Strong coupling lattice QCD at finite temperature and density

Philippe de Forcrand ETH Zürich and CERN

with Michael Fromm (ETH)

arXiv:0811.1931

and in progress

ETH

Eidgenössische Technische Hochschule Zürich Swiss Federal Institute of Technology Zurich

Intro Algorithm Results Concl.

QCD phase diagram according to Wikipedia

This talk is about the hadron ↔ nuclear matter transition

Motivation (1)

Strong coupling LQCD: why bother ?

Asymptotic freedom:
$$a(\beta_{gauge}) \propto \exp(-\frac{\beta_{gauge}}{4N_cb_0})$$

ie. $a \to 0$ when $\beta_{gauge} \equiv \frac{2N_c}{g^2} \to +\infty$. Here $\beta_{gauge} = 0$:

- Lattice "infinitely coarse"
- Physics not universal

Nevertheless:

- Properties similar to QCD: confinement and χSB
- Include (perhaps) next term in strong coupling expansion, ie. $\beta_{gauge} > 0$
- When you can't find the solution to the sign problem,

live with it

When $\beta_{gauge}=$ 0, sign problem is manageable \rightarrow full phase diagram

Motivation (2)

• 25⁺ years of analytic predictions:

80's: Kluberg-Stern et al., Kawamoto-Smit, Damgaard-Kawamoto

 $T_c(\mu = 0) = 5/3, \ \mu_c(T = 0) = 0.66$

90's: Petersson et al., $1/g^2$ corrections 00's: detailed (μ , T) phase diagram: Nishida, Kawamoto,... 08: Ohnishi, Münster & Philipsen,...

How accurate is mean-field (1/d) approximation?

• Almost no Monte Carlo crosschecks:

89: Karsch-Mütter \rightarrow MDP formalism $\rightarrow \mu_c(T = 0) \sim 0.63$

92: Karsch et al. $T_c(\mu = 0) \approx 1.40$

99: Azcoiti et al., MDP ergodicity ??

06: PdF-Kim, HMC \rightarrow hadron spectrum \sim 2% of mean-field

Can one trust the details of analytic phase-diagram predictions?

Phase diagram according to Nishida (2004)

Baryon Chemical Potential $\mu_{\rm B}$

- Very similar to conjectured phase diagram of $N_f = 2$ QCD
- But no deconfinement here: high density phase is nuclear matter
- Baryon mass = $M_{\text{proton}} \Rightarrow \text{ lattice spacing } a^{-1} \sim 300 \text{ MeV}$
- What happens to hadron \leftrightarrow nuclear matter transition as m_{π} is varied?

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\mathcal{D}(U) + m)\psi)$, no plaquette term ($\beta_{gauge} = 0$)

• One colored fermion field per site (6 d.o.f. - no Dirac indices)

•
$$\mathcal{D}(U) = \frac{1}{2} \sum_{x,v} \eta_v(x) (U_v(x) - U_v^{\dagger}(x - \hat{v})), \quad \eta_v(x) = (-)^{x_1 + ... + x_{v-1}}$$

 $U(1)_V \times U(1)_A$ symmetry:

$$\begin{array}{l} \psi(x) \to e^{i\theta}\psi(x) \\ \bar{\psi}(x) \to e^{-i\theta}\bar{\psi}(x) \end{array} \right\} \text{ unbroken } \Rightarrow \text{ quark number } \Rightarrow \text{ chem. pot.} \\ \psi(x) \to e^{i\epsilon(x)\theta}\psi(x) \\ \bar{\psi}(x) \to e^{i\epsilon(x)\theta}\bar{\psi}(x) \\ \epsilon(x) = (-)^{x_0+x_1+x_2+x_3} \end{array} \right\} \text{ spont. broken } (m=0) \Rightarrow \text{ quark condensate }$$

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\mathcal{D}(U) + m)\psi)$, no plaquette term ($\beta_{gauge} = 0$)

• One colored fermion field per site (6 d.o.f. - no Dirac indices)

- Chemical potential $\mu \ o \exp(\pm a \mu) U_{\pm 4}$
- Alternative 1: integrate over fermions

$$Z = \int \mathcal{D} U \det(\mathcal{D}(U) + m) \rightarrow \text{HMC, etc...}$$

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\mathcal{D}(U) + m)\psi)$, no plaquette term ($\beta_{gauge} = 0$)

• One colored fermion field per site (6 d.o.f. - no Dirac indices)

- Chemical potential $\mu \ o \exp(\pm a \mu) U_{\pm 4}$
- Alternative 1: integrate over fermions

$$Z = \int \mathcal{D} U \det(\not\!\!D(U) + m) \rightarrow HMC$$
, etc...

Alternative 2: integrate over links

Rossi & Wolff

 \rightarrow **Color singlet** degrees of freedom:

- Monomer (meson $\bar{\psi}\psi$) $M(x) \in \{0, 1, 2, 3\}$
- **Dimer** (meson hopping), non-oriented $n_v(x) \in \{0, 1, 2, 3\}$
- **Baryon** hopping, oriented $\overline{BB}_{V}(x) \in \{0,1\} \rightarrow self$ -avoiding loops C

Point-like, hard-core baryons in pion bath

 $Z = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \exp(-\bar{\psi}(\mathcal{D}(U) + m)\psi)$, no plaquette term ($\beta_{gauge} = 0$)

• One colored fermion field per site (6 d.o.f. - no Dirac indices)

- Chemical potential $\mu \ o \exp(\pm a \mu) U_{\pm 4}$
- Alternative 1: integrate over fermions

$$Z = \int \mathcal{D} U \det(\not\!\!D(U) + m) \rightarrow HMC$$
, etc...

• Alternative 2: integrate over links

Rossi & Wolff

 \rightarrow **Color singlet** degrees of freedom:

- Monomer (meson $\overline{\psi}\psi$) $M(x) \in \{0, 1, 2, 3\}$
- **Dimer** (meson hopping), non-oriented $n_v(x) \in \{0, 1, 2, 3\}$
- Baryon hopping, oriented $\overline{BB}_v(x) \in \{0,1\} \rightarrow$ self-avoiding loops C

$$Z(m,\mu) = \sum_{\{M,n_{v},C\}} \prod_{x} \frac{m^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_{v}(x))!}{n_{v}(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\pm v} n_{v})(x) = 3 \ \forall x \notin \{C\}$

$$Z(m,\mu) = \sum_{\{M,n_{v},C\}} \prod_{x} \frac{m^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_{v}(x))!}{n_{v}(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\pm v} n_{v})(x) = 3 \ \forall x \notin \{C\}$

• sign of $\prod_C \rho(C)$: geometric factor $\varepsilon(C) = \pm 1$ for each loop C; 4 types:

Karsch & Mütter: Regroup into "MDP ensemble" \rightarrow sign pb. eliminated at $\mu = 0$

$$Z(m,\mu) = \sum_{\{M,n_{V},C\}} \prod_{x} \frac{m^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_{v}(x))!}{n_{v}(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\pm v} n_{v})(x) = 3 \ \forall x \notin \{C\}$

• sign of $\prod_C \rho(C)$: geometric factor $\varepsilon(C) = \pm 1$ for each loop C; 4 types:

→ "MDP ensemble"

Further difficulties:

 changing monomer number difficult: weight ~ m^{Σ_x M(x)} monomer-changing update (Karsch & Mütter) restricted to m ~ O(1)

$$Z(m,\mu) = \sum_{\{M,n_V,C\}} \prod_x \frac{m^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_V(x))!}{n_V(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\pm v} n_v)(x) = 3 \ \forall x \notin \{C\}$

• sign of $\prod_C \rho(C)$: geometric factor $\varepsilon(C) = \pm 1$ for each loop C; 4 types:

→ "MDP ensemble"

Further difficulties:

- changing monomer number difficult: weight ~ m^{Σ_x M(x)} monomer-changing update (Karsch & Mütter) restricted to m ~ O(1)
- tight-packing constraint \rightarrow local update inefficient, esp. as $m \rightarrow 0$

$$Z(m,\mu) = \sum_{\{M,n_V,C\}} \prod_x \frac{m^{M(x)}}{M(x)!} \prod_{x,v} \frac{(3-n_V(x))!}{n_V(x)!} \prod_{\text{loops } C} \rho(C)$$

with constraint $(M + \sum_{\pm v} n_v)(x) = 3 \ \forall x \notin \{C\}$

• sign of $\prod_C \rho(C)$: geometric factor $\varepsilon(C) = \pm 1$ for each loop C; 4 types:

→ "MDP ensemble"

Further difficulties:

 changing monomer number difficult: weight ~ m^{Σ_x M(x)} monomer-changing update (Karsch & Mütter) restricted to m ~ O(1)

• tight-packing constraint \rightarrow local update inefficient, esp. as $m \rightarrow 0$

Solved with worm algorithm (Prokof'ev & Svistunov)

Worm algorithm for MDP

Here for chiral limit m = 0 (no monomers: $M(x) = 0 \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers M(x), M(y)
- Choose among neighbours of *y* by local heatbath and move *M*(*y*) there heatbath: sampling of 2-point function ¹/_{Z_{||}}*M*(*x*)*M*(*y*) exp(−*S*_{||})
- Keep moving "head" y until $y \rightarrow x$, ie. "worm closes" \rightarrow new configuration in $Z_{||}$

Worm algorithm for MDP

Here for chiral limit m = 0 (no monomers: $M(x) = 0 \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers M(x), M(y)
- Choose among neighbours of *y* by local heatbath and move M(y) there heatbath: sampling of 2-point function $\frac{1}{Z_{\parallel}}M(x)M(y)\exp(-S_{\parallel})$
- Keep moving "head" y until $y \rightarrow x$, ie. "worm closes" \rightarrow new configuration in $Z_{||}$

Global change obtained from sequence of local updates

Each local step gives information on 2-point function

cf. Adams & Chandrasekharan for U(N)

Worm algorithm for MDP

Here for chiral limit m = 0 (no monomers: $M(x) = 0 \forall x$)

- Break a dimer bond and introduce a pair of adjacent monomers M(x), M(y)
- Choose among neighbours of *y* by local heatbath and move *M*(*y*) there heatbath: sampling of 2-point function ¹/_{Z_i}*M*(*x*)*M*(*y*) exp(−*S*_{||})
- Keep moving "head" y until $y \rightarrow x$, ie. "worm closes" \rightarrow new configuration in $Z_{||}$

[Non-trivial] consistency check with HMC

Sign problem? Monitor $-\frac{1}{V}\log\langle sign \rangle$

⟨sign⟩ = <sup>Z_{||}/_Z ~ exp(-Vf(μ²)) as expected
 Can reach ~ 16³ × 4 ∀μ, ie. adequate
</sup>

$\mu = 0$ finite-T chiral transition

- Mean-field: $T_c = 5/3$ Anisotropy γ : $T = \gamma^2/N_t$
- Previously: extrapolation $m \rightarrow 0$ with $N_t = 4 \rightarrow \gamma_c = 2.37(2)$ ie. $T_c(N_t = 4) = 1.40(3)$ Karsch et al.

• Now, m = 0 exactly, $N_t = 2$ and $N_t = 4$: chiral susc. versus γ

Intro Algorithm Results Concl.

Consistency check with Karsch & Mütter: T = 1/4, m = 0.1

- High-density phase: saturation at 1 baryon per site (cf. nuclear matter)
- Azcoiti was right: ergodicity restored only with multicanonical (Wang-Landau)
- Karsch & Mütter value too large; obtained from metastable branch ?

Varying the quark mass at T = 1/2 fixed

As $m \rightarrow 0$, μ_c decreases and transition becomes stronger critical mass m_c ?

Intro Algorithm Results Concl.

Critical mass $m_c(T = 1/2)$?

Distribution of quark condensate: finite-size scaling?

• Critical mass: $m_c(T = 1/2) \sim 0.038$

Universality class: γ/ν consistent with 3d Ising

Compare with Nishida (2004): transition line for m = 0.1

Compare with Nishida (2004): CEP at T = 1/2

 $m_{CEP} \approx 0.038$ vs prediction ≈ 0.4 : wrong by O(10) !

Beware of quantitative mean-field predictions for phase diagram

Transition to nuclear matter: $T = 0, \mu = \mu_c$

Puzzle:

- Mean-field baryon mass is $\approx 3 \Rightarrow$ expect $\mu_c = \frac{1}{3}F_B(T=0) \approx 1$
- Mean-field estimate $\mu_c \sim 0.55 0.66$ much smaller, ie. $\mu_c^B \sim 600$ MeV !

Wrong M_B ? wrong μ_c ?

• Baryon mass pprox 3 checked by HMC

PdF & Kim

• $\mu_c \approx 0.64$ (see earlier) for m = 0.1, T = 1/4

Explanation: nuclear attraction $\sim 1/3$ baryon mass ??

Monitor T = 0 energy as a function of baryon number, ie. (E(B) - E(B-1)) vs B

Internal energy vs baryon number at T = 1/4, m = 0.1

- $E(B=1) \sim M_B$: temperature is low ($T \sim 75$ MeV, $m_\pi \sim 200$ MeV)
- $E(B=2)-2E(B=1)\sim -0.1$, ie. "deuteron" binding energy ca. 30 MeV
- Further binding with ca. 20 "nearest-neighbours" to give μ_c ca. 600 MeV
- $E(B) \sim (3\mu_c B + a_S B^{2/3})$, ie. (bulk + surface tension) (Weizsäcker)
- "Magic numbers" with increased stability?
- Attraction due to bath of neutral pions: cf. Casimir effect

ntro Algorithm Results Concl.

Hadron \leftrightarrow nuclear matter transition vs pion mass

- Transition becomes weaker for heavier pions
- In strong coupling LQCD, for physical m_{π}/M_B ,

interactions enhanced by $\mathcal{O}(10) \rightarrow$ good laboratory

Conclusions

Summary

- Take mean-field results with a grain of salt
- "Clean-up" of phase diagram justified
- Nuclear matter from QCD

Outlook

Improve systematics:

Check mean-field "scaling" $T = \gamma^2 / N_t$

Compare real and imaginary μ

• Determine phase diagram:

Tricritical point for m = 0

Critical end-point as a function of m

- Include second quark species \rightarrow isospin
- Include $O(\beta)$ effects ?

Backup slide: Maxwell construction

- μ_c consistent with Maxwell construction
- Area gives interface tension of nuclear matter

Backup slide: energy for each additional baryon

The energy of an additional baryon in the dense phase is $> 3\mu_c$

Backup slide: chiral symmetry restoration

 \rightarrow chiral symm. restored in nuclear matter

Backup slide: energy per baryon

E(B) well described by $(a_V B + a_S B^{2/3})$, ie. (bulk + surface tension) (Weizsäcker)