The mass gap of the 2D O(3) Heisenberg model at $\theta=\pi$ from simulations at imaginary θ

> PRD 77 056008 (2008) (arXiv:0711.1496)

> arXiv:0811.1528

Bartolome Allés (INFN Pisa)
Alessandro Papa (Univ. Calabria)

ECT* Workshop, March 6, 2009, Trento

- Haldane, Affleck and others, showed that antiferromagnetic 1D chains of quantum spins present two kinds of large distance correlations: exponentially falling if the spin σ is integer and power-law if σ is half-integer.
- It was also shown that the 1D chain of quantum spins σ shares the same large distance physics than the 2D nonlinear O(3) sigma model with a theta term $\theta=2\pi\sigma$.
- In particular, and due to the periodicity of the topological θ term, this equivalence should imply that the 2D O(3) nonlinear sigma model with a θ = π term must be massless.
- Two recent numerical simulations (Bietenholz et al., Azcoiti et al.) suggest that the model undergoes a second order phase transition at $\theta = \pi$.
- We have directly calculated the mass gap by numerical simulation.

- A direct simulation of the 2D O(3) nonlinear sigma model at $\theta = \pi$ runs with two tough problems:
 - ➤ if indeed the model is critical then a direct Monte Carlo simulation becomes unfeasible since exponentially large lattice sizes are needed and
 - \triangleright at real θ the Boltzmann weight is complex and loses its probability meaning.
- Then we have simulated the model at imaginary θ , $\theta = i\theta$, $\theta \in \mathbb{R}$, and analytically continued the results to the real θ axis. The continuation was performed through a numerical extrapolation.
- > In the simulations we used the standard action,

$$S = A - i\theta_L Q,$$
 $A \equiv -\beta \sum_{x,\mu} \vec{\phi}(x) \cdot \vec{\phi}(x + \hat{\mu}).$

As for the topological charge Q we made use of two different definitions on the lattice. We called them $Q^{(1)}$ and $Q^{(2)}$. The first one is the usual naive (also called field-theoretical), the corresponding density of charge being

$$Q^{(1)}(x) = \frac{1}{32\pi} \varepsilon^{\mu\nu} \varepsilon_{dbc} \phi^d(x) \left(\phi^b(x + \hat{\mu}) - \phi^b(x - \hat{\mu}) \right) \cdot \left(\phi^c(x + \hat{\nu}) - \phi^c(x - \hat{\nu}) \right)$$

- \triangleright where d,b,c are O(3) group indices and μ,ν are space indices.
- $\triangleright Q^{(1)}(x)$ satisfies the continuum limit

$$Q^{(1)}(x) \xrightarrow{a \to 0} a^2 Q(x)$$

Q(x) being the density of topological charge in the continuum.

- It is well-known that in general the lattice topological charge must be renormalized, $Q^{(1,2)} = Z_Q^{(1,2)} Q$, where Q is the integer-valued continuum charge.
- The renormalization constant of the geometrical charge is $Z_Q^{(2)}=1$ (Lüscher). On the other hand $Z_Q^{(1)}$ depends on β (not on θ) and in general is different from 1.
- $\gt Z_Q^{(1)}$ was originally computed in perturbation theory (Campostrini et al.). We have chosen instead a non-perturbative method to evaluate this constant (Di Giacomo-Vicari).
- A configuration with total topological charge Q=1 is heated at a temperature β (100 Heat-Bath steps) without changing the topological sector (cooling checks are periodically done). The value of $Q^{(1)}$ at equilibrium must be $Z_Q^{(1)}Q=Z_Q^{(1)}$.

$$Z_Q^{(1)}(\beta = 1.5) = 0.285(9)$$

The relevant consequence of the above considerations for our work is that the θ_L parameter that appears in the expression of the Hamiltonian used in our computer program in general is not equal to the true physical θ parameter. They are related by $\theta = \theta_L Z_Q^{(1,2)}$. Clearly this distinction only applies to the naive charge $Q^{(1)}$ since $Z_Q^{(2)}=1$ for all β .

- Using the lattice topological charge $Q^{(1)}$ (that requires the extra calculation of a renormalization constant) has its advantage...
- $ightharpoonup ... Q^{(1)}$ can be simulated by using a fast cluster algorithm that has been expressly introduced in the present investigation. Thanks to this updating algorithm, the simulation of a single value of β with $Q^{(1)}$ is, including the computation of $Z_Q^{(1)}$, much faster than the analogous simulation with $Q^{(2)}$.

Every updating of a cluster algorithm starts by introducing a random unit vector and separating the components parallel and perpendicular to it for all spins (Swendsen-Wang, Wolff),

$$\vec{\phi}(x) = \left(\vec{r} \cdot \vec{\phi}(x)\right) \vec{r} + \vec{\phi}_{\perp}(x),$$

where the scalar product is called "equivalent Ising spin".

- Introducing this splitting into the definition of $Q^{(1)}$, we obtain an expression that is linear in the equivalent Ising spin (because $Q^{(1)}$ is written in terms of a determinant of three spin vectors).
- \triangleright Therefore the problem turns into an Ising model with sitedependent couplings and within a local magnetic field h(x),

$$h(x) \propto \vartheta_L \left| \vec{r} \cdot \vec{\phi}(x) \right|$$

- There are several algorithms adapted to simulate Ising models in a local magnetic field (Wang, Lauwers-Rittenberg). After testing their performances, we chose the Wang method.
 - Our algorithm satisfies the detailed balance property.
 - The Fortuin-Kasteleyn clusters were created by using the Hoshen-Kopelman procedure.
 - The initial random vector was generated by the Niedermayer method in order to bolster ergodicity.

We extracted the correlation length ξ from the exponential decay of the largest eigenvalue in the matrix of correlation functions among the two operators

$$O_1 \equiv \vec{\phi}(x)$$
 $O_2 \equiv \vec{\phi}(x) \times \vec{\phi}(x+\hat{1})$

- Analytical continuation was performed by a numerical extrapolation.
- Polynomials in θ_L^2 and their ratios were used as trial functions.
- The Renormalization Group prediction was avoided as a trial function since it assumes the vanishing of $1/\xi$ and we preferred to leave room for any behaviour.

$$\frac{c_1 + c_2 \theta_L^2}{1 + c_3 \theta_L^2}$$

eta	$oldsymbol{L}$	$(\theta_{\rm L,zero})^2$	$Z_{\mathcal{Q}^{(1)}}$	χ^2 /d.o.f.	$ heta_{ m zero}$
1.50	120	111(5)	0.285(9)	0.90	3.00(12)
1.60	180	94(5)	0.325(6)	0.45	3.15(10)
1.70	340	67(3)	0.380(6)	1.04	3.11(9)
1.75	470	56(3)	0.412(5)	0.68	3.08(9)

$$\frac{c_1 + c_2 \theta^2}{1 + c_3 \theta^2}$$

β	L	$(\theta_{\rm zero})^2$	$Z_Q^{(2)}$	χ^2 /d.o.f.	$ heta_{ m zero}$
1.50	110	10.4(1.0)	1.0	1.72	3.22(16)
1.55	150	9.7(1.0)	1.0	0.73	3.11(16)

Conclusions

- We have simulated the O(3) nonlinear sigma model with an imaginary θ term, measured the mass gap and extrapolated the results to real θ in order to give evidence for the theoretically expected criticality at $\theta = \pi$.
- Our results are in excellent agreement with expectations: assuming gaussian errors, our world average for the value of θ where the mass gap closes is θ =3.10(5).
- The above number seems very robust since compatible results were obtained by using two different topological charge operators.
- A fast cluster algorithm was purposely introduced for simulations at imaginary θ for one of the two topological charges. The other topological charge operator was simulated by the usual (rather slow) Metropolis updating.