A method to avoid the sign problem in finite density lattice QCD

Shinji Ejiri (Brookhaven National Laboratory)

Existence of the critical point in finite density lattice QCD Physical Review D77 (2008) 014508 [arXiv:0706.3549]

Canonical partition function and finite density phase transition in lattice QCD Physical Review D 78 (2008) 074507[arXiv:0804.3227]

> ECT* workshop ``Sign Problems and Complex Actions" (Trento, March 2-6, 2009)

QCD thermodynamics at $\mu \neq 0$

- Interesting properties of QCD Measurable in heavy-ion collisions
 Critical point at finite density
- Methods for the high density region: required
- Most difficult problem: "sign problem"

In this talk

- Propose a method to avoid the sign problem.
- Discuss an effective potential as a function of the total quark number and the nature of phase transitions at finite density.

Problem of complex quark determinant at $\mu \neq 0$

• Problem of Complex Determinant at $\mu \neq 0$

 $(M(\mu))^{\dagger} = \gamma_5 M(-\mu)\gamma_5 \qquad (\gamma 5 \text{-conjugate})$ $\implies (\det M(\mu))^{\ast} = \det M(-\mu) \neq \det M(\mu)$

- Boltzmann weight: complex at $\mu \neq 0$
 - Monte-Carlo method is not applicable.
 - Configurations cannot be generated.

Reweighting method for $\mu \neq 0$ and Sign problem (Ferrenberg-Swendsen \rightarrow Glasgow group, Fodor-Katz)

- Reweighting method
 - Boltzmann weight: Complex for $\mu > 0$
 - Monte-Carlo method is not applicable directly.

partition function:

$$Z = \int DU \left(\det M(\mu) \right)^{N_{\rm f}} e^{-S_g}$$

$$\det M \equiv \left| \det M \right| e^{i\theta}$$

• Perform Simulation at $\mu=0$.

$$\langle O \rangle_{(\beta,\mu)} = \frac{1}{Z} \int DUO \left(\det M_{(\mu)} \right)^{N_{\rm f}} e^{-S_g(\beta)} = \frac{\left\langle Oe^{i\theta} \left| \det^{N_{\rm f}} M(\mu) / \det^{N_{\rm f}} M(0) \right| \right\rangle_{(\beta,0)}}{\left\langle e^{i\theta} \left| \det^{N_{\rm f}} M(\mu) / \det^{N_{\rm f}} M(0) \right| \right\rangle_{(\beta,0)}}$$

- Sign problem
 - If $e^{i\theta}$ changes its sign frequently, $\langle Oe^{i\theta} \cdots \rangle_{(\beta,0)}$ and $\langle e^{i\theta} \cdots \rangle_{(\beta,0)}$ become smaller than their statistical errors.
 - Then $\langle O \rangle_{(\beta,\mu)}$ cannot be computed.

Complex phase distribution and Gaussian approximation

Physical Review D77 (2008) 014508 [arXiv:0706.3549]

Sign problem and phase fluctuations

- Complex phase of det $M = N_f \operatorname{Im}[\ln \det M(\mu)]$
 - Taylor expansion: odd terms of $\ln \det M$ (Bielefeld-Swansea, PRD66, 014507 (2002))

$$\theta = N_{\rm f} \operatorname{Im} \left[\frac{\mu}{T} \frac{\mathrm{d} \ln \det M}{\mathrm{d}(\mu/T)} + \frac{1}{3!} \left(\frac{\mu}{T} \right)^3 \frac{\mathrm{d}^3 \ln \det M}{\mathrm{d}^3(\mu/T)} + \frac{1}{5!} \left(\frac{\mu}{T} \right)^5 \frac{\mathrm{d}^5 \ln \det M}{\mathrm{d}^5(\mu/T)} + \cdots \right]^{-1} \right]$$

 θ : NOT in the range of $[-\pi, \pi]$

- $|\theta| > \pi/2$: Sign problem happens. • $e^{i\theta}$ changes its sign. $\left\langle \left(\frac{\det M(\mu)}{\det M(0)}\right)^{N_f} \right\rangle = \left\langle e^{i\theta}e^F \right\rangle <<$ (statistical error)
- Gaussian distribution
 - Results for p4-improved staggered
 - Taylor expansion up to $O(\mu^5)$
 - Dashed line: fit by a Gaussian function

Well approximated

Complex phase distribution (S.E., Phys.Rev.D77, 014508(2008))

Binder cumulant

$$B_4^{\theta} \equiv \frac{\left\langle \theta^4 \right\rangle}{\left\langle \theta^2 \right\rangle^2} = 3 \qquad \text{for Gaussian}$$

Assume: Gaussian distribution

 \implies Sign problem is avoided.

/ \

- Distribution function (histogram): $W(F,\theta)$
- Gaussian integral:

$$\left\langle e^{F} e^{i\theta} \right\rangle = \int dF \int d\theta \ e^{F} e^{i\theta} W \left(F, \theta \right) \approx \int dF \ e^{F} e^{-1/(4\alpha)} W'(F)$$

$$W(F, \theta) \approx \sqrt{\frac{\alpha(F)}{\pi}} e^{-\alpha(F)\theta^{2}} W'(F) \qquad \longrightarrow \qquad \left\langle e^{F} e^{i\theta} \right\rangle \approx \left\langle e^{F} e^{-\left\langle \theta^{2} \right\rangle_{F}} / 2 \right\rangle$$

$$\frac{1}{2\alpha(F')} = \frac{\int \theta^2 W(F',\theta) d\theta}{\int W(F',\theta) d\theta} \equiv \left\langle \theta^2 \right\rangle_F$$

real and positive (No sign problem) $\langle e^F e^{i\theta} \rangle > (\text{statistical error})$

Why Gaussian distribution?

Taylor expansion:
$$\theta = N_{\rm f} \operatorname{Im} \left[\frac{\mu}{T} \frac{d \ln \det M}{d(\mu/T)} + \frac{1}{3!} \left(\frac{\mu}{T} \right)^3 \frac{d^3 \ln \det M}{d^3(\mu/T)} + \frac{1}{5!} \left(\frac{\mu}{T} \right)^5 \frac{d^5 \ln \det M}{d^5(\mu/T)} + \cdots \right]$$

- e.g. 1st term:
$$\operatorname{Im} \left[\frac{d \ln \det M}{d(\mu/T)} \right] = \operatorname{Im} \left[Tr \left(M^{-1} \frac{\partial M}{\partial(\mu/T)} \right) \right]$$
Diagonal element: local density operator

- If density correlation: not long & volume: large, Central limit theorem $\implies \theta$: Gaussian distribution
- Valid for large volume (except on the critical point)
- Also see Splittorff and Verbaarschot, arXiv:0709.2218, chiral perturbation theory

For the case:
$$W(\theta) \approx \sqrt{\frac{\alpha}{\pi}} \left(1 - \frac{3\alpha_4}{4\alpha_2^2} + \cdots \right)^{-1} \exp\left(-\alpha_2 \theta^2 - \alpha_4 \theta^4 + \cdots \right), \quad \left| \frac{\alpha_4}{\alpha_2} < O(1) \right|$$

$$\int d\theta \ e^{i\theta} W(\theta) \rightarrow \exp\left(-\frac{1}{2} \left\langle \theta^2 \right\rangle_{(P,|F|)} + \frac{1}{16\alpha_2^3} \frac{\alpha_4}{\alpha_2} + O\left[\left(\frac{\alpha_4}{\alpha_2} \right)^2 \right] \right)$$

because $1/\alpha_2 \sim 2 \left\langle \theta^2 \right\rangle_{(P,|F|)} \sim O(\mu^2)$ $\sim O(\mu^6)$
• Valid for low density

$$\begin{aligned} \text{Taylor expansion of} \quad & Z(T,\mu) \approx Z(T,0) \left\langle e^{F} e^{-\left\langle \theta^{2} \right\rangle_{F}/2} \right\rangle \\ & \frac{p}{T^{4}}(\mu) = \frac{p}{T^{4}}(0) + c_{2} \left(\frac{\mu_{q}}{T}\right)^{2} + c_{4} \left(\frac{\mu_{q}}{T}\right)^{4} + c_{6} \left(\frac{\mu_{q}}{T}\right)^{6} + \cdots \quad \left(\frac{p(T,\mu)}{T^{4}} = \frac{N_{t}^{3}}{N_{s}^{3}} \ln Z(T,\mu)\right) \\ & c_{2} = \frac{N_{t}}{2!N_{s}^{3}} \frac{\partial^{2} \ln Z}{\partial \mu^{2}} = \frac{N_{t}}{2!N_{s}^{3}} A_{2}, \quad c_{4} = \frac{1}{4!N_{s}^{3}N_{t}} \frac{\partial^{4} \ln Z}{\partial \mu^{4}} = \frac{1}{4!N_{s}^{3}N_{t}} \left(A_{4} - 3A_{2}^{2}\right), \\ & A_{2} = \langle D_{2} \rangle + \left\langle D_{1}^{2} \right\rangle \\ & A_{4} = \langle D_{4} \rangle + 4 \langle D_{3}D_{1} \rangle + 3 \langle D_{2}^{2} \rangle + 6 \langle D_{2}D_{1}^{2} \rangle + \left\langle D_{1}^{4} \right\rangle \\ & \rightarrow \frac{3 \langle D_{1}^{2} \rangle^{2}}{\end{aligned}$$

- Distribution function of quark number at $\mu=0$
 - $D_1 \sim \text{total quark number} \sim \sum_x \overline{\psi} \gamma_0 \psi(x)$
 - Gaussian distribution except at a critical point

$$B_4^{D_1} = \frac{\left\langle D_1^4 \right\rangle_F}{\left\langle D_1^2 \right\rangle_F^2} \approx 3 \qquad \longrightarrow \qquad \left\langle D_1^4 \right\rangle_F \approx 3 \left\langle D_1^2 \right\rangle_F^2$$

Canonical approach

Physical Review D 78 (2008) 074507[arXiv:0804.3227]

- An application of the Gaussian approximation
- Configurations; the complex phase fluctuation is large
 → do not contribute to the final results.
- Simulations:
 - Bielefeld-Swansea Collab., PRD71,054508(2005).
 - 2-flavor p4-improved staggered quarks with $m\pi \approx 770 \text{MeV}$
 - -16^3 x4 lattice
 - In det *M*: Taylor expansion up to $O(\mu^6)$

Canonical approach

• Canonical partition function

$$Z_{GC}(T,\mu) = \sum_{N} Z_{C}(T,N) \exp(N\mu/T) \equiv \sum_{N} W(N)$$

- Effective potential as a function of the quark number N. $V_{\text{eff}}(N) = -\ln W(N) = -\ln Z_C(T, N) - N \mu/T$
- At the minimum,

$$\frac{\partial V_{\text{eff}}(N)}{\partial N} = -\frac{\partial \ln W(N)}{\partial N} = -\frac{\partial \ln Z_{C}(T,N)}{\partial N} - \frac{\mu}{T} = 0$$

• First order phase transition: Two phases coexist.

First order phase transition line

- Inverse Laplace transformation by Glasgow method Kratochvila, de Forcrand, PoS (LAT2005) 167 (2005)
 Nf=4 staggered fermions, 6³ × 4 lattice
 Nf=4: First order for all ρ.
- Simulations with canonical ensemble (Kentucky group)

Canonical partition function

• Fugacity expansion (Laplace transformation)

$$Z_{GC}(T,\mu) = \sum_{N} \underline{Z_C(T,N)} \exp(N\mu/T) \qquad \rho = N / V$$

canonical partition function

• Inverse Laplace transformation

$$Z_{C}(T,N) = \frac{3}{2\pi} \int_{-\pi/3}^{\pi/3} d(\mu_{I}/T) e^{-N(\mu_{0}/T + i\mu_{I}/T)} Z_{GC}(T,\mu_{0} + i\mu_{I}) \xrightarrow{\mu_{0}} \mu_{R}$$

$$\frac{Z_{GC}(\mu)}{Z_{GC}(0)} = \frac{1}{Z_{GC}(0)} \int DU (\det M_{(\mu)})^{N_{r}} e^{-S_{g}} = \left\langle \left(\frac{\det M(\mu)}{\det M(0)}\right)^{N_{r}} \right\rangle_{\mu=0}^{N_{r}} \xrightarrow{\text{Integral}}$$

$$- \text{Note: periodicity} \quad Z_{GC}(T,\mu+2\pi iT/3) = Z_{GC}(T,\mu)$$

$$\frac{\mu^{*}}{T} = -\frac{\partial \ln Z_{C}(T,N)}{\partial N}$$

 μ_I

Saddle point approximation (S.E., arXiv:0804.3227)

• Inverse Laplace transformation

$$Z_{C}(T,N) = \frac{3}{2\pi} \int_{-\pi/3}^{\pi/3} d(\mu_{I}/T) e^{-N(\mu_{0}/T + i\mu_{I}/T)} Z_{GC}(T,\mu_{0} + i\mu_{I})$$

$$= \frac{3Z_{GC}(0)}{2\pi} \left\langle \int_{-\pi/3}^{\pi/3} d(\mu_{I}/T) e^{-N(\mu_{0}/T + i\mu_{I}/T)} \left(\frac{\det M(\mu_{0} + i\mu_{I})}{\det M(0)} \right)^{N_{f}} \right\rangle^{M_{f}}$$
Integral

Saddle point

• Saddle point approximation (valid for large *V*, *1/V* expansion)

- Taylor expansion at the saddle point.
$$\mu_0/T = z_0$$
 $\rho = N/V$
Saddle point: Z_0 $\left[\frac{N_f}{V}\frac{\partial(\ln \det M)}{\partial(\mu/T)} - \rho\right]_{\frac{\mu}{T} = z_0} = 0$ $V \equiv N_s^3$

• At low density: The saddle point and the Taylor expansion coefficients can be estimated from data of Taylor expansion around $\mu=0$.

$$N_{\rm f} \ln \det M(\mu) = N_{\rm f} \sum_{n=0}^{\infty} \left[\frac{1}{n!} \left(\frac{\mu}{T} \right)^n \frac{{\rm d}^n \ln \det M}{{\rm d}(\mu/T)^n} \right] \equiv V N_{\rm f} N_{\rm t} \sum_{n=0}^{\infty} \left[D_n \left(\frac{\mu}{T} \right)^n \right]$$

Saddle point approximation

- Canonical partition function in a saddle point approximation $\frac{Z_{C}(T,\rho)}{Z_{GC}(T,0)} = \frac{3}{\sqrt{2\pi}} \left\langle \exp\left[N_{f} \ln\left(\frac{\det M(z_{0})}{\det M(0)}\right) - V\rho z_{0}\right] e^{-i\alpha/2} \sqrt{\frac{1}{V|R''(z_{0})|}} \right\rangle_{(T,\mu=0)}$ $\equiv \frac{3}{\sqrt{2\pi}} \left\langle \exp\left(F + i\theta\right) \right\rangle_{(T,\mu=0)}$ Saddle point: Z_{0} $R''\left(\frac{\mu}{T}\right) = \frac{N_{f}}{V} \frac{\partial^{2} (\ln \det M)}{\partial (\mu/T)^{2}} \equiv |R''|e^{i\alpha}$
- Chemical potential

$$\frac{\mu^{*}(\rho)}{T} \equiv \frac{-1}{V} \frac{\partial \ln Z_{C}(T,\rho)}{\partial \rho} \approx \frac{\langle z_{0} \exp(F + i\theta) \rangle_{(T,\mu=0)}}{\langle \exp(F + i\theta) \rangle_{(T,\mu=0)}}$$
saddle point reweighting factor

Similar to the reweighting method (sign problem & overlap problem)

Saddle point in complex μ/T plane

 $\rho/T^{3}=2.0$ • Find a saddle point *z*₀ numerically for each conf. 0.5 $\left[\frac{N_{\rm f}}{V}\frac{\partial\left(\ln\,\det\,M\right)}{\partial\left(\mu/T\right)}-\rho\right]_{\frac{\mu}{T}=z_0}=0\quad \boxed{\frac{N_{\rm f}}{\Xi}}^0$ **β=3.70** B=3.63 -0.5 $\beta = 3.55$ • Two problems - Sign problem -1 3 ١Û 2 $\operatorname{Re}[z_0]$ – Overlap problem

Technical problem 1: Sign problem

• Complex phase of det M (phase) = $N_f \text{ Im}[\ln \det M(\mu)]$

- Taylor expansion (Bielefeld-Swansea, PRD66, 014507 (2002))

$$\theta = \operatorname{Im}\left[V\left(N_{f}N_{t}\sum_{n=1}^{\infty}D_{n}z_{0}-\rho z_{0}\right)\right]-\frac{\alpha}{2} \quad \Longrightarrow \quad \theta: \text{ NOT in the range } [-\pi, \pi]$$

- $|\theta| > \pi/2$: Sign problem happens.
 - \rightarrow e^{*i* θ} changes its sign.
- Gaussian distribution
 - Results for p4-improved staggered
 - Taylor expansion up to $O(\mu^5)$
 - Dashed line: fit by a Gaussian function

Well approximated

$$W(\theta) \approx \sqrt{\frac{\alpha}{\pi}} e^{-\alpha \theta^2}$$

$$\left\langle e^{i heta}e^{F}
ight
angle lpha \left\langle e^{-\left\langle heta^{2}
ight
angle _{F}}/^{2}e^{F}
ight
angle$$

$$\frac{\rho/T^{3} = 2.0}{\rho} \qquad \beta = 3.55$$

$$\frac{\beta}{-80} \qquad \beta = 3.55$$

$$\frac{\beta}{-80}$$

Technical problem 2: Overlap problem Role of the weight factor $exp(F+i\theta)$

- The weight factor has the same effect as when β (*T*) increased.
- $\mu*/T$ approaches the free quark gas value in the high density limit for all temperature.

Technical problem 2: Overlap problem

• Density of state method W(P): plaquette distribution $\left\langle \exp\left(F + i\theta\right)\right\rangle_{P}W(P) \neq \exp\left(\frac{\pi}{T}\right) = \frac{\int \langle z_{0} \exp\left(F + i\theta\right)\rangle_{P}W(P)dP}{\int \langle \exp\left(F + i\theta\right)\rangle_{P}W(P)dP}$ $\left\langle \exp\left(F + i\theta\right)\right\rangle_{P}W(P) \approx \exp\left(\langle F \rangle_{P} - \langle \theta^{2} \rangle_{P}/2 + \cdots\right)W(P)$ Same effect when β changes. $\propto \exp\left(\Delta\beta_{eff}P\right)W(P)$ for small P

Reweighting for $\beta(T)$ and curvature of $-\ln W(P)$ $Z(\beta) = \int dP W(P,\beta) \qquad W(P',\beta) = \int DU (\det M(0))^{N_{\rm f}} e^{-S_g} \delta(P-P')$ Change: $\beta_1(T) \implies \beta_2(T)$ Weight: $W(\beta_1) \Rightarrow W(\beta_2) = e^{-S_g(\beta_2) + S_g(\beta_1)} W(\beta_1)$ $S_{g}(\beta_{2}) - S_{g}(\beta_{1}) = -6N_{site}(\beta_{2} - \beta_{1})P$ $-\ln W(\beta_1) - 6N_{site}(\beta_2 - \beta_1)P = -\ln W(\beta_2)$ Potential: $\left\langle \right\rangle + \left\langle \right\rangle = \left\langle \left\langle \right\rangle \right\rangle$ Peak position of W(P) moves as b increases. (ρ increases) \approx (β (*T*) increases)

Plaquette histogram for each β

(Data: Nf=2 p4-staggared, $m\pi/m\rho\approx0.7$, $\mu=0$)

$$W(P',\beta) = \int DU(\det M)^{N_{\rm f}} e^{-S_g(\beta)} \delta(P-P')$$

Potential:

$$-\ln W(\beta_{1}) - 6N_{site}(\beta_{2} - \beta_{1})P = -\ln W(\beta_{2})$$

$$-\ln W(0) - \left(\langle F \rangle_{P} - \langle \Theta^{2} \rangle_{P} / 2 \right) \approx -\ln W(\mu)$$

(ρ increases) \approx (β (T) increases)

Overlap problem, Multi-ß reweighting

Ferrenberg-Swendsen, PRL63,1195(1989) sity increases, f the importance $\langle P \rangle \approx \frac{\langle P \exp(F + i\theta) \rangle_{(T,\mu=0)}}{\langle \exp(F + i\theta) \rangle_{(T,\mu=0)}}$

- When the density increases, the position of the importance sampling changes.
- Combine all data by multi-β reweighting

Problem:

- Configurations do not cover all region of *P*.
- Calculate only when <*P*> is near the peaks of the distributions.

Chemical potential vs density

- Solid line: multi-b reweighting
- Dashed line: spline interpolation
- Dot-dashed line: the free gas limit

Summary

- Complex phase distribution: well approximated by a Gaussian function.
- Once we assume the Gaussian distribution, the sign problem is avoided.
- Applying the Gaussian method, we evaluate the canonical partition function for 2-flavor p4-improved staggered quarks with $m_{\pi}/m_{\rho} \approx 0.7$ on 16³x4 lattice.
 - High ρ limit: μ/T approaches the free gas value for all *T*.
 - Configurations having large phase fluctuations do not affect to the calculation.
 - Existence of the critical point: suggested.
 - First order phase transition for $T/T_c < 0.83$, $\mu_q/T > 2.3$.
- Studies near physical quark mass: important.
 - Location of the critical point: sensitive to quark mass