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QCD thermodynamics at 0

• Interesting properties of QCD
Measurable in heavy-ion collisions

Critical point at finite density

• Methods for the high density region: required
• Most difficult problem: “sign problem”

In this talk
• Propose a method to avoid the sign problem.
• Discuss an effective potential as a function of the total quark number

and the nature of phase transitions at finite density.
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Problem of complex quark determinant at 0

 Problem of Complex Determinant at 0

 Boltzmann weight: complex at 0
 Monte-Carlo method is not applicable.
 Configurations cannot be generated.
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Reweighting method for 0 and Sign problem
(Ferrenberg-Swendsen  Glasgow group, Fodor-Katz)

 Reweighting method
 Boltzmann weight: Complex for >0

 Monte-Carlo method is not applicable directly.

 Perform Simulation at =0.

 Sign problem
 If changes its sign frequently,

become smaller than their statistical errors.

 Then cannot be computed.
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Complex phase distribution and
Gaussian approximation

Physical Review D77 (2008) 014508 [arXiv:0706.3549]



Sign problem and phase fluctuations
• Complex phase of detM

– Taylor expansion: odd terms of ln det M (Bielefeld-Swansea, PRD66, 014507 (2002))

• || > /2: Sign problem happens.
changes its sign.

• Gaussian distribution
– Results for p4-improved staggered
– Taylor expansion up to O(5)

– Dashed line: fit by a Gaussian function

Well approximated
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Complex phase distribution (S.E., Phys.Rev.D77, 014508(2008))

Assume: Gaussian distribution
Sign problem is avoided.

• Distribution function (histogram): W(F,)

• Gaussian integral:
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Why Gaussian distribution?
Taylor expansion:

– e.g. 1st term:

– If density correlation: not long & volume: large,
Central limit theorem : Gaussian distribution

• Valid for large volume (except on the critical point)
• Also see Splittorff and Verbaarschot, arXiv:0709.2218, chiral perturbation theory

For the case:

because

• Valid for low density
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Taylor expansion of

• Distribution function of quark number at =0

– D1~ total quark number

– Gaussian distribution except at a critical point
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Canonical approach
Physical Review D 78 (2008) 074507[arXiv:0804.3227]

• An application of the Gaussian approximation
• Configurations; the complex phase fluctuation is large

 do not contribute to the final results.

• Simulations:
– Bielefeld-Swansea Collab., PRD71,054508(2005).
– 2-flavor p4-improved staggered quarks with m770MeV
– 163x4 lattice
– ln det M: Taylor expansion up to O(6)



-dependence of the effective potential
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hadron

QGP

CSC

1st order phase transition

Critical point ,,TXV

Crossover

Correlation length: short
W(X): Gaussian distribution
V(X): Quadratic function Correlation length: long

Curvature: Zero

Two phases coexist
Curvature: Negative

)(ln)(eff XWXV 

   ,,,,   TXWdXTZ       'e0det,,' f XXMDUTXW gSN  
X: order parameters, total quark number, average plaquette etc.



Canonical approach
• Canonical partition function

• Effective potential as a function of the quark number N.

• At the minimum,

• First order phase transition: Two phases coexist.
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First order phase transition line

• Mixed state First order transition
• Inverse Laplace transformation by Glasgow method

Kratochvila, de Forcrand, PoS (LAT2005) 167 (2005)

Nf=4 staggered fermions, lattice
– Nf=4: First order for all .

• Simulations with canonical ensemble (Kentucky group)

In the thermodynamic limit, ,0
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• Fugacity expansion (Laplace transformation)

canonical partition function

• Inverse Laplace transformation

– Note: periodicity

• Derivative of lnZ

Canonical partition function
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• Inverse Laplace transformation

• Saddle point approximation (valid for large V, 1/V expansion)
– Taylor expansion at the saddle point.

• At low density: The saddle point and the Taylor expansion coefficients
can be estimated from data of Taylor expansion around =0.

Saddle point approximation
(S.E., arXiv:0804.3227)
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• Canonical partition function in a saddle point approximation

• Chemical potential

Saddle point approximation
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saddle point reweighting factor

Similar to the reweighting method
(sign problem & overlap problem)



Saddle point in complex /T plane

• Find a saddle point z0

numerically for each conf.

• Two problems
– Sign problem
– Overlap problem
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Technical problem 1: Sign problem

• Complex phase of detM
– Taylor expansion (Bielefeld-Swansea, PRD66, 014507 (2002))

• || > /2: Sign problem happens.

changes its sign.
• Gaussian distribution

– Results for p4-improved staggered
– Taylor expansion up to O(5)

– Dashed line: fit by a Gaussian function

Well approximated
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Technical problem 2: Overlap problem
Role of the weight factor exp(F+i)

• The weight factor has the same effect as when  (T) increased.
• */T approaches the free quark gas value in the high density

limit for all temperature.
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Technical problem 2: Overlap problem

• Density of state method
W(P): plaquette distribution
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linear for small P
linear for small P

  )(exp eff PWP for small PSame effect when  changes.



Reweighting for  and curvature of –lnW(P)

Change: 1(T) 2(T)

Weight:

Potential:

 PNSS gg 12site12 6)()( 

         121
12   WeWW gg SS

+ =

     212site1 ln6ln  WPNW

Peak position of W(P) moves as b increases.

     ,PWdPZ       'e0det,' f PPMDUPW gSN  
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Plaquette histogram for each 

Potential:
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(Data: Nf=2 p4-staggared, m/m0.7, =0)
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Overlap problem, Multi- reweighting
Ferrenberg-Swendsen, PRL63,1195(1989)

• When the density increases,
the position of the importance
sampling changes.

• Combine all data by
multi- reweighting

Problem:
• Configurations do not cover all

region of P.
• Calculate only when <P> is near

the peaks of the distributions.

Plaquette value by multi-beta reweighting
peak position of the distribution

○ <P> at each 
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Chemical potential vs density
• Approximations:

– Taylor expansion: ln det M
– Gaussian distribution: 
– Saddle point approximation

• Two states at the same q/T
– First order transition at

T/Tc < 0.83, q/T >2.3

• */T approaches the free quark
gas value in the high density limit
for all T.

• Solid line: multi-b reweighting
• Dashed line: spline interpolation
• Dot-dashed line: the free gas limit

Nf=2 p4-staggered, lattice4163

Number density



Summary
• Complex phase distribution:

well approximated by a Gaussian function.
• Once we assume the Gaussian distribution,

the sign problem is avoided.
• Applying the Gaussian method, we evaluate the canonical

partition function for 2-flavor p4-improved staggered quarks
with m/m  0.7 on 163x4 lattice.
– High  limit: /T approaches the free gas value for all T.
– Configurations having large phase fluctuations do not affect

to the calculation.
– Existence of the critical point: suggested.
– First order phase transition for T/Tc < 0.83, q/T >2.3.

• Studies near physical quark mass: important.
– Location of the critical point: sensitive to quark mass


