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“Sign Problem” is  very tough.

Interesting Problems in 
Physics  suffer from hard 

sign problem:
QCD at finite density

Real Time Simulations



Many Approaches

• Re-Weighting
• Taylor Expansion
• Imaginary µ
• Two-Color
• Random Matrix
• Density of State
• Complex Langevin
• etc.



Many Collaborators
• QCD-TARO

– deForcrand, Garcia-Perez, Matsufuru, Pushkina, 
Stamatescu, Takaishi, Umeda

• Kyushu Group
– Yahiro, Kouno, 

• Young
– Hamada, Suzuki

• Fermion Eigen-Values 
– Akemann, Sasai

• Real Time Simulation
– Muroya, Mizutani



Two Projects
No New Idea, Simply Doing Standard Things

• Project 1
– Wilson Fermions with Improved Gauge and Fermion

Actions
– Direct Calculations at Imaginary µ, and Taylor 

Expansion at Real µ.
• In Future, Density of State 

– Calculate Hadron Masses, Quark Propagators, Gluon 
Propagators etc.

• Project 2
– Real Time Simulation a la Berges & Nucu

But for Equilibrium
– Muroya, Lat08@PoS 



Some References

• Wilson Fermions with Improved actions
– WHOT Collaboration (Aoki, Ejiri, Hatsuda, 

Ichii, Kanaya, Maezawa, Ukita, Umeda)
– Phys.Rev.D75 (2007) 074501

• Imaginary Chemical Potential with Wilson 
Fermions
– Wu, Luo and Chen
– Phys. Rev. D76 (2007) 034505
– arXiv:hep-lat/0611035



1. Using Lattice QCD, we are dreaming to 
investigate large density and low temperature 
regions some days, where we expect many 
rich phases of QCD.

2. Low density and High Temperature regions 
are also very interesting, because they are 
currently studied experimentally in SPS, RHIC 
and soon in LHC.

Lattice QCD is expected to provide reliable QCD 
predictions.
For realistic simulations, we need 
and an improved action.
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At finite µ, the fermion determinant     
is complex.det ( )D µ

• Why we can not take                       as a 
measure, and put its phase factor              
into an observable as reweighting factor ?

• Because
– the sign problem
– eigen values near zero

det ( )D µ
exp( )iθ

O< >=
. det e det e

det e det e

G G

G G

S Si

S Si

DU O e DU

DU DU e

θ

θ

− −

− −

∆ ∆
×

∆ ∆
∫ ∫

∫ ∫



Difficulty at large Chemical Potential

( 0) D mν νµ γ∆ = = +
 : anti-HermiteDν νγ
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When µ increases
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μ
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λ

→ ∞

Conjugate Gradient to 
calculate 

does not converge
(Imaginary Chemical 
Potential formulation does 
not have this problem.)
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Eigen Value Distribution

Phase quenching
Simulation

Sasai, Takaishi, A.N.

8^3*4, KS fermions
β=5.3, µa=0.25 (slightly above the transition) 



Distribution in Real part of µ



Distribution in Imag part of µ



Two Ways to Escape from this 
Problem, i.e., Without Widening of 
Fermion Eigen-value Distribution

• Simulate at µ=0 (Fodor-
Katz)

• Simulate with Imaginary 
µ (D’Elia-Lombardo, 
deForcrand- Philipsen)
– Fermion Eigen-values 

remain on the line. 
m

Re

Im

0



Multi-Parameter Reweighting
at Low Chemical Potential
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• A bit tedious to calculate the higher orders, 
especially if O is a fermionic observable 
like screening masses (QCD-TARO).

• Is there an easier way for a lazy person ?
– possible to write a code in Sunday afternoon. 



Fermion Matrix with µ
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Here I consider the Wilson + Clover case, but the following 
argument may be applicable to any fermion action.



(Trivial) Decomposition
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(Fugacity – 1) expansion ?



Expansion with respect to D∆
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• Noise Method
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2^3*4  Test if all parts 
are working correctly.



Very Slow

• We employ a Technique by Foley et al
– Dilution
– Hybrid-List
– See Nakamura, Lat08@PoS
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Imaginary Chemical Potential

• Wilson Fermions with Clover + Iwasaki 
Gauge action

I

8*8*8*4

β=1.90, κ=1.38817

T/Tc=1.08



PNJL model (Kyushu Group)
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Lattice Data (Preliminary)

8*8*8*4

β=1.90, 

κ=1.38817

T/Tc=0.504



Project 2
Do you know Very 
Interesting Papers by 
Berges-Stamatescu ?

Your Old UnKnown Papers 
are also Cited.

Berges-Stamatescu, Phys.Rev.Lett. 95 
(2005) 202003.

Berges, Borsanyi, Sexty & Stamatescu, 
Phys.Rev.D75 (2007) 045007.



Real Time Simulation is finally accomplished !!!

• Complex Langevin

SP e−=

• Monte Carlo Simulation

(Noise)d S
d
φ δ
τ δφ

= − +



Stochastic Quantization

• Parisi-Wu
– Equivalent to Standard Quantization
– Langevin Eq. (                                                )

• Parisi ： Complex Langevin
– Monte Carlo Simulation is impossible for Complex S, 

But Langevin works !
– Wrong Solution Problem:

• Ambjorn-Yang, Matsui-Nakamura, Okano, Klauder

(Noise)d S
d
φ δ
τ δφ

= − +

:  Monte Carlo Timeτ

Berges et al. Schwinger-Dyson Idensities for n-Point Function are 
checked numerically.



Difficulty of Minkowski (1)
• Measure is now well defined.

– We define in Euclidean, and come back to Minkowski
by the Analytic Continuation.

– How possible in Numerical Simulation
• Schwinger

-Keldysh
type closed 
time path in
Numerical 
Simulations

MiSe

Re t =x0

-iε

-iε



Free Field Case
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Difficulty in Minkowski (2)
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Berges-Stamatescu impose 
a boundary condition

Numerical Recipe



Here, what we want to do

• Berges-Stamatescu⇒Non-Equilibrium
– Great ! This is a Dream of Physicists.

• But even within the Equilibrium Process,
This is a great possibility:
– Lattice QCD：First-Principle Calculation
– But Analytic Continuation is difficult in Numerical 

Simulations:
• Matsubara Green Function ⇒

Spectral Function ⇒
Advanced/Retarded Green Function

• Test in Scalar Field Theory



Complex tIm t = x4

Re t =x0

- β

(Anti-)Periodic
Boundary Condition

Real Time Formula

Time path tilts in forward direction
(Feynman causality,
Hamiltonian has spectra bounded  
from below）

Imaginary Time Formula

Converge stochastic 
process in SQM

Our plan

KMS condition
Thermal equilibrium

(by Niegawa)

Nakazato and
Yamanaka

Small -iε in real time path.

-iε

-iε

Wick rotation



Quantum Mechanics
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Re t =x0

Im t = x4
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Im t = x4 Complex t

Re t =x0

- β

-iε

Here we expect the 
same result as Ordinal 
（Imaginary Time) Path 
Integral.-iε
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Very Preliminary

*
2 1( ) ( )t tφ φ

2 1t t−

1t ：Midpoint 
in the 
imaginary 
path.



-β
(Anti-)Periodic
Condition

Stochastic Quantization 
Starts from Euclidean Action

R
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We extend 
Euclidian action to 
complex plane
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Contour dependent phase



Numerical simulation
• Scalar field 

ma = 0.2,  λ= 0.01, 0.05,  0.1
• Lattice size

16Ｘ16Ｘ16Ｘ40， tilt = 0.05
40= 15 + 5 + 15 + 5, 

• Stochastic process     ∆τ=0.00002
Take average for each 5000 steps Ｘ50times

• Anisotropic 
spatial lattice size 

= time-like lattice size×γ， γ=４

real
imaginary

real
imaginary

Courant condition
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Fighting against Errors 

• Sign Problem: Suffer from +/- Cancelations
• We want to reduce pure noise parts.
• Luscher-Weise Multi-Hit Algorithm

– employed by Meyer for Viscosity calculations
– It can be considered as

a version of Parisi-Petronzio
-Rapuano

– It does not work sometimes,
i.e., parameter dependent





Summary (Real Time Sim.)
• Real Time Simulation for Equilibrium
• We need high Statistics and Improved 

Methods
• Possibility to calculate Transport-

Coefficients



Sign Problem is Tough
• No Money, No Time, No Great Idea
• But  I have a Dream that Sign Problem will 

be overcome someday.
• Let us Try any Possible Approaches 

(probably easier than Fermat's Last 
Theorem): 



Backup Slides





Recent CERN Experiments



Chemical Potential on the Lattice
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In the continuum, µ appears as

On the Lattice
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• (Gaussian) Noise Method
– Almost equivalent to the Pseudo-Fermion Method
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In General
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I calculated these coefficients till 10-th 
just for fun.



In the Reweighting method, we try to maximize
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If we employ the hopping parameter expansion 
together with this expansion,,

tCβ∆ + + ⋅⋅ ⋅
which may help to find a good β0.  But we donot follow 
this direction.
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We want to simulate numerically finite 
temperature system with real time．
• Our results seem to converge even with 

Minkowski time. 
• Current correlation ⇒relaxation-like   

behavior appears 
conductivity ？

• Coupling dependence
• Need to check

– Contour dependence
– Tilt dependence
– Consistency with the results of imaginary time method



0 10 20 30

-0.5

0

0.5

1
01phi.dat

01PHI.TXT    Real part
01PHI.TXT    Imaginary Part

treal
imaginary

imaginaryreal～

Hotstart first 5000 average

ma = 0.2,   λ = 0.05


	Searching Paths to Understand Systems with a Complex Action
	“Sign Problem”  is  very tough.
	Many Approaches
	Many Collaborators
	Two Projects
	Some References
	
	At finite m, the fermion determinant          is complex.
	Difficulty at large Chemical Potential
	When m increases
	Eigen Value Distribution
	Distribution in Real part of m
	Distribution in Imag part of m
	Two Ways to Escape from this Problem, i.e., Without Widening of Fermion Eigen-value Distribution
	Multi-Parameter Reweighting at Low Chemical Potential
	
	Fermion Matrix with m
	(Trivial) Decomposition
	Expansion with respect to
	Calculation of
	Very Slow
	Imaginary Chemical Potential
	PNJL model (Kyushu Group)
	Lattice Data (Preliminary)
	Real Time Simulation is finally accomplished !!!
	Stochastic Quantization
	Difficulty of Minkowski (1)
	Free Field Case
	Difficulty in Minkowski (2)
	Here, what we want to do
	Quantum Mechanics
	Very Preliminary
	Numerical simulation
	Fighting against Errors
	
	Summary (Real Time Sim.)
	Sign Problem is Tough
	Backup Slides
	Recent CERN Experiments
	Chemical Potential on the Lattice
	Calculation of
	In General
	We want to simulate numerically finite temperature system with real time．

