STOCHASTIC QUANTIZATION AT FINITE CHEMICAL POTENTIAL: SIGN AND SILVER BLAZE PROBLEMS

Gert Aarts

Swansea University

Swansea University Prifysgol Abertawe

ECT*, March 2009 - p.1

OUTLINE

- sign problem at finite chemical potential
- a revived approach: stochastic quantization
- three QCD inspired models
- relativistic Bose gas
- the Silver Blaze problem is not a problem

SIGN PROBLEM

fermion determinant is complex

$$[\det M(\mu)]^* = \det M(-\mu)$$

avoid fluctuating sign?

simulations at $\mu = 0$ or with $|\det M(\mu)|$

but ...

QCD at finite μ

SIGN PROBLEM

- important configurations differ in an essential way from those obtained at $\mu = 0$ or with $|\det M|$
- cancelation between configurations with 'positive' and 'negative' weight
- how to pick the dominant configurations in the path integral?

QCD at finite μ

SIGN PROBLEM

- important configurations differ in an essential way from those obtained at $\mu = 0$ or with $|\det M|$
- cancelation between configurations with 'positive' and 'negative' weight
- how to pick the dominant configurations in the path integral?

radically different approach:

■ complexifying all degrees of freedom: $SU(3) \rightarrow SL(3, \mathbb{C})$

stochastic quantization and complex Langevin dynamics

based on

- with I.O.S.: stochastic quantization at finite chemical potential, 0807.1597 [hep-lat], JHEP
- can stochastic quantization evade the sign problem? the relativistic Bose gas at finite chemical potential 0810.2089 [hep-lat], PRL
- complex Langevin dynamics at finite chemical potential: mean field analysis in the relativistic Bose gas, 0902.4686 [hep-lat]

more reading

- with I.O.S.: Lattice proceedings, 0809.5527 [hep-lat]
- SEWM proceedings: 0811.1850 [hep-ph]

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

field theory

Parisi & Wu '81

- **•** path integral $Z = \int D\phi e^{-S}$
- Langevin dynamics in "fifth" time direction

$$\frac{\partial \phi(x,\theta)}{\partial \theta} = -\frac{\delta S[\phi]}{\delta \phi(x,\theta)} + \eta(x,\theta)$$

Gaussian noise

 $\langle \eta(x,\theta) \rangle = 0 \qquad \langle \eta(x,\theta)\eta(x',\theta') \rangle = 2\delta(x-x')\delta(\theta-\theta')$

• equilibrium distribution $P[\phi] \sim e^{-S}$

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

force $\partial S / \partial \phi$ complex:

Parisi, Klauder '85

complexify Langevin dynamics

second example: real scalar field $\phi \rightarrow \phi^{R} + i\phi^{I}$

Langevin eqs

$$\frac{\partial \phi^{\mathrm{R}}}{\partial \theta} = -\mathrm{Re} \left. \frac{\delta S}{\delta \phi} \right|_{\phi \to \phi^{\mathrm{R}} + i\phi^{\mathrm{I}}} + \eta$$
$$\frac{\partial \phi^{\mathrm{I}}}{\partial \theta} = -\mathrm{Im} \left. \frac{\delta S}{\delta \phi} \right|_{\phi \to \phi^{\mathrm{R}} + i\phi^{\mathrm{I}}}$$

observables: analytic extension

$$\langle O(\phi) \rangle \rightarrow \langle O(\phi^{\mathrm{R}} + i\phi^{\mathrm{I}}) \rangle$$

STOCHASTIC QUANTIZATION

LANGEVIN DYNAMICS

associated Fokker-Planck equation

$$\frac{\partial P[\phi,\theta]}{\partial \theta} = \int d^d x \, \frac{\delta}{\delta \phi(x,\theta)} \left(\frac{\delta}{\delta \phi(x,\theta)} + \frac{\delta S[\phi]}{\delta \phi(x,\theta)} \right) P[\phi,\theta]$$

- **stationary solution:** $P[\phi] \sim e^{-S}$
- real action: formal proofs of convergence

$$P[\phi, \theta] = \frac{e^{-S[\phi]}}{Z} + \sum_{\lambda > 0} e^{-\lambda \theta} P_{\lambda}[\phi]$$

scomplex action: theoretical status less clear cut but all other methods fail!

FINITE CHEMICAL POTENTIAL

TOWARDS QCD

consider three models with a partition function

$$Z = \int DU e^{-S_B} \det M$$

 $\det M(\mu) = [\det M(-\mu)]^*$

- QCD with static quarks
- SU(3) one link model
- U(1) one link model

observables:

- (conjugate) Polyakov loops
- density
- phase of determinant

I: QCD WITH STATIC QUARKS

$$Z = \int DU e^{-S_B} \det M$$

bosonic action: standard SU(3) Wilson action

$$S_B = -\beta \sum_P \left(\frac{1}{6} \left[\operatorname{Tr} U_P + \operatorname{Tr} U_P^{-1} \right] - 1 \right)$$

determinant det *M* for Wilson fermions fermion matrix:

$$M = 1 - \kappa \sum_{i=1}^{3} \operatorname{space} - \kappa \left(e^{\mu} \Gamma_{+4} U_{x,4} T_{4} + e^{-\mu} \Gamma_{-4} U_{x,4}^{-1} T_{-4} \right)$$

I: QCD WITH STATIC QUARKS

hopping expansion:

$$\det M \approx \det \left[1 - \kappa \left(e^{\mu} \Gamma_{+4} U_{x,4} T_4 + e^{-\mu} \Gamma_{-4} U_{x,4}^{-1} T_{-4} \right) \right]$$
$$= \prod_{\mathbf{x}} \det \left(1 + h e^{\mu/T} \mathcal{P}_{\mathbf{x}} \right)^2 \det \left(1 + h e^{-\mu/T} \mathcal{P}_{\mathbf{x}}^{-1} \right)^2$$

with $h = (2\kappa)^{N_{\tau}}$ and (conjugate) Polyakov loops $\mathcal{P}_{\mathbf{x}}^{(-1)}$

- static quarks propagate in temporal direction only: Polyakov loops
- full gauge dynamics included

II: SU(3) ONE LINK MODEL

$$Z = \int dU e^{-S_B} \det M \qquad \qquad \text{link } U \in \text{SU(3)}$$

$$S_B = -\frac{\beta}{6} \left(\operatorname{Tr} U + \operatorname{Tr} U^{-1} \right)$$

determinant:

$$\det M = \det \left[1 + \kappa \left(e^{\mu} \sigma_{+} U + e^{-\mu} \sigma_{-} U^{-1} \right) \right]$$
$$= \det \left(1 + \kappa e^{\mu} U \right) \det \left(1 + \kappa e^{-\mu} U^{-1} \right)$$

with $\sigma_{\pm} = (1 \pm \sigma_3)/2$

- det in colour space remaining
- exact evaluation by integrating over the Haar measure

III: U(1) ONE LINK MODEL

U(1) model: link $U = e^{ix}$ with $-\pi < x \le \pi$

$$S_B = -\frac{\beta}{2} \left(U + U^{-1} \right) = -\beta \cos x$$

determinant:

det
$$M = 1 + \frac{1}{2}\kappa \left[e^{\mu}U + e^{-\mu}U^{-1}\right] = 1 + \kappa \cos(x - i\mu)$$

partition function:

$$Z = \int_{-\pi}^{\pi} \frac{dx}{2\pi} e^{\beta \cos x} \left[1 + \kappa \cos(x - i\mu)\right]$$

all observables can be computed analytically

COMPLEX LANGEVIN DYNAMICS

Langevin update:

 $U(\theta + \epsilon) = R(\theta) U(\theta) \qquad \qquad R = \exp\left[i\lambda_a \left(\epsilon K_a + \sqrt{\epsilon}\eta_a\right)\right]$

drift term

 $K_a = -D_a S_{\text{eff}}$ $S_{\text{eff}} = S_B + S_F$ $S_F = -\ln \det M$

noise

$$\langle \eta_a \rangle = 0 \qquad \qquad \langle \eta_a \eta_b \rangle = 2\delta_{ab}$$

real action: $\Rightarrow K^{\dagger} = K \Leftrightarrow U \in SU(3)$

complex action: $\Rightarrow K^{\dagger} \neq K \Leftrightarrow U \in SL(3, \mathbb{C})$

U(1) ONE LINK MODEL

- Joint Angevin Angevin Stepsize $\epsilon = 5 \times 10^{-5}$, 5×10^7 time steps
- Iines: exact results

excellent agreement for all μ

SU(3) ONE LINK MODEL

- Jeta points: complex Langevin stepsize $\epsilon = 5 \times 10^{-5}$, 5×10^7 time steps
- Iines: exact results

excellent agreement for all $\boldsymbol{\mu}$

SU(3) ONE LINK MODEL

scatter plot of *P* during Langevin evolution

QCD WITH STATIC QUARKS

first results on 4^4 lattice at $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

low-density "confining" phase \Rightarrow high-density "deconfining" phase

DENSITY

U(1) ONE LINK MODEL

SU(3) ONE LINK MODEL

 \checkmark linear increase at small μ

 \checkmark saturation at large μ

excellent agreement for all μ

QCD WITH STATIC QUARKS

first results on 4^4 lattice at $\beta = 5.6$, $\kappa = 0.12$, $N_f = 3$

low-density phase \Rightarrow high-density phase

 $SU(3) \rightarrow SL(3,\mathbb{C})$

QCD WITH STATIC QUARKS

- complex Langevin dynamics: no longer in SU(3)
- instead $U \in SL(3, \mathbb{C})$
- In terms of gauge potentials $U = e^{i\lambda_a A_a/2}$ A_a is now complex
- how far from SU(3)?

consider

$$\frac{1}{N} \operatorname{Tr} U^{\dagger} U \begin{cases} = 1 & \text{if } U \in \mathsf{SU}(N) \\ \geq 1 & \text{if } U \in \mathsf{SL}(N,\mathbb{C}) \end{cases}$$

 $SU(3) \rightarrow SL(3,\mathbb{C})$

QCD WITH STATIC QUARKS

$$\frac{1}{3} \operatorname{Tr} U^{\dagger} U \ge 1 \qquad = 1 \quad \text{if} \quad U \in \mathsf{SU(3)}$$

COMPLEXIFICATION OF PHASE SPACE

WHY DOES IT WORK?

- most approaches start from $\mu = 0$ or $|\det M(\mu)|$
- complex Langevin dynamics radically different
- \Rightarrow complexification of degrees of freedom
- visualization in U(1) model
 - understanding in terms of classical fixed points

CLASSICAL FLOW

U(1) ONE LINK MODEL

- Iink $U = e^{ix}$ complexification $x \to z = x + iy$
- Langevin dynamics:

$$\dot{x} = K_x + \eta \qquad \qquad \dot{y} = K_y$$

classical forces:

$$K_x = -\operatorname{Re} \frac{\partial S}{\partial x}\Big|_{x \to z} \qquad K_y = -\operatorname{Im} \frac{\partial S}{\partial x}\Big|_{x \to z}$$

• classical fixed points: $K_x = K_y = 0$

CLASSICAL FLOW

U(1) ONE LINK MODEL

flow diagrams and Langevin evolution

- black dots: classical fixed points
- \blacksquare $\mu = 0$: dynamics only in x direction
- $\mu > 0$: spread in y direction

ECT*, March 2009 – p.15

real part of gauge potential \rightarrow

U(1) ONE LINK MODEL

CLASSICAL FLOW

PHASE TRANSITIONS AND THE SILVER BLAZE

intruiging questions:

- how severe is the sign problem?
- thermodynamic limit?
- phase transitions?

_ . . .

Silver Blaze problem?

Cohen '03

study in a model with a phase diagram with similar features as QCD at low temperature

 \Rightarrow relativistic Bose gas at nonzero μ or scalar O(2) model

PHASE TRANSITIONS AND THE SILVER BLAZE

continuum action

$$S = \int d^4x \Big[|\partial_{\nu}\phi|^2 + (m^2 - \mu^2)|\phi|^2 + (\mu^2 - \mu^2)|\phi|^2 + \mu (\phi^* \partial_4 \phi - \partial_4 \phi^* \phi) + \lambda |\phi|^4 \Big]$$

• complex scalar field, d = 4, $m^2 > 0$

•
$$S^*(\mu) = S(-\mu)$$
 as in QCD

PHASE TRANSITIONS AND THE SILVER BLAZE

Iattice action

$$S = \sum_{x} \left[\left(2d + m^2 \right) \phi_x^* \phi_x + \lambda \left(\phi_x^* \phi_x \right)^2 - \sum_{\nu=1}^4 \left(\phi_x^* e^{-\mu \delta_{\nu,4}} \phi_{x+\hat{\nu}} + \phi_{x+\hat{\nu}}^* e^{\mu \delta_{\nu,4}} \phi_x \right) \right]$$

• complex scalar field, d = 4, $m^2 > 0$

•
$$S^*(\mu) = S(-\mu)$$
 as in QCD

PHASE TRANSITIONS AND THE SILVER BLAZE

tree level potential in the continuum

$$V(\phi) = (m^2 - \mu^2) |\phi|^2 + \lambda |\phi|^4$$

condensation when $\mu^2 > m^2$, SSB

COMPLEX LANGEVIN

• write
$$\phi = (\phi_1 + i\phi_2)/\sqrt{2} \Rightarrow \phi_a \ (a = 1, 2)$$

- \checkmark complexification $\phi_a \rightarrow \phi_a^{\rm R} + i\phi_a^{\rm I}$
- complex Langevin equations

$$\frac{\partial \phi_a^{\mathrm{R}}}{\partial \theta} = -\mathrm{Re} \left. \frac{\delta S}{\delta \phi_a} \right|_{\phi_a \to \phi_a^{\mathrm{R}} + i\phi_a^{\mathrm{I}}} + \eta_a$$
$$\frac{\partial \phi_a^{\mathrm{I}}}{\partial \theta} = -\mathrm{Im} \left. \frac{\delta S}{\delta \phi_a} \right|_{\phi_a \to \phi_a^{\mathrm{R}} + i\phi^{\mathrm{I}}}$$

- straightforward to solve numerically, $m = \lambda = 1$
- In lattices of size N^4 , with N = 4, 6, 8, 10
- no instabilities etc

COMPLEX LANGEVIN

field modulus squared $|\phi|^2 \rightarrow \frac{1}{2} \left(\phi_a^{R^2} - \phi_a^{I^2} \right) + i \phi_a^R \phi_a^I$

COMPLEX LANGEVIN

field modulus squared
$$|\phi|^2
ightarrow rac{1}{2} \left(\phi^{\mathrm{R}^2}_a - \phi^{\mathrm{I}\,2}_a
ight) + i \phi^{\mathrm{R}}_a \phi^{\mathrm{I}}_a$$

second order phase transition in thermodynamic limit

COMPLEX LANGEVIN

COMPLEX LANGEVIN

second order phase transition in thermodynamic limit

SILVER BLAZE AND THE SIGN PROBLEM

RELATIVISTIC BOSE GAS

Silver Blaze and sign problems are intimately related

complex action

$$e^{-S} = |e^{-S}|e^{i\varphi}$$

phase quenched theory

$$Z_{\rm pq} = \int D\phi |e^{-S}|$$

different physics

QCD: phase quenched = finite isospin chemical potential

different onset: $m_N/3$ versus $m_\pi/2$

SILVER BLAZE AND THE SIGN PROBLEM

PHASE QUENCHED

phase quenched theory in this case:

- real action
- chemical potential appears only in the mass parameter (in continuum notation)

$$V = (m^{2} - \mu^{2})|\phi|^{2} + \lambda |\phi|^{4}$$

dynamics of symmetry breaking, no Silver Blaze

SILVER BLAZE AND THE SIGN PROBLEM

COMPLEX VS PHASE QUENCHED

density

complex

phase quenched

phase $e^{i\varphi} = e^{-S}/|e^{-S}|$ does precisely what is expected

HOW SEVERE IS THE SIGN PROBLEM?

AVERAGE PHASE FACTOR

- complex action $e^{-S} = |e^{-S}|e^{i\varphi}$
- full and phase quenched partition functions

$$Z_{\rm full} = \int D\phi \, e^{-S} \qquad \qquad Z_{\rm pq} = \int D\phi |e^{-S}|$$

average phase factor in phase quenched theory

$$\langle e^{i\varphi} \rangle_{\rm pq} = \frac{Z_{\rm full}}{Z_{\rm pq}} = e^{-\Omega \Delta f} \to 0 \quad \text{as} \quad \Omega \to \infty$$

exponentially hard in thermodynamic limit

HOW SEVERE IS THE SIGN PROBLEM?

AVERAGE PHASE FACTOR

HOW SEVERE IS THE SIGN PROBLEM?

AVERAGE PHASE FACTOR

- phase factor behaves exactly as expected
- **s** for larger μ : phase factor $\rightarrow 0$ on all volumes
 - in the condensed phase: phase factor = 0
- s at small μ , sign problem gets exponentially worse with increasing volume

yet, no problem in practice

ANALYTICAL INSIGHT

- free Langevin dynamics
- real Fokker-Planck distribution
- include interactions with mean field approximation

see 0902.4686 [hep-lat] for more details

FREE LANGEVIN DYNAMICS IN MOMENTUM SPACE

$$\frac{\partial}{\partial \theta} \phi_{a,p}^{\mathrm{R}}(\theta) = K_{a,p}^{\mathrm{R}}(\theta) + \eta_{a,p}(\theta)$$
$$\frac{\partial}{\partial \theta} \phi_{a,p}^{\mathrm{I}}(\theta) = K_{a,p}^{\mathrm{I}}(\theta)$$

$$K_{a,p}^{\mathrm{R}} = -A_p \phi_{a,p}^{\mathrm{R}} + iB_p \varepsilon_{ab} \phi_{b,p}^{\mathrm{I}}$$
$$K_{a,p}^{\mathrm{I}} = -A_p \phi_{a,p}^{\mathrm{I}} - iB_p \varepsilon_{ab} \phi_{b,p}^{\mathrm{R}}$$

$$A_p = m^2 + 4 \sum_{i=1}^3 \sin^2 \frac{p_i}{2} + 2 (1 - \cosh \mu \cos p_4)$$
$$B_p = 2 \sinh \mu \sin p_4$$

FREE LANGEVIN DYNAMICS

solution:

$$\begin{split} \phi_a^{\mathrm{R}}(\theta,p) &= e^{-A_p \theta} \left[\cos(B_p \theta) \phi_a^{\mathrm{R}}(0,p) + i \sin(B_p \theta) \epsilon_{ab} \phi_b^{\mathrm{I}}(0,p) \right] \\ &+ \int_0^{\theta} ds \, e^{-A_p (\theta-s)} \cos[B_p (\theta-s)] \eta_a(s,p) \\ \phi_a^{\mathrm{I}}(\theta,p) &= e^{-A_p \theta} \left[\cos(B_p \theta) \phi_a^{\mathrm{I}}(0,p) - i \sin(B_p \theta) \epsilon_{ab} \phi_b^{\mathrm{R}}(0,p) \right] \\ &- i \int_0^{\theta} ds \, e^{-A_p (\theta-s)} \sin[B_p (\theta-s)] \epsilon_{ab} \eta_b(s,p) \end{split}$$

- convergence provided $A_p > 0 \Rightarrow 4 \sinh^2 \frac{\mu}{2} < m^2$
- standard (in)stability for free Bose gas

FREE LANGEVIN DYNAMICS

• convergence of two-point functions (provided $A_p > 0$)

$$\lim_{\theta \to \infty} \langle \phi_{a,-p}^{\mathrm{R}}(\theta) \phi_{b,p'}^{\mathrm{R}}(\theta) \rangle = \delta_{ab} \delta_{pp'} \frac{1}{2A_p} \frac{2A_p^2 + B_p^2}{A_p^2 + B_p^2}$$
$$\lim_{\theta \to \infty} \langle \phi_{a,-p}^{\mathrm{I}}(\theta) \phi_{b,p'}^{\mathrm{I}}(\theta) \rangle = \delta_{ab} \delta_{pp'} \frac{1}{2A_p} \frac{B_p^2}{A_p^2 + B_p^2}$$
$$\lim_{\theta \to \infty} \langle \phi_{a,-p}^{\mathrm{R}}(\theta) \phi_{b,p'}^{\mathrm{I}}(\theta) \rangle = \varepsilon_{ab} \delta_{pp'} \frac{i}{2} \frac{B_p}{A_p^2 + B_p^2}$$

- structure agrees with symmetry of Langevin dynamics
- observables constructed with these two-point functions agree with standard expressions

FREE LANGEVIN DYNAMICS

discretized Langevin equations

 $\phi(n+1) = [1 + \epsilon M]\phi(n) + \sqrt{\epsilon}\eta(n)$

are stable provided that $|1 + \epsilon M| < 1$

- in this theory: $A_p \frac{\epsilon}{2} \left(A_p^2 + B_p^2 \right) > 0$
- constraint from high momentum modes

$$\epsilon < \frac{2}{4d+m^2+2(\cosh\mu-1)}$$

- $\ \, {} \mu < m : modest bound on \ \epsilon$
- $\mu \gg m$: eventually $\epsilon < e^{-\mu}$ (however, in region where lattice artefacts are severe)

REAL AND COMPLEX DISTRIBUTIONS

complex distribution

$$\langle O[\phi,\theta]\rangle_\eta = \int D\phi\, P[\phi,\theta] O[\phi]$$

satisfies the Fokker-Planck equation

$$\frac{\partial P[\phi,\theta]}{\partial \theta} = \sum_{x} \frac{\delta}{\delta \phi_{a,x}(\theta)} \left(\frac{\delta}{\delta \phi_{a,x}(\theta)} + \frac{\delta S[\phi]}{\delta \phi_{a,x}(\theta)} \right) P[\phi,\theta]$$

- stationary solution $P[\phi] \sim e^{-S[\phi]}$
- not appropriate for the real Langevin process

REAL AND COMPLEX DISTRIBUTIONS

real distribution

$$\langle O[\phi,\theta]\rangle_{\eta} = \int D\phi^{\mathrm{R}} D\phi^{\mathrm{I}} \rho[\phi^{\mathrm{R}},\phi^{\mathrm{I}},\theta] O[\phi^{\mathrm{R}}+i\phi^{\mathrm{I}}]$$

satisfies the extended Fokker-Planck equation

$$\frac{\partial \rho[\phi^{\mathrm{R}}, \phi^{\mathrm{I}}, \theta]}{\partial \theta} = \sum_{x} \left[\frac{\delta}{\delta \phi^{\mathrm{R}}_{a,x}(\theta)} \left(\frac{\delta}{\delta \phi^{\mathrm{R}}_{a,x}(\theta)} - K^{\mathrm{R}}_{a,x}(\theta) \right) - \frac{\delta}{\delta \phi^{\mathrm{I}}_{a,x}(\theta)} K^{\mathrm{I}}_{a,x}(\theta) \right] \rho[\phi^{\mathrm{R}}, \phi^{\mathrm{I}}, \theta]$$

stationary solutions not known in general!

REAL DISTRIBUTION

Iook for stationary solution ignoring interactions

$$\sum_{p} \left[\frac{\delta}{\delta \phi_{a,p}^{\mathrm{R}}} \frac{\delta}{\delta \phi_{a,-p}^{\mathrm{R}}} + \left(A_{p} \phi_{a,p}^{\mathrm{R}} - i B_{p} \varepsilon_{ab} \phi_{b,p}^{\mathrm{I}} \right) \frac{\delta}{\delta \phi_{a,p}^{\mathrm{R}}} \right. \\ \left. + \left(A_{p} \phi_{a,p}^{\mathrm{I}} + i B_{p} \varepsilon_{ab} \phi_{b,p}^{\mathrm{R}} \right) \frac{\delta}{\delta \phi_{a,p}^{\mathrm{I}}} + 2A_{p} \right] \rho[\phi^{\mathrm{R}}, \phi^{\mathrm{I}}] = 0$$

Gaussian problem

REAL DISTRIBUTION

solution

$$\rho[\phi^{\mathrm{R}}, \phi^{\mathrm{I}}] = N \exp\left[-\sum_{p} \left(\alpha_{p} \phi^{\mathrm{R}}_{a,-p} \phi^{\mathrm{R}}_{a,p} + \beta_{p} \phi^{\mathrm{I}}_{a,-p} \phi^{\mathrm{I}}_{a,p} + 2i\varepsilon_{ab} \gamma_{p} \phi^{\mathrm{R}}_{a,-p} \phi^{\mathrm{I}}_{b,p}\right)\right]$$

$$\alpha_p = A_p \qquad \beta_p = \frac{A_p}{B_p^2} \left(2A_p^2 + B_p^2 \right) \qquad \gamma_p = \frac{A_p^2}{B_p}$$

generalized partition function

$$Z = \prod_{p} \int d\phi_{p}^{\mathrm{R}} d\phi_{p}^{\mathrm{I}} \rho[\phi^{\mathrm{R}}, \phi^{\mathrm{I}}] = \mathcal{N} \prod_{p} \frac{1}{\alpha_{p}\beta_{p} - \gamma_{p}^{2}}$$

• Gaussian integrals converge provided $A_p > 0$

REAL DISTRIBUTION

correlation functions

$$\langle \phi_{a,-p}^{\mathrm{R}} \phi_{a,p}^{\mathrm{R}} \rangle = -\frac{\partial \ln Z}{\partial \alpha_{p}} = \frac{\beta_{p}}{\alpha_{p} \beta_{p} - \gamma_{p}^{2}} = \frac{1}{A_{p}} \frac{2A_{p}^{2} + B_{p}^{2}}{A_{p}^{2} + B_{p}^{2}}$$
$$\langle \phi_{a,-p}^{\mathrm{I}} \phi_{a,p}^{\mathrm{I}} \rangle = -\frac{\partial \ln Z}{\partial \beta_{p}} = \frac{\alpha_{p}}{\alpha_{p} \beta_{p} - \gamma_{p}^{2}} = \frac{1}{A_{p}} \frac{B_{p}^{2}}{A_{p}^{2} + B_{p}^{2}}$$
$$2i\varepsilon_{ab} \langle \phi_{a,-p}^{\mathrm{R}} \phi_{b,p}^{\mathrm{I}} \rangle = -\frac{\partial \ln Z}{\partial \gamma_{p}} = \frac{-2\gamma_{p}}{\alpha_{p} \beta_{p} - \gamma_{p}^{2}} = \frac{-2B_{p}}{A_{p}^{2} + B_{p}^{2}}$$

 \blacksquare agree with solution of Langevin process when $\theta \to \infty$

REAL DISTRIBUTION

why?

- \checkmark mode with $p_4 = 0$ is purely real, not complexified
- \blacksquare when $\mu = 0$, no need for complexification

$$\rho[\phi^{\mathrm{R}},\phi^{\mathrm{I}}] = P[\phi^{\mathrm{R}}]\delta(\phi^{\mathrm{I}})$$

include interactions?

MEAN FIELD APPROXIMATION

LANGEVIN DYNAMICS

- include interactions on the mean field level
- Langevin equations contain terms of form $\lambda \phi^3$
- Gaussian factorization: example

 $\phi_{b,x}^{\mathrm{R}}\phi_{b,x}^{\mathrm{I}}\phi_{a,x}^{\mathrm{R}} \rightarrow \langle \phi_{b,x}^{\mathrm{R}}\phi_{b,x}^{\mathrm{I}}\rangle \phi_{a,x}^{\mathrm{R}} + \langle \phi_{b,x}^{\mathrm{R}}\phi_{a,x}^{\mathrm{R}}\rangle \phi_{b,x}^{\mathrm{I}} + \langle \phi_{b,x}^{\mathrm{I}}\phi_{a,x}^{\mathrm{R}}\rangle \phi_{b,x}^{\mathrm{R}}$

- solve for fixed points, etc
- when all the dust settles:

$$A_p \to \mathcal{A}_p = A_p + 4\lambda \langle |\phi|^2 \rangle$$

as expected (mean field mass/tadpole resummation)

solve mass from self-consistent gap equation

MEAN FIELD COMPARISON

complex

phase quenched

lines are mean field predictions

MEAN FIELD COMPARISON

density

lines are mean field predictions

MEAN FIELD ANALYSIS

- mean field analysis in noncondensed phase (Silver Blaze region)
- can be analyzed in detail
- agreement with numerical results

- extension to condensed phase
- include $\langle \phi_{a,x}^{\mathrm{R}} \rangle \neq 0$
- in progress....

SUMMARY & OUTLOOK

STOCHASTIC QUANTIZATION AT FINITE CHEMICAL POTENTIAL

many stimulating results

- one link models: excellent agreement
- relativistic Bose gas: phase transition and Silver Blaze
- QCD with static quarks: encouraging

why does it work?

partly understood in simple models and relativistic Bose gas in progress:

- more analytical insight in the relativistic Bose gas
- QCD with static and dynamical quarks

