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1 – OUTLINE

Waiting for a definite solution to the sign problem, analytic continuation from imag-
inary chemical potentials remains one of the few available methods to investigate
QCD at finite density. More efforts are needed to test its reliability and to push its
predictivity. In this talk we focus on the following issues:

• Analytic continuation of the (pseudo)critical line: precision tests in sign problem
free theories. with P. Cea (Bari), L. Cosmai (Bari), C. Manneschi (Genoa), A. Papa (Cosenza)

– Is it reliable?
– What is the best strategy to perform it?

• Nf = 2 QCD thermodynamics and analytic continuation from two independent
imaginary chemical potentials with F. Sanfilippo (Rome)

– validity of the HRG model for T < Tc

– computation of generalized susceptibilities
– analytic continuation of the average phase factor 〈ei2θ〉



The sign problem disappears for imaginary values of the chemical potential

Z(T, µ2) ≡
∫
DUe−SG detM [µ] −→

∫
DUe−SG detM [µ = iµI ]

M [µ]i,j = amδi,j+
1

2

3∑

ν=1

ηi,ν

(
Ui,νδi,j−ν̂ − U†i−ν̂,νδi,j+ν̂

)
+ηi,4

(
eaµUi,4δi,j−4̂ − e−aµU†i−4̂,4

δi,j+4̂

)

M [iµI ]i,j = amδi,j+
1

2

3∑

ν=1

ηi,ν

(
Ui,νδi,j−ν̂ − U†i−ν̂,νδi,j+ν̂

)
+ηi,4

(
eiaµIUi,4δi,j−4̂ − e−iaµIU†i−4̂,4

δi,j+4̂

)

Z is an even function of µ and periodic in µI/T with period 2π/Nc (by center sym-
metry).

ANALYTIC CONTINUATION ≡ a given ansatz for the dependence of physics on µ2

can be continued to µ2 < 0 and checked (fitted) against numerical data at imaginary
chemical potentials
Predictivity restricted by domains of analyticity
Systematics affected by the choice of the ansatz
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• Below Tc: the whole range of imaginary µ is available, predictions at real µ re-
stricted by the physical (pseudo)-transition line.

• Above Tc: imaginary µ available for analytic continuation restricted by physical or
unphysical (RW) transitions.

• Assuming the physical transition line is continuous at µ2 = 0, also the critical
line can be continued.



2 – Analytic continuation of the critical line

Careful checks of possible systematics in analytic continuation can be performed in
theories which are free of the sign problem. An example is QCD with two colors:
Each loop contribution to the hopping expansion is real because of the SU(2) gauge
group, no cancellations required.

We have considered the continuation of the critical line in SU(2) with 8 flavors, stan-
dard staggered fermions, am = 0.07, Ls = 16 and Lt = 4, standard HMC algorithm.
P. Cea, L. Cosmai, M. D’E., A. Papa, PRD 77, 051501(R) (2008)

Location of pseudocritical couplings performed by looking at susceptibility peaks
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(aµ)2 〈ψψ〉 χ2/d.o.f. 〈L〉 χ2/d.o.f. 〈P 〉 χ2/d.o.f.

-0.1225 1.5440(16) 1.34 1.5349(43) 0.85 1.5418(24) 0.93

-0.09 1.5068(15) 0.65 1.5019(29) 0.25 1.5046(21) 1.06

-0.0625 1.4775(29) 0.88 1.4665(32) 0.31 1.4755(37) 0.65

-0.04 1.4532(16) 0.50 1.4453(36) 0.76 1.4522(26) 1.21

-0.0225 1.4324(22) 1.20 1.4240(28) 0.80 1.4300(39) 0.80

-0.01 1.4197(16) 1.86 1.4104(33) 0.43 1.4199(26) 1.45

0. 1.4102(18) 0.07 1.3989(61) 0.49 1.4117(32) 0.07

0.04 1.3528(22) 2.91 1.3388(72) 1.01 1.3631(46) 1.16

0.0625 1.3145(30) 1.34 1.2976(62) 0.87 1.3286(50) 1.28

0.09 1.2433(59) 1.09 1.2508(62) 0.98 1.2864(109) 0.60

Table of (pseudo)critical couplings at different µ2, obtained by fitting the peaks of
different observables.
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Data at µ2 < 0 cannot predict terms beyond the linear one in µ2, βc(µ) = A+Bµ2

A = 1.4091(17), B = −1.095(15), χ̃2 = 0.27 but that fails to reproduce data at real µ.

But a sixth order polynomial, βc(µ) = A+Bµ2 + Cµ4 +Dµ6, nicely fits all data!
A = 1.4088(99), B = −1.230(25), C = −3.77(25)D = −22.7(3.6), χ̃2 = 1.0

Analyticity atµ2 = 0 not contradicted, but analytic continuation not predictive enough!
Suppressed, hardly visible contributions (Cµ4 + Dµ6 in our case) becoming impor-
tant in different regions are a typical problem of analytic continuation.



Similar problems could apply to real QCD as well: non-linear terms in µ2 in the critical
line could be missed by analytic continuation.
It is worth checking that in sign problem free theories which are closer to QCD: we
are investigating QCD in presence of a finite isospin chemical potential:
P. Cea, L. Cosmai, C. Manneschi, A. Papa, in progress

Z(T, µ,−µ) ≡
∫
DUe−SG detM [µ] detM [−µ] =

∫
DUe−SG| detM [µ]|2

because of detM [−µ] = detM [µ]∗

We have considered QCD with 8 flavors (4+4), standard staggered fermions, am =

0.1. The transition at µ2 = 0 is strong first order in this case, and remains so also at
µ2 6= 0.

Simulations have been done on a relatively small lattice (83 × 4) to avoid too long
tunneling times. Critical couplings βc(µ2) have been determined by looking at double
peak distributions around the transition.
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We show as an example how we determine the transition location for µ/(πT ) =

i 0.30.

A rough idea about βc is obtained by looking at the behaviour of the observables
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βc is then obtained by looking at double peak distributions (Re(Polyakov) is shown),
which are typically taken over 5− 10 · 104 trajectories (about 10-20 tunneling events
observed at βc)

we estimate βc = 4.750(1) in this case
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A similar analysis applies to other chemical potentials, µ/(πT ) = 0.40 is shown in
the figures.
Of course different observables jump at the same point (first order transition).
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This is the behaviour of the gap (jump) at the transition as a function of µ2 for differ-
ent observables. The transition stays first order over the whole range explored, its
strength smoothly changes with µ.
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This is the whole collection of our determinations of βc(µ2), which will be used to
test analytic continuation.
The range of µ2 is limited on the right hand side by the increasing computational
power needed to simulate large real chemical potential (Dirac eigenvalues get close
to the origin)
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On the left hand side the range is limited by an unphysical transition similar to the RW-
transition present for imaginary baryon chemical potentials (µ2/(πT )2 ∼ −0.25).
We have taken many determinations of βc(µ2) close to this RW-like line, in order
increase sensitivity to non-linear terms.
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The whole set of data is again nicely fitted by a sixth order polynomial:
βc(µ) = A+Bµ2 + Cµ4 +Dµ6

A = 4.6970(10), B = −0.585(12), C = −0.19(4), D = −1.53(35), χ̃2 = 1.1

Features common to SU(2): all coefficients are negative, µ4 and µ6 contributions
tend to cancel at µ2 < 0 also in this case.
Let us see whether we can predict the right behaviour from imaginary µ’s only.
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Good news: the simple linear ansatz in µ2 does not work.
βc(µ) = A+Bµ2

A = 4.6953(8), B = −0.615(5), χ̃2 = 6.3

Data at imaginary chemical potentials contain enough information in this case, also
about non-linear terms in µ2
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Unfortunately a simple sixth order fit does not work and fails reproducing data at real
µ’s
βc(µ) = A+Bµ2 + Cµ4 +Dµ6

A = 4.6967(17), B = −0.636(7), C = −0.83(74), D = −3.4(2.1), χ̃2 = 0.88



PROBLEM:

Differents sixth order polynomials exist, almost coincident in the available µ2 < 0

region, but with significant differences at µ2 > 0.

POSSIBLE SOLUTIONS?

• Try different functional forms, for instance Padé approximants P (n,m) (ratio of
two polynomials of order n and m), which may reveal successful (M.P.Lombardo,

Lattice 2005, Cea-Cosmai-D’Elia-Papa, JHEP02(2007)066)

P (n,m) =
a0 + a1µ

2 + . . . anµ
2n

1 + b1µ2 + . . . bmµ2m

• Try to constrain the linear term in µ2 by looking at small chemical potentials only.
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Pade approximants seem to work fine, but at least a P (6, 4) (center) or a P (4, 6)

(right) are needed.

Why two more parameters necessary?

Ratio of polynomials (Pade approximants) instead work perfectly, but at least (6,4) or
(4,6) is needed. Could be a possibility, but why two more parameters?



We show for comparison the case of a P (4, 4)



Try to fix the linear term according to the information from small chemical potentials,
look at A+Bµ2 fits in limited ranges:

(µ)2
min B χ2/d.o.f.

-0.04 -0.60(3) 0.000007

-0.0625 -0.58(2) 0.3

-0.09 -0.585(13) 0.25

-0.126025 -0.589(9) 0.24

-0.16 -0.593(6) 0.25

-0.1849 -0.594(6) 0.24

-0.198025 -0.595(5) 0.23

-0.2116 -0.602(4) 1.5

A reasonable choice is to constrain −0.596 < B < −0.584 also in fits with higher
order polynomials



-0.2 -0.1 0 0.1 0.2 0.3
µ2/(πT)2

4.4

4.5

4.6

4.7

4.8

4.9

β

-0.2 -0.1 0 0.1 0.2 0.3
µ2/(πT)2

4.4

4.5

4.6

4.7

4.8

4.9

β

Now things work much better: here we compare the unconstrained (left) with the con-
strained fit (right).
A = 4.6974(8), B = −0.5960(12), C = −0.427(14), D = −2.4(6), χ̃2 = 1.07

LESSON: fix linear term by simulations at small chemical potentials, or by other
methods (reweighting or Taylor expansion), then analytic continuation is predictive
enough to correctly reproduce non-linear terms.
Alternatively, Pade approximants work fine, but need more free parameters.



3 – Analytic continuation from two imaginary chemical potentials
In collaboration with F. Sanfilippo

Next we switch from tests of analytic continuation to predictions for theories with a
sign problem.
We are investigating Nf = 2 QCD with two independent chemical potentials coupled
to each quark flavor

Z(T, µ1, µ2) ≡
∫
DUe−SG detM

1
4 [µ1] detM

1
4 [µ2]

µ1 and µ2 can be rewritten in terms of a quark number and of an isospin chemical
potential

µq =
µ1 + µ2

2
=
µB
3

µI =
µ1 − µ2

2



While the original theory is invariant under both charge conjugation and isospin rota-
tions, the theory in presence of finite chemical potentials obviously is not. However
the original invariance is reflected in the fact that the free energy F = −T lnZ must
be an even function of µq and µI separately, i.e. invariant under

(µq, µI)→ (µq,−µI) i.e. (µ1, µ2)→ (µ2, µ1)

and
(µq, µI)→ (−µq, µI) i.e. (µ1, µ2)→ (−µ2,−µ1)

Apart from the case µ1 = −µ2 (µB = 0, i.e. QCD at finite isospin chemical potential)
numerical simulations are not feasibile but at imaginary values of µ1 and µ2.
Analytic continuation is in this case continuation from negative to positive values of
µ2
q and µ2

I .



We are interested in reconstructing the dependence of the free energy on both chem-
ical potentials. To that aim we determine free energy first derivatives (quark number
densities) at imaginary µ’s

n̂q ≡
〈Nq〉
V T 3

=
∂

∂µq
(p/T 4) = n̂1 + n̂2

n̂I ≡
〈NI3〉
V T 3

= T
∂

∂µI
(p/T 4) = n̂1 − n̂2

where Nq and NI3 are the quark number and isospin charge operators, while

n̂i ≡
〈Ni〉
V T 3

=
1

V T 2

∂ lnZ

∂µi
= − 1

V T 3

∂F

∂µi
=

N2
t

4N3
s

〈
Tr

(
M−1[U, µi]

∂

∂aµi
M [U, µi]

)〉

Once the functional dependence of first derivatives has been fixed (fitted by a proper
ansatz), the free energy is known up to a constant term.



Knowing the free energy up to a constant we can:

• Compare free energy dependence with the prediction of the Hadron Resonance
Gas model below Tc

• Compute generalized susceptibilities at zero chemical potential and compare with
the Taylor expansion method (check consistency and efficiency)

χi,j =
∂i+j

∂µi1∂µ
j
2

(
− F

V T 4

)
=

∂i+j

∂µi1∂µ
j
2

(p/T 4)

• Determine the average phase factor measured in the phase quenched theory

〈ei2θ〉µ ≡
〈

detM(µ)

detM(−µ)

〉

(µ,−µ)

=
Z(µ, µ)

Z(µ,−µ)
= exp

(
−F (µ, µ)− F (µ,−µ)

T

)



Expected periodicities in the imaginary chemical potentials:

It is useful to define

θq = Im(µq)/T = NtaIm(µq)

θI = Im(µI)/T = NtaIm(µI)

and
θ1 = Im(µ1)/T = θq + θI

θ2 = Im(µ2)/T = θq − θI
introducing imaginary chemical potentials can be viewed as a rotation of temporal
boundary conditions of the two quarks by θ1 and θ2 respectively.

The free energy is trivially periodic in θ1 and θ2 with period 2π. That means periodicity
2π in both θq and θI plus invariance for (θq, θI)→ (θq + π, θI + π).

Furthermore, following the argument given by Roberge and Weiss, a rotation
θq → θq+2πk/Nc can be cancelled by a center transformation of gauge links, hence
the actual periodicity in θq is 2π/Nc = 2π/3.



At low temperatures (T < Tc) F is smooth function of θq, θI , hence its most natural
parametrization (even in θq and θI ) is as follows

F (θq, θI) = V
∑

h,l

Wh,l cos(3hθq) cos(lθI)

where h, l run over all couples of integers having the same parity.

Further constraints on the number of terms may be predicted by particular effective
models of strong interactions below Tc, like for instance the HRG model (more later).

In such regime information valid for analytic continuation can be gathered in the
whole θq, θI plane.



At high temperatures unphysical (RW-like) phase transitions or the continuation of
the physical (pseudo)-critical surface are met.

=⇒ above Tc information for analytic continuation can be gathered from a restricted
region around θq = θI = 0. We shall write an expression for the free energy valid in
such region.

That may be a polynomial like

F (θq, θI) =
∑

i,j

ci,j
θ2i
q

(2i)!

θ2j
I

(2j)!

with i, j non negative integers, or as a ratio of polynomials of the same kind:

F (θq, θI) =

∑
i,j ni,j

θ2i
q

(2i)!

θ2j
I

(2j)!

∑
k,l dk,l

θ2k
q

(2k)!

θ2l
I

(2l)!

∣∣∣
d00=1



4 – Numerical Results

Parameters are fixed according to R.V. Gavai and S. Gupta, Phys. Rev. D71, 114014 (2005) and
correspond to a fixed pion mass mπ ∼ 280 MeV, mρ ∼ 900 MeV and a−1 ∼ 700

MeV.
T/Tc a mq β npairs ntraj

0.9 0.02778 5.26 95 2300

0.951 0.02631 5.275 95 2460

1 0.025 5.2875 95 2200

1.048 0.0238 5.30 24 3120

1.25 0.02 5.35 77 2270

We have made simulations on a 163 × 4 lattice using a RHMC algorithm.
ntraj is the average number of trajectories for each µq, µI pair
npairs the total number of simulated pairs for each T

For T ≤ Tc we have made simulations at about 100 different pairs (θq, θI) distributed
non-uniformly in the whole interesting range [0, π]× [0, π]

Less pairs in a restricted region around the origin have been taken for T > Tc.



Validity of the Hadron Resonance Gas model
A quite successful phenomenological description of the thermal medium below Tc is
that of a gas of hadron resonances with free particle spectrum for all constituents.
The partition function for species i of spin si, mass mi, baryon number Bi, isospin
I3i, is given by

lnZi = ∓giV
2π2

∫ ∞

0

ln

(
1∓ zie

√
m2
i
+k2

T

)
k2dk =

V Tm2
i

2π2

∞∑

l=1

[
(±1)l+1

l2
zliK2

(
mil

T

)]

where gi = 2si + 1, the minus (plus) sign applies to mesons (baryons) and

zi = eµi/T = exp

(
3Biµq + 2I3iµI

T

)

The Bessel functionK2 is exponentially suppressed for large values of the argument,
hence for mi � T we can take the first term l = 1 in the l expansion.



Summing up over all known particles and resonances and grouping together all
charge conjugation and isospin partners we get

lnZ(T, V, µq, µI) = V T 3
∑

B,I,m

W (m, g, T )δ̄(B) cosh
(

3B
µq
T

)

∑

I3≥0

δ̄(I3) cosh
(

2I3
µI
T

)



where δ̄(n) = 1− 1/2δn,0 and W (m, g, T ) = (2/π2)(m/T )2gK2(m/T ).

Such prediction is easily continued to imaginary chemical potentials

lnZ(T, V, θq, θI) = V T 3
∑

B,I

WB,I(T )δ̄(B) cos(3Bθq)
∑

I3≥0

δ̄(I3) cos(2I3θI)

n̂q ≡ Im(〈Nq〉/V T 3) =
∑

B,I

3BWB,I(T ) sin(3Bθq)
∑

I3≥0

δ̄(I3) cos(2I3θI)

n̂I ≡ Im(〈NI〉/V T 3) =
∑

B,I

WB,I(T )δ̄(B) cos(3Bθq)
∑

I3≥0

2I3 sin(2I3θI)

where WB,I(T ) =
∑

m|B,I W (m, g, T ).



Predictions of the HRG model to be tested in lattice QCD simulations can be classi-
fied as follows

1. Only a few terms contribute to free energy corresponding to known resonances,
i.e. (B, I) = (0, 0), (0, 1), (1, 1/2), (1, 3/2)

=⇒ only W0,0,W0,1,W1,1/2,W1,3/2 6= 0

2. Also the values of the coefficients can be predicted from the known experimental
resonance mass spectrum
of course since we measure first derivatives we cannot look at W0,0

The second prediction is easily affected by lattice artifacts and the presence of un-
physical quark masses which change the details of the hadron spectrum.

First prediction is instead more robust and spectrum independent.

Analytic continuation has been already used to test the HRG at θI = 0

M. D’E., M.P. Lombardo, 2002, 2004; Ph. de Forcrand, S. Kratochvila, 2006



As an example we show data for
T = 0.9Tc
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Parameter for HRG inspired fits at all temperatures T ≤ Tc

W0,1 W0,2 W1, 1
2

W1, 3
2

W1, 5
2

W1, 7
2

W2,1 W2,2 χ2/d.o.f.

T = 0.9 Tc

0.2284(11) - 0.0110(6) 0.0202(3) - - - - 284/187

0.2157(18) 0.0050(6) 0.0115(6) 0.0198(3) - - - - 206/186

0.2156(18) 0.0051(6) 0.0111(6) 0.0197(3) - - 0.00043(13) - 196/185

T = 0.951 Tc

0.2862(13) - 0.0199(7) 0.0305(4) - - - - 640/187

0.258(2) 0.0114(6) 0.0212(7) 0.0292(4) - - - - 281/186

0.257(2) 0.0117(6) 0.0203(8) 0.0290(4) - - 0.00084(18) - 259/185

0.256(2) 0.0114(6) 0.0210(8) 0.0264(6) 0.0017(3) - 0.00088(18) - 230/184

0.257(2) 0.0106(7) 0.0212(8) 0.0265(6) 0.0009(4) 0.0006(2) 0.00090(18) - 222/183

T = Tc

0.321(3) 0.0225(10) 0.0367(11) 0.0464(6) - - - - 724/186

0.318(3) 0.0236(10) 0.0336(11) 0.0460(6) - - 0.0030(3) - 628/185

0.312(2) 0.0234(10) 0.0337(11) 0.0392(9) 0.0051(5) - 0.0034(3) - 506/184

0.317(3) 0.0189(11) 0.0342(11) 0.0381(9) 0.0019(6) 0.0036(3) 0.0037(3) - 398/183

0.318(3) 0.0190(11) 0.0345(11) 0.0384(9) 0.0020(6) 0.0032(4) 0.0021(8) 0.0011(5) 392/182



Validity of HRG model at T = 0.9 Tc

A W0,2 is needed. It does not correspond to any known physical state, but it is easily
shown to correspond to the first neglected term (l = 2) in the Boltzmann approxima-
tion (two pion permutations). That would be W0,2 ∼ 0.0045 with our pion mass, to
be compared with W0,2 ∼ 0.0050(6) in the table.

A term with B = 2 is marginally visible but not necessary.

Comparing the numerical values of the coefficients is not trivial: W0,1 = 0.216(2) is
about half the expected experimental value, but is compatible within errors with the
value expected if only pion of mass mπ ∼ 280 MeV contribute (W0,1 ∼ 0.225(15)).
On the other hand mρ > UV cutoff on our lattice ...

On the whole, the HRG model is a very good approximation at T =

0.9Tc.



T = 0.95Tc

A term B = 2 is now strictly needed. This term is really not ex-
pected from the HRG model: first correction from the Boltzmann ap-
proximation would lead a term a factor 102 smaller with an opposite
sign! (baryons are fermions)
Contribution from bound states withB = 2 or rather the HRG model is
starting to break down.

W0,2 term this time is not compatible with l = 2 corrections
further W1,5/2 and W1,7/2 terms are needed

=⇒ deviations from HRG are clearly visible at T = 0.95Tc

The situations is even worse at T = T−c
This is in agreeement with similar findings by the Bielefeld-BNL collab-
oration



T > Tc
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chiral condensate,   θI = 0
chiral condensate,   θI = 0.25
chiral condensate,   θq = 0
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The regions of available imaginary chemical potentials is limited roughly by√
θ2
I + θ2

q < 0.12π at T = 1.048 Tc (left) and by
√
θ2
I + θ2

q < 0.3π at T = 1.25 Tc (right)

Above Tc polynomials or ratios of polynomials are best suited to fit data.
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At T = 1.25Tc (shown in the figure) a sixth order polynomial or a Pade P (4, 2) are
the best interpolating functions.

At T = 1.048Tc instead a fourth order polynomial provides a good fit, and a marginally
good fit is obtained with a Pade P (2, 2).

In the following we will show results for generalized suceptibilities and compare to
results obtained by Gupta and Gavai.
Polynomial have been used also at T < Tc (in a restricted region of small potentials)
to check for systematics in analytic continuation.



GENERALIZED SUSCEPTIBILITIES
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Different extrapolations provide always consistent results for χ2,0 and χ1,1. A good
agreement with Taylor expansion results can be observed as well, apart from the
T = Tc case.

For χ4,0 we observe a discrepancy between different interpolations for T = Tc and
T = 1.048 Tc; the agreement with Taylor expansion results is lost at the same tem-
peratures.

Not enough information is contained in our data to extract χ6,0: different extrapola-
tions disagree or are at most marginally compatible in the whole range of tempera-
tures.

An improvement in the determination of generalized susceptibilities could be ob-
tained by combining analytic continuation with other techniques: for instance fixing
lowest order terms in a polynomial expansion by the Taylor expansion method or by
reweighting could lead to enhanced predictivity for analytic continuation.



5 – Analytic continuation of the average phase factor

〈ei2θ〉µ =
Z(µ, µ)

Z(µ,−µ)
= exp

(
−F (µ, µ)− F (µ,−µ)

T

)

We can make use of best interpolations at imaginary chemical potentials to get 〈ei2θ〉µ
by analytic continuation, the average phase being continuous at µ2 = 0 (K. Splittorff

and J. J. M. Verbaarschot, 2007 ; K. Splittorff and B. Svetitsky, 2007)

• Comparison of different interpolations (e.g. HRG inspired and polynomial below
Tc) may give an idea of systematic effects.

• In the case of HRG inspired fits, we can actually distinguish the contribution of
each particle species to the average phase factor!

〈ei2θ〉µ = exp

(
V

T

∑

h,l

Wh,l(cosh(3h
µ

T
)− cosh(l

µ

T
))

)



Average phase factor, T = 0.9Tc
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Different continuations (HRG and polynomial) in perfect agreement
Agreement with Chiral Perturbation Theory (Splittorff Verbaarschot, 2007) if only pion-like
terms in the HRG fit are taken into account
Baryons contribute to increase the average phase factor! (better sign problem?)



Average phase factor, T = 0.951Tc
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Same considerations as for T = 0.95 Tc



Average phase factor, all T from polynomial fits
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The sign problem improves at higher T .



6 – Conclusions and Perspectives

Tests of analytic contination: non-linear terms in µ2 can be predicted for the
critical line in QCD at finite isospin density.
The situation may be worse in real QCD (RW-line closer to the µ = 0 axis)

Prediction from analytic contination in Nf = 2 QCD:

• HRG model: corrections starting from T = 0.95Tc

• Generalized susceptibilities: not eough information to go beyond χ40, room for
considerable improvement by mixing with other methods.

• Average phase factor: Agreement with CPT below Tc if only pions are taken into
account. Baryon contribution increases the average phase factor.


