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The sign problem of QCD prevents standard lattice simulations to de-
termine the phase diagram of strong interactions with a finite chemical
potential directly. Complex Langevin simulations provide an alternative
method to sample path integrals with complex weights. We report on our
ongoing project to determine the phase diagram of QCD in the limit of
heavy quarks (HDQCD) using Complex Langevin simulations.
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1. Introduction

The phase diagram of strong interactions is, despite various efforts, still
largely unknown. Several states of matter are expected to be present, which
are relevant to many phenomena such as the quark–gluon plasma, neutron
stars and the evolution of the universe after the Big Bang. A possible sce-
nario of the QCD phase diagram is sketched in Fig. 1. A theoretical pre-

∗ Presented by B. Jäger at “Excited QCD 2015”, Tatranská Lomnica, Slovakia,
March 8–14, 2015.

(405)



406 G. Aarts et al.

Fig. 1. A scenario of the QCD phase diagram.

diction can guide heavy-ion collision experiments, which might lead to the
discovery of different states of matter. However, the sign problem leads to
a path integral with a complex weight and thereby prevents direct deter-
mination using standard lattice simulation based on importance sampling.
Complex Langevin simulations, based on stochastic quantisation, might pro-
vide a viable solution to sample path integrals with complex weights [1–16].
In the following, we will present an update on our project to determine the
phase diagram of heavy dense QCD (HDQCD), an approximation of QCD
in the limit of heavy quarks, from first principles.

2. Complex Langevin simulation

Here, we summarise the basics of the Complex Langevin method, more
details can be found in [4–7]. In analogy to the Hybrid Monte Carlo method,
we introduce the so-called Langevin time t, which labels the evolution of ob-
servables and degrees of freedom in this stochastic quantisation. Integrating
out the fermion fields leads to a path integral with a complex weight

Z =

∫
DU |detD| eiΘ e−SYM(U) , (1)

if the chemical potential is real and non-zero, since

[ detD(µ)]∗ = detD(−µ∗) . (2)

To incorporate the complex nature of the path integral in our simulations,
we extend the gauge group from SU(3) to SL(3,C). For small step-sizes ε,
the gauge links Uµx are evolved by

Uµx(t+ ε) = R(t)Uµx(t) , (3)
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where the update matrix R(t) can be written in term of the Gell-Mann
matrices λ and stochastic Gaussian white noise η

R(t) = exp
[
iλ
(
−εDUS +

√
ε η
)]
, (4)

where the action includes the logarithm of the determinant. Here, we study
QCD in the limit of heavy quarks, for which the fermion determinant can
be written in terms of the (conjugate) Polyakov loops P~x and P−1~x

detD(µ) =
∏
~x

det
(
1 + h eµ/T P~x

)2
det
(
1 + h e−µ/T P−1~x

)2
, (5)

with h = (2κ)Nτ . For the gluonic part of the action, we use the full Wilson
gauge action. To avoid runaway trajectories into the non-compact exten-
sion of SU(3), we apply adaptive step-size scaling [5] and adaptive gauge
cooling [6,7]. Too many large excursions into the imaginary directions have
been identified to cause the Complex Langevin method to fail by converging
to incorrect results. It can be shown that if the action is holomorphic and
suitably confined in the complex of extension of SU(3), Complex Langevin
simulations are expected to converge to the correct results [9, 10]. The log-
arithm of the determinant causes poles in the derivative of the action, and
thereby prevents the aforementioned proof to be applied. Nevertheless, re-
cent work [11–13] has shown that especially for large quark masses this
ambiguity will not affect Complex Langevin dynamics. We still monitor the
distributions of the observables and the so-called unitnorm,

unitnorm = Tr
(
UU † − I

)2
, (6)

to avoid runaway trajectories in our simulations.

3. Numerical setup and results

We study the phase diagram of heavy dense QCD for fixed lattice spac-
ing and the simulation parameters are given in Table I. For HDQCD, the

TABLE I

Summary of simulation parameters.

β = 5.8 Nf = 2 V = 83 ×Nτ
κ = 0.04 µ = 0.0–3.2 Nτ = 2–32
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expected critical chemical potential µc (in lattice units) is related to the bare
quark mass by

µc ∼ mq ≡ − ln(2κ) = 2.53 . (7)

We have improved our previous results [14] by considering larger Langevin
trajectories, with a maximum Langevin time of 500. The interval up to 100
Langevin time has been discarded to remove thermalisation effects. Using
adaptive step-sizes ε, we find typical values of ε ∼ 10−4. We have deter-
mined the observables every δt = 10−2, which corresponds to approximately
100 sweeps in between measurements. Including auto-correlation, we have
at least 2000 independent configurations for each simulation. Figure 2 shows

Fig. 2. The Polyakov loop as function of T and µ.

the expectation value of the Polyakov loop as a function of temperature T
and the chemical potential µ. The temperature has been converted to physi-
cal units using the lattice spacing of a ∼ 0.15 fm, which has been determined
using the Wilson flow [15, 17]. Each black point in Fig. 2 is the result of a
dedicated simulation. The Polyakov loop shows a clear signal for the decon-
finement transition and a transition to higher densities. At high densities,
µ/mq ≥ 1, the Polyakov loop drops again. This behaviour is an expected
lattice artefact, at which every lattice site has been filled with the maximum
number of fermions allowed by the Pauli principle. The coloured surface
is a cubic interpolation to the individual simulations. The resolution in
temperature is quite limited in the fixed lattice spacing approach, since the
temporal extend is by construction an integer. Figure 3 shows the equivalent
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plot for the susceptibility of the Polyakov loop, which directly maps out the
boundary of the phase diagram of HDQCD. The deconfinement transition
appears to be quite broad, which is caused by our limited resolution for large

Fig. 3. The Polyakov loop susceptibility as function of T and µ.

temperatures and the subsequent interpolation. We find a clearer signal for
the transition to higher densities, which almost disappears on the plotted
scale, using the susceptibility of the fermion density

n =
1

NτN3
s

∂ lnZ

∂µ
. (8)

4. Conclusions and outlook

Complex Langevin simulations provide a viable method to determine
the phase diagram of heavy dense QCD from first principles. Further work
includes the identification of the order of the transitions by varying the
simulation spatial volume and studying the Binder cumulant. Simulation at
different lattice spacing will improve the resolution in the temporal direction
and allow to asses the size of lattice artefacts. The ultimate goal is to
repeat these simulation for fully dynamical QCD [15,16] and study the phase
diagram of QCD itself. In perspective of this goal, the work here can be
considered as blueprint for further studies and as proof of principle.



410 G. Aarts et al.

We are grateful for the computing resources made available by HPC
Wales and by STFC through DiRAC computing facilities. This work is
supported by STFC, the Royal Society, the Wolfson Foundation and the
Leverhulme Trust. F.A. is grateful for the support through the Brazilian
government program “Science without Borders” under scholarship number
Bex 9463/13-5. B.J. acknowledges financial support from the College of
Science Research Fund at Swansea University.

REFERENCES

[1] G. Parisi, Phys. Lett. B 131, 393 (1983).
[2] J.R. Klauder, Acta Phys. Austriaca Suppl. 25, 251 (1983).
[3] J.R. Klauder, Phys. Rev. A 29, 2036 (1984).
[4] G. Aarts, I.-O. Stamatescu, J. High Energy Phys. 0809, 018 (2008).
[5] G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Phys. Lett. B 687, 154

(2010).
[6] E. Seiler, D. Sexty, I.-O. Stamatescu, Phys. Lett. B 723, 213 (2013).
[7] G. Aarts et al., Eur. Phys. J. A 49, 89 (2013).
[8] L. Bongiovanni et al., PoS LATTICE 2013, 449 (2013).
[9] G. Aarts, E. Seiler, I.-O. Stamatescu, Phys. Rev. D 81, 054508 (2010).
[10] G. Aarts, F.A. James, E. Seiler, I.-O. Stamatescu, Eur. Phys. J. C 71, 1756

(2011).
[11] A. Mollgaard, K. Splittorff, Phys. Rev. D 88, 116007 (2013).
[12] K. Splittorff, Phys. Rev. D 91, 034507 (2015).
[13] J. Nishimura, S. Shimasaki, arXiv:1504.08359 [hep-lat].
[14] G. Aarts et al., PoS LATTICE 2014, 200 (2014).
[15] D. Sexty, Phys. Lett. B 729, 108 (2014).
[16] G. Aarts, E. Seiler, D. Sexty, I.-O. Stamatescu, arXiv:1503.08813

[hep-lat].
[17] S. Borsanyi et al., J. High Energy Phys. 1209, 010 (2012).

http://dx.doi.org/10.1016/0370-2693(83)90525-7
http://dx.doi.org/10.1007/978-3-7091-7651-1_8
http://dx.doi.org/10.1103/PhysRevA.29.2036
http://dx.doi.org/10.1088/1126-6708/2008/09/018
http://dx.doi.org/10.1016/j.physletb.2010.03.012
http://dx.doi.org/10.1016/j.physletb.2010.03.012
http://dx.doi.org/10.1016/j.physletb.2013.04.062
http://dx.doi.org/10.1140/epja/i2013-13089-4
http://dx.doi.org/10.1103/PhysRevD.81.054508
http://dx.doi.org/10.1140/epjc/s10052-011-1756-5
http://dx.doi.org/10.1140/epjc/s10052-011-1756-5
http://dx.doi.org/10.1103/PhysRevD.88.116007
http://dx.doi.org/10.1103/PhysRevD.91.034507
http://dx.doi.org/10.1016/j.physletb.2014.01.019
http://dx.doi.org/10.1007/JHEP09(2012)010

	1 Introduction
	2 Complex Langevin simulation
	3 Numerical setup and results
	4 Conclusions and outlook

