the colour deconfinement phase, during which quarks and gluons 
can travel distances that greatly exceed the size of hadrons. Soon after 
their formation in HICs, QGP droplets drastically expand — driven by 
the pressure gradient — cool down, and form hadrons. An inevitable 
challenge in HICs is inversely revealing the underlying QCD physics 
that determines the highly complex and fast-evolving collision dynam-
ics. Owing to the interdependent influence on different experimental 
observables, state-of-the-art theoretical simulations for the collision 
dynamics involve many physical uncertainties103, including fluctuations 
of the initial state and bulk and transport properties of the QCD matter. 
Deep learning techniques, assisted by physics prior, have proven useful 
in addressing such inverse problems in HICs.

A central task of HICs is to determine the QCD EoS and the relevant 
phase structure. Recently, deep learning models, specifically CNNs, 
have been used to directly map the final-state particle spectra in HICs 
back to the bulk properties of QCD104. As shown in Fig. 5, this study 
explored how important features of the QCD EoS, such as the order 
of the QCD phase transitions, can persist through the complex evolu-
tion of the system during the collision. Despite the intricate nature 
of relativistic hydrodynamic processes, CNNs were able to reliably 
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Fig. 4 | The ill-posed inverse problem from 
observational data to theory in the context of 
neutron star physics. At the theoretical level, mapping 
between the equation of state (EoS) and the mass–
radius (M–R) relation is well-posed, but the inferred 
probable EoS has a probability distribution reflecting 
the quality and quantity of data. Left panel shows the 
EoS, which defines the relationship between pressure 
(P) and energy density (ϵ) inside neutron stars. The right 
panel represents the corresponding mass–radius data. 
In the middle, a neural network can be used to learn the 
inverse mapping from the M–R data back to the EoS97 or 
represent the forward process for inverse inference100.

Glossary

Artificial neural networks
(ANNs). Models inspired by the structure 
and function of biological neural 
networks in human brains.

Convolutional neural 
networks
(CNNs). Excel with image, speech and 
audio inputs; they consist of three main 
types of layers: convolutional, pooling 
and fully connected layers.

Deep neural networks
Complex ANNs with multiple layers, 
including input, output and at least one 
hidden layer.

Recurrent neural networks
Bi-directional ANNs, unlike the 
uni-directional feedforward network; 
they allow outputs from nodes to 
influence subsequent inputs to the 
same nodes.
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decode this information from the final-state spectra of pions, even 
when accounting for uncertainties such as initial state fluctuations and 
shear viscosity effects. This way of analysing inverse HICs was further 
developed to tackle non-equilibrium phase transition scenarios and 
afterburner hadronic cascades105–107. It also allowed the inclusion of 
experimental detector effects by taking the hits and tracks of particles 
from the detector in the form of point cloud — defined as an unordered 
list of points with their attributes such as momentum and charge — as 
direct input108.

The extraction of the QCD EoS has also benefited from physics-
driven Bayesian analyses, in which knowledge is encoded in the priors 
and the model emulator. Inference of the temperature-dependent 
speed of sound from high-energy HICs109 provided the first experi-
mental evidence of a smooth transition between the QGP and the had-
ronic phase at zero baryon density. Bayesian analysis was successfully 
applied to extract the density-dependent QCD EoS110 and bulk and shear 
viscosities111–113. It is interesting to note that there is good consistency 
between such data-driven inference of viscosities and those computed 
from a quasi-particle model with temperature-dependent masses, 
extracted from a physics-driven deep learning method to match the 
EoSs calculated with LQCD114.

The initial state of HICs is sensitive to lots of interesting phys-
ics, including the nuclear structure and the saturation of the gluon 
distribution at small Bjorken-x. However, not all information of the 
initial state can be reconstructed based on final-state experimental 
observables because entropy is produced during the QGP evolution, 
which implies the loss of information. Nevertheless, recovering even 
part of the initial state information can still help to understand nuclear 
matter properties or collision patterns within the dynamic evolution. 
For example, attempts using Bayesian inference have been made to 
probe the nuclear structure115 or neutron skin116. One essential initial 
state parameter, although a simple one, is the impact parameter. It gov-
erns the event geometry and volume estimation. Unlike early attempts 
using ML algorithms such as multilayer perceptrons or support vec-
tor machines to determine the impact parameter from conventional 

observables117–119, a recent PointNet-based development24,120 took 
advantage of the inherent point cloud structure of the detector out-
put in HICs. Such an advance allows a real-time, end-to-end, event-wise 
impact parameter determination for the next generation of low-energy 
HICs to be performed at the compressed baryonic matter detector of 
the Facility for Antiproton and Ion Research.

Conclusions and outlook
Exploring QCD physics as inverse problems presents numerous chal-
lenges that drive innovative approaches to decode complex phenom-
ena. Machine learning techniques, especially Bayesian inference and 
deep learning, have substantially advanced our ability to tackle these 
problems. Physics-driven designs ensure that solutions align with physi-
cal realities, which enhances precision and relevance. Embedding sym-
metries, physics principles and physical equations into deep models 
opens new avenues for reliable deep learning. Physics-driven learning 
has reformed first-principle calculations of lattice QCD and influenced 
investigations in hadron physics, neutron stars and heavy-ion colli-
sions. Although this Perspective does not discuss advancements in 
holographic QCD, jet physics and electron ion collider owing to space 
constraints121, it is worth noting here that anti-de Sitter space/conformal 
field theory correspondence has intrinsic connections with deep 
learning122. This relationship offers new ways to develop holographic 
theories using neural networks within physics-driven frameworks123,124.

Several challenges with applying physics-driven learning to solve 
inverse problems remain:

• Demanding high-quality data: Solving inverse problems by link-
ing experimental data to physical theories is particularly diffi-
cult because of the vast, unlabelled data generated by large-scale 
infrastructures (for example, collider detectors, astronomical 
observatories and high-performance computing simulations). 
Extracting valuable information from these data is non-trivial, 
especially owing to their noisy or incomplete nature. Moreover, 
the inherent difficulties in obtaining reliable observations dur-
ing the measurement stages, which can introduce errors that 
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Fig. 5 | Quantum chromodynamics (QCD) transition binary classification 
using convolutional neural networks (CNNs) with final particle spectra from 
heavy-ion collisions as input. a, The system starts with the creation of a quark–
gluon plasma (QGP) in the collision. The hydrodynamic evolution over time (τ) of 
the QGP encodes different types of QCD phase transitions, such as crossover and 
first-order transitions. b, After the QGP cools down, it transitions into a hadronic 

phase. The final-state particles, including various types of hadrons, are detected 
experimentally, providing the observable data. c, CNNs are used to perform 
binary classification by identifying signals of the QCD phase transition from the 
hadron spectra. The spectra are preprocessed into image-like data, which makes 
CNNs a suitable tool to extract features and to classify the observations as either 
a crossover or a first-order phase transition.
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propagate throughout the analysis, complicate the evaluation of 
uncertainties in these models.

• Reliability of physics models: Physics-driven learning cannot 
exceed the underlying physical priors they are built on. These 
priors are often based on approximations or simplified assump-
tions about the real world, and discrepancies between the model 
and actual physical phenomena will lead to biases.

• Reusability of physics-driven designs: Although physics-driven 
learning is often tailored to specific problems, one challenge is 
the ability to generalize and reuse these models across different 
domains. A design that offers some generality while retaining the 
advantages provided by following specific physical principles 
requires further efforts.

To address these challenges, research needs to focus on gathering 
high-quality data from experiments, on enhancing the understanding 
of physics through observations, and on incorporating more gen-
eral physics-driven designs into deep learning models. Overall, this 
approach can create a positive feedback loop wherein the develop-
ment of physics-driven learning methods and the solution of inverse 
problems reinforce each other, leading to continuous advancements 
in both fields. Despite these challenges, there are many future oppor-
tunities. Physics-driven learning can reduce computational costs and 
data requirements by narrowing the parameter space, which makes 
it a powerful tool for advancing applications. The integration of ML 
with physics has the potential to revolutionize the understanding of 
complex systems125 beyond QCD, including applications in climate sci-
ence to better predict weather patterns126, in biophysics to understand 
active matter behaviours127, and in astrophysics to understand cosmic 
phenomena128.

Published online: xx xx xxxx
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