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OUTLINE

sign problem at finite chemical potential

a revived approach: stochastic quantization

three QCD inspired models

relativistic Bose gas

the Silver Blaze problem is not a problem
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QCD AT FINITE µ
SIGN PROBLEM

fermion determinant is complex

[det M(µ)]∗ = det M(−µ)

avoid fluctuating sign?

simulations at µ = 0 or with | det M(µ)|

but ...
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QCD AT FINITE µ
SIGN PROBLEM

important configurations differ in an essential way from
those obtained at µ = 0 or with | det M |
cancelation between configurations with ‘positive’ and
‘negative’ weight

how to pick the dominant configurations in the path
integral?

ECT*, March 2009 – p.4



QCD AT FINITE µ
SIGN PROBLEM

important configurations differ in an essential way from
those obtained at µ = 0 or with | det M |
cancelation between configurations with ‘positive’ and
‘negative’ weight

how to pick the dominant configurations in the path
integral?

radically different approach:

complexifying all degrees of freedom: SU(3) → SL(3,C)

stochastic quantization and complex Langevin dynamics
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based on

with I.O.S.: stochastic quantization at finite chemical
potential, 0807.1597 [hep-lat], JHEP

can stochastic quantization evade the sign problem? –
the relativistic Bose gas at finite chemical potential
0810.2089 [hep-lat], PRL

complex Langevin dynamics at finite chemical
potential: mean field analysis in the relativistic Bose
gas, 0902.4686 [hep-lat]

more reading

with I.O.S.: Lattice proceedings, 0809.5527 [hep-lat]

SEWM proceedings: 0811.1850 [hep-ph]
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

field theory Parisi & Wu ’81

path integral Z =
∫

Dφ e−S

Langevin dynamics in “fifth” time direction

∂φ(x, θ)

∂θ
= − δS[φ]

δφ(x, θ)
+ η(x, θ)

Gaussian noise

〈η(x, θ)〉 = 0 〈η(x, θ)η(x′, θ′)〉 = 2δ(x − x′)δ(θ − θ′)

equilibrium distribution P [φ] ∼ e−S
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

force ∂S/∂φ complex: Parisi, Klauder ’85

complexify Langevin dynamics

example: real scalar field φ → φR + iφI

Langevin eqs

∂φR

∂θ
= −Re

δS

δφ

∣

∣

∣

φ→φR+iφI

+ η

∂φI

∂θ
= −Im

δS

δφ

∣

∣

∣

φ→φR+iφI

observables: analytic extension

〈O(φ)〉 → 〈O(φR + iφI)〉
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STOCHASTIC QUANTIZATION
LANGEVIN DYNAMICS

associated Fokker-Planck equation

∂P [φ, θ]

∂θ
=

∫

ddx
δ

δφ(x, θ)

(

δ

δφ(x, θ)
+

δS[φ]

δφ(x, θ)

)

P [φ, θ]

stationary solution: P [φ] ∼ e−S

real action: formal proofs of convergence

P [φ, θ] =
e−S[φ]

Z
+
∑

λ>0

e−λθPλ[φ]

complex action: theoretical status less clear cut
but all other methods fail!
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FINITE CHEMICAL POTENTIAL
TOWARDS QCD

consider three models with a partition function

Z =

∫

DUe−SB det M det M(µ) = [det M(−µ)]∗

QCD with static quarks

SU(3) one link model

U(1) one link model

observables:

(conjugate) Polyakov loops

density

phase of determinant
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THREE MODELS
I: QCD WITH STATIC QUARKS

Z =

∫

DUe−SB det M

bosonic action: standard SU(3) Wilson action

SB = −β
∑

P

(

1

6

[

Tr UP + Tr U−1
P

]

− 1

)

determinant det M for Wilson fermions

fermion matrix:

M = 1−κ

3
∑

i=1

space−κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)

ECT*, March 2009 – p.8



THREE MODELS
I: QCD WITH STATIC QUARKS

hopping expansion:

det M ≈ det
[

1 − κ
(

eµΓ+4Ux,4T4 + e−µΓ−4U
−1
x,4T−4

)]

=
∏

x

det
(

1 + heµ/TPx

)2
det
(

1 + he−µ/TP−1
x

)2

with h = (2κ)Nτ and (conjugate) Polyakov loops P(−1)
x

static quarks propagate in temporal direction only:
Polyakov loops

full gauge dynamics included
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THREE MODELS
II: SU(3) ONE LINK MODEL

Z =

∫

dUe−SB det M link U ∈ SU(3)

SB = −β

6

(

Tr U + Tr U−1
)

determinant:

det M = det
[

1 + κ
(

eµσ+U + e−µσ−U−1
)]

= det (1 + κeµU) det
(

1 + κe−µU−1
)

with σ± = (11 ± σ3)/2

det in colour space remaining

exact evaluation by integrating over the Haar measure
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THREE MODELS
III: U(1) ONE LINK MODEL

U(1) model: link U = eix with −π < x ≤ π

SB = −β

2

(

U + U−1
)

= −β cos x

determinant:

det M = 1 +
1

2
κ
[

eµU + e−µU−1
]

= 1 + κ cos(x − iµ)

partition function:

Z =

∫ π

−π

dx

2π
eβ cos x [1 + κ cos(x − iµ)]

all observables can be computed analytically
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COMPLEX LANGEVIN DYNAMICS

Langevin update:

U(θ + ε) = R(θ) U(θ) R = exp
[

iλa

(

εKa +
√

εηa

)]

drift term

Ka = −DaSeff Seff = SB+SF SF = − ln det M

noise
〈ηa〉 = 0 〈ηaηb〉 = 2δab

real action: ⇒ K† = K ⇔ U ∈ SU(3)

complex action: ⇒ K† 6= K ⇔ U ∈ SL(3, C)

ECT*, March 2009 – p.9



(CONJUGATE) POLYAKOV LOOPS

U(1) ONE LINK MODEL
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data points: complex Langevin
stepsize ε = 5 × 10−5, 5 × 107 time steps

lines: exact results

excellent agreement for all µ
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(CONJUGATE) POLYAKOV LOOPS

SU(3) ONE LINK MODEL
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lines: exact results

excellent agreement for all µ
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(CONJUGATE) POLYAKOV LOOPS

SU(3) ONE LINK MODEL

scatter plot of P during Langevin evolution
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(CONJUGATE) POLYAKOV LOOPS

QCD WITH STATIC QUARKS

first results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3
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DENSITY
U(1) ONE LINK MODEL SU(3) ONE LINK MODEL
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excellent agreement for all µ
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DENSITY
QCD WITH STATIC QUARKS
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first results on 44 lattice at β = 5.6, κ = 0.12, Nf = 3

low-density phase ⇒ high-density phase
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SU(3) → SL(3,C)
QCD WITH STATIC QUARKS

complex Langevin dynamics: no longer in SU(3)

instead U ∈ SL(3,C)

in terms of gauge potentials U = eiλaAa/2

Aa is now complex

how far from SU(3)?

consider

1

N
Tr U †U











= 1 if U ∈ SU(N )

≥ 1 if U ∈ SL(N ,C)
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SU(3) → SL(3,C)
QCD WITH STATIC QUARKS

1

3
Tr U †U ≥ 1 = 1 if U ∈ SU(3)
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COMPLEXIFICATION OF PHASE SPACE
WHY DOES IT WORK?

most approaches start from µ = 0 or | det M(µ)|

complex Langevin dynamics radically different

⇒ complexification of degrees of freedom

visualization in U(1) model

understanding in terms of classical fixed points
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CLASSICAL FLOW
U(1) ONE LINK MODEL

link U = eix complexification x → z = x + iy

Langevin dynamics:

ẋ = Kx + η ẏ = Ky

classical forces:

Kx = −Re
∂S

∂x

∣

∣

∣

x→z
Ky = −Im

∂S

∂x

∣

∣

∣

x→z

classical fixed points: Kx = Ky = 0
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CLASSICAL FLOW
U(1) ONE LINK MODEL

flow diagrams and Langevin evolution
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black dots: classical fixed points

µ = 0: dynamics only in x direction

µ > 0: spread in y direction
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CLASSICAL FLOW
U(1) ONE LINK MODEL
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PHASE TRANSITIONS AND THE SILVER BLAZE

intruiging questions:

how severe is the sign problem?

thermodynamic limit?

phase transitions?

Silver Blaze problem? Cohen ’03

. . .

study in a model with a phase diagram with similar features
as QCD at low temperature

⇒ relativistic Bose gas at nonzero µ or scalar O(2) model
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RELATIVISTIC BOSE GAS AT NONZERO µ
PHASE TRANSITIONS AND THE SILVER BLAZE

continuum action

S =

∫

d4x
[

|∂νφ|2 + (m2 − µ2)|φ|2

+µ (φ∗∂4φ − ∂4φ
∗φ) + λ|φ|4

]

complex scalar field, d = 4, m2 > 0

S∗(µ) = S(−µ) as in QCD
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RELATIVISTIC BOSE GAS AT NONZERO µ
PHASE TRANSITIONS AND THE SILVER BLAZE

lattice action

S =
∑

x

[

(

2d + m2
)

φ∗
xφx + λ (φ∗

xφx)2

−
4
∑

ν=1

(

φ∗
xe

−µδν,4φx+ν̂ + φ∗
x+ν̂e

µδν,4φx

)

]

complex scalar field, d = 4, m2 > 0

S∗(µ) = S(−µ) as in QCD
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RELATIVISTIC BOSE GAS AT NONZERO µ
PHASE TRANSITIONS AND THE SILVER BLAZE

tree level potential in the continuum

V (φ) = (m2 − µ2)|φ|2 + λ|φ|4

condensation when µ2 > m2, SSB

Silver
Blaze
problem <φ> = 0

T

µ

<φ> = 0
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RELATIVISTIC BOSE GAS AT NONZERO µ
COMPLEX LANGEVIN

write φ = (φ1 + iφ2)/
√

2 ⇒ φa (a = 1, 2)

complexification φa → φR
a + iφI

a

complex Langevin equations

∂φR
a

∂θ
= −Re

δS

δφa

∣

∣

∣

φa→φR
a +iφI

a

+ ηa

∂φI
a

∂θ
= −Im

δS

δφa

∣

∣

∣

φa→φR
a +iφI

straightforward to solve numerically, m = λ = 1

lattices of size N4, with N = 4, 6, 8, 10

no instabilities etc ECT*, March 2009 – p.18



RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

field modulus squared |φ|2 → 1
2

(

φR
a

2 − φI
a
2
)

+ iφR
a φI

a
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

field modulus squared |φ|2 → 1
2

(
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

density 〈n〉 = (1/Ω)∂ ln Z/∂µ
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RELATIVISTIC BOSE GAS
COMPLEX LANGEVIN

density 〈n〉 = (1/Ω)∂ ln Z/∂µ
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SILVER BLAZE AND THE SIGN PROBLEM
RELATIVISTIC BOSE GAS

Silver Blaze and sign problems are intimately related

complex action
e−S = |e−S |eiϕ

phase quenched theory

Zpq =

∫

Dφ|e−S |

different physics

QCD: phase quenched = finite isospin chemical potential

different onset: mN/3 versus mπ/2
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SILVER BLAZE AND THE SIGN PROBLEM
PHASE QUENCHED

phase quenched theory in this case:

real action

chemical potential appears only in the mass parameter
(in continuum notation)

V = (m2 − µ2)|φ|2 + λ|φ|4

dynamics of symmetry breaking, no Silver Blaze
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SILVER BLAZE AND THE SIGN PROBLEM
COMPLEX VS PHASE QUENCHED

density
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phase eiϕ = e−S/|e−S | does precisely what is expected
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HOW SEVERE IS THE SIGN PROBLEM?
AVERAGE PHASE FACTOR

complex action e−S = |e−S |eiϕ

full and phase quenched partition functions

Zfull =

∫

Dφ e−S Zpq =

∫

Dφ|e−S |

average phase factor in phase quenched theory

〈eiϕ〉pq =
Zfull

Zpq
= e−Ω∆f → 0 as Ω → ∞

exponentially hard in thermodynamic limit
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HOW SEVERE IS THE SIGN PROBLEM?
AVERAGE PHASE FACTOR
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HOW SEVERE IS THE SIGN PROBLEM?
AVERAGE PHASE FACTOR

phase factor behaves exactly as expected

for larger µ: phase factor → 0 on all volumes

in the condensed phase: phase factor = 0

at small µ, sign problem gets exponentially worse with
increasing volume

yet, no problem in practice
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RELATIVISTIC BOSE GAS
ANALYTICAL INSIGHT

free Langevin dynamics

real Fokker-Planck distribution

include interactions with mean field approximation

see 0902.4686 [hep-lat] for more details
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RELATIVISTIC BOSE GAS
FREE LANGEVIN DYNAMICS IN MOMENTUM SPACE

∂

∂θ
φR

a,p(θ) = KR
a,p(θ) + ηa,p(θ)

∂

∂θ
φI

a,p(θ) = KI
a,p(θ)

KR
a,p = −Apφ

R
a,p + iBpεabφ

I
b,p

KI
a,p = −Apφ

I
a,p − iBpεabφ

R
b,p

Ap = m2 + 4
3
∑

i=1

sin2 pi

2
+ 2 (1 − cosh µ cos p4)

Bp = 2 sinh µ sin p4
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RELATIVISTIC BOSE GAS
FREE LANGEVIN DYNAMICS

solution:

φR
a (θ, p) = e−Apθ

[

cos(Bpθ)φ
R
a (0, p) + i sin(Bpθ)εabφ

I
b(0, p)

]

+

∫ θ

0
ds e−Ap(θ−s) cos[Bp(θ − s)]ηa(s, p)

φI
a(θ, p) = e−Apθ

[

cos(Bpθ)φ
I
a(0, p) − i sin(Bpθ)εabφ

R
b (0, p)

]

−i

∫ θ

0
ds e−Ap(θ−s) sin[Bp(θ − s)]εabηb(s, p)

convergence provided Ap > 0 ⇒ 4 sinh2 µ
2 < m2

standard (in)stability for free Bose gas
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RELATIVISTIC BOSE GAS
FREE LANGEVIN DYNAMICS

convergence of two-point functions (provided Ap > 0)

lim
θ→∞

〈φR
a,−p(θ)φ

R
b,p′(θ)〉 = δabδpp′

1

2Ap

2A2
p + B2

p

A2
p + B2

p

lim
θ→∞

〈φI
a,−p(θ)φ

I
b,p′(θ)〉 = δabδpp′

1

2Ap

B2
p

A2
p + B2

p

lim
θ→∞

〈φR
a,−p(θ)φ

I
b,p′(θ)〉 = εabδpp′

i

2

Bp

A2
p + B2

p

structure agrees with symmetry of Langevin dynamics

observables constructed with these two-point functions
agree with standard expressions
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RELATIVISTIC BOSE GAS
FREE LANGEVIN DYNAMICS

discretized Langevin equations

φ(n + 1) = [1 + εM ]φ(n) +
√

εη(n)

are stable provided that |1 + εM | < 1

in this theory: Ap − ε
2

(

A2
p + B2

p

)

> 0

constraint from high momentum modes

ε <
2

4d + m2 + 2(cosh µ − 1)

µ < m: modest bound on ε

µ � m: eventually ε < e−µ (however, in region where
lattice artefacts are severe)

ECT*, March 2009 – p.28



FOKKER-PLANCK EQUATIONS
REAL AND COMPLEX DISTRIBUTIONS

complex distribution

〈O[φ, θ]〉η =

∫

Dφ P [φ, θ]O[φ]

satisfies the Fokker-Planck equation

∂P [φ, θ]

∂θ
=
∑

x

δ

δφa,x(θ)

(

δ

δφa,x(θ)
+

δS[φ]

δφa,x(θ)

)

P [φ, θ]

stationary solution P [φ] ∼ e−S[φ]

not appropriate for the real Langevin process
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FOKKER-PLANCK EQUATIONS
REAL AND COMPLEX DISTRIBUTIONS

real distribution

〈O[φ, θ]〉η =

∫

DφRDφI ρ[φR, φI, θ]O[φR + iφI]

satisfies the extended Fokker-Planck equation

∂ρ[φR, φI, θ]

∂θ
=
∑

x

[

δ

δφR
a,x(θ)

(

δ

δφR
a,x(θ)

− KR
a,x(θ)

)

− δ

δφI
a,x(θ)

KI
a,x(θ)

]

ρ[φR, φI, θ]

stationary solutions not known in general!
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FOKKER-PLANCK EQUATION
REAL DISTRIBUTION

look for stationary solution ignoring interactions

∑

p

[

δ

δφR
a,p

δ

δφR
a,−p

+
(

Apφ
R
a,p − iBpεabφ

I
b,p

) δ

δφR
a,p

+
(

Apφ
I
a,p + iBpεabφ

R
b,p

) δ

δφI
a,p

+ 2Ap

]

ρ[φR, φI] = 0

Gaussian problem
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FOKKER-PLANCK EQUATION
REAL DISTRIBUTION

solution

ρ[φR, φI] = N exp

[

−
∑

p

(

αpφ
R

a,−pφ
R

a,p + βpφ
I

a,−pφ
I

a,p + 2iεabγpφ
R

a,−pφ
I

b,p

)

]

αp = Ap βp =
Ap

B2
p

(

2A2
p + B2

p

)

γp =
A2

p

Bp

generalized partition function

Z =
∏

p

∫

dφR
p dφI

p ρ[φR, φI] = N
∏

p

1

αpβp − γ2
p

Gaussian integrals converge provided Ap > 0
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FOKKER-PLANCK EQUATION
REAL DISTRIBUTION

correlation functions

〈φR
a,−pφ

R
a,p〉 = −∂ ln Z

∂αp
=

βp

αpβp − γ2
p

=
1

Ap

2A2
p + B2

p

A2
p + B2

p

〈φI
a,−pφ

I
a,p〉 = −∂ ln Z

∂βp
=

αp

αpβp − γ2
p

=
1

Ap

B2
p

A2
p + B2

p

2iεab〈φR
a,−pφ

I
b,p〉 = −∂ ln Z

∂γp
=

−2γp

αpβp − γ2
p

=
−2Bp

A2
p + B2

p

agree with solution of Langevin process when θ → ∞
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FOKKER-PLANCK EQUATION
REAL DISTRIBUTION

distribution is singular as p4 → 0 or µ → 0

why?

mode with p4 = 0 is purely real, not complexified

when µ = 0, no need for complexification

ρ[φR, φI] = P [φR]δ(φI)

include interactions?
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MEAN FIELD APPROXIMATION
LANGEVIN DYNAMICS

include interactions on the mean field level

Langevin equations contain terms of form λφ3

Gaussian factorization: example

φR
b,xφI

b,xφR
a,x → 〈φR

b,xφI
b,x〉φR

a,x+〈φR
b,xφR

a,x〉φI
b,x+〈φI

b,xφR
a,x〉φR

b,x

solve for fixed points, etc

when all the dust settles:

Ap → Ap = Ap + 4λ〈|φ|2〉

as expected (mean field mass/tadpole resummation)

solve mass from self-consistent gap equation
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RELATIVISTIC BOSE GAS
MEAN FIELD COMPARISON
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lines are mean field predictions
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RELATIVISTIC BOSE GAS
MEAN FIELD COMPARISON

density
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RELATIVISTIC BOSE GAS
MEAN FIELD ANALYSIS

mean field analysis in noncondensed phase
(Silver Blaze region)

can be analyzed in detail

agreement with numerical results

extension to condensed phase

include 〈φR
a,x〉 6= 0

in progress....
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SUMMARY & OUTLOOK
STOCHASTIC QUANTIZATION AT FINITE CHEMICAL POTENTIAL

many stimulating results

one link models: excellent agreement

relativistic Bose gas: phase transition and Silver Blaze

QCD with static quarks: encouraging

why does it work?
partly understood in simple models and relativistic Bose gas

in progress:

more analytical insight in the relativistic Bose gas

QCD with static and dynamical quarks

...
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