The Severity of the Sign Problem in Different Regions of the QCD Phase Diagram

David Reeb

Institute of Theoretical Science, University of Oregon

Sign Problems and Complex Actions Workshop at ECT* in Trento/Italy March 2-6, 2009

 arXiv:0808.2987 "On the sign problem in dense QCD" with Stephen Hsu (University of Oregon)

What's the question?

Strongest evidence about severity of sign problem in the QCD phase diagram ?

Quantify/define degree of severity of sign problem ?

- later: focus on phase transition region
- from insights gained: suggest Z_{new} method; "typicality" problems

Outline

Introduction

- sign problem in dense QCD
- split into two positive ensembles Z_+ , Z_-
- Free energies and analyticity
 - severity of the sign problem
- Regions of the QCD phase diagram
 - hadronic phase, quark-gluon plasma, CSC phase
 - general considerations
- Monte-Carlo methods
 - degrees of severity of sign problem
 - the |Re det M(A)| method; typicality
 - comparision with reweighting and quenching methods
- Onclusions & Questions

The sign problem in dense QCD

Partition function of grand canonical ensemble:

$$Z(\beta,\mu) = \operatorname{Tr} e^{-\beta(\mathcal{H}-\mu\mathcal{N})} \text{ real and positive } (\mu \in \mathbb{R})$$
$$= \sum_{\{\Psi[\phi(x)]\}} \langle \Psi|e^{-\beta(\mathcal{H}-\mu\mathcal{N})}|\Psi\rangle \text{ sum of pos. terms, typicality}$$

vastness of Hilbert space $\{\Psi\}$

 \rightarrow Euclidean functional integral over classical field configurations

$$Z = \int \mathcal{D}A \int \mathcal{D}\psi \mathcal{D}\overline{\psi} \ e^{-\int_0^\beta dx^4 \int d^3x \ \{\overline{\psi}(\mathcal{D}(A) - m - \mu\gamma_4)\psi + \frac{1}{4g^2}F^a_{\mu\nu}F^{a\mu\nu}\}}$$
$$= \int \mathcal{D}A \ (\det M(A)) \ e^{-\int_0^\beta dx^4 \int d^3x \ \frac{1}{4g^2}F^a_{\mu\nu}F^{a\mu\nu}}$$

with $M(A) = \not D(A) - m - \mu \gamma_4$ not (similar to) Hermitian

The sign problem in dense QCD

$$\Rightarrow \quad Z(\beta,\mu) = \int \mathcal{D}A \ (\det M(A)) \ e^{-S_G(A)} \quad \in \mathbb{R}^+ \ ,$$

although det $M(A) \in \mathbb{C}$ for generic A.

No probability interpretation for $(\det M(A)) e^{-S_G(A)}$ \rightarrow sign problem or phase problem: importance sampling?

Idea: lump phase into observable \mathcal{O}

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}A |\det M(A)| \ e^{-S_G(A)} \ \mathcal{O}(A)e^{i\theta(A)}}{\int \mathcal{D}A |\det M(A)| \ e^{-S_G(A)} \ e^{i\theta(A)}}$$

and sample with measure $|\det M(A)| e^{-S_G(A)}$

 \rightarrow phase/sign fluctuations in denominator/numerator; poor overlap?

First: make $Z \in \mathbb{R}$ more manifest:

$$Z = \operatorname{Re} Z = \int \mathcal{D}A \operatorname{Re} \left(\det M(A) \ e^{-S_G(A)} \right)$$
$$= \int \mathcal{D}A \ \left(\operatorname{Re} \det M(A) \right) \ e^{-S_G(A)}$$

physical reason:

a) det
$$M(A') = (\det M(A))^*$$
 for PC-conj. $A'_{\mu}(\vec{x}, x^4) \equiv A^*_{\mu}(-\vec{x}, x^4)$
(and $\psi'(\vec{x}, x^4) = \gamma_5 \gamma_2 \psi^*(-\vec{x}, x^4)$)

b) in lattice formulation of gauge theories: links $U \rightarrow U^* \Rightarrow \det M(U^*) = (\det M(U))^*$ and $S_G(U^*) = S_G(U)$

Two positive ensembles: Z_+ and Z_-

$$Z = \int \mathcal{D}A \; (\operatorname{Re} \det M(A)) \; e^{-S_G(A)}$$

{+}: set of configurations $A^a_{\mu}(x)$ with Re det M(A) > 0{-}: Re det M(A) < 0

$$Z = \sum_{\{+\}} |\operatorname{Re} \det M| e^{-S_G(A;\beta)} - \sum_{\{-\}} |\operatorname{Re} \det M| e^{-S_G(A;\beta)}$$
$$\equiv Z_+ - Z_-$$

• Z_+ > $Z_ \geq$ 0

Z₊, Z₋ partition functions of fictitious 4+1 dim systems?
 "potential" V₄₊₁(A) = S_G(A) - ln |Re det M(A)|

Independent ensembles?

Fictitious Hamiltonian(s) (\rightarrow molecular dynamics algorithm):

$$H_{4+1}[A,\pi;\beta] = \sum_{i} \frac{1}{2}\pi_{i}^{2} + \left\{ S_{G}(A;\beta) - \ln |\operatorname{Re} \det M(A)| \right\}$$

Potential barrier $V_{4+1} = +\infty$ between $\{+\}$ and $\{-\}$.

• If connected & ergodic, sampling with H-equations (in principle)

Assumption for the next part of this talk:

 Z_+ , Z_- are sensible ensembles on their own, i.e. each is connected and allows for ergodic sampling

- $Z = Z_+ Z_-$: important split for following part of talk
- \bullet useful to characterize severity of sign problem? \rightarrow later

Free energies

Free energy densities F_+ , F_- : $Z_{\pm}(\mu, \beta; V) \equiv \exp(-V F_{\pm}(\mu, \beta))$

actually: F_{\pm} are the *intensive* parts, but \exists volume dependence

$$Z_+(\mu, \ eta; \ V) \ \equiv \ \exp\left(-V \ f_+(\mu, \ eta; \ V)
ight)$$

 \rightarrow then define: $F_+(\mu,\beta)\equiv \lim_{V
ightarrow\infty} f_+(\mu,\beta,V)$

but finite-volume corrections: $f_+(V) = F_+ + \hat{f}_+(V)$

- a) $F_+ < F_- \Rightarrow Z_+$ dominates Z_- exponentially at large $V \rightarrow MILD$ sign problem: $Z_-/Z_+ \rightarrow 0$ for $V \rightarrow \infty$
- b) $F_+ = F_- \Rightarrow Z_+$ and Z_- generically of same size \rightarrow SEVERE sign problem: $Z_-/Z_+ > 0$ at $V \rightarrow \infty$ (if $\hat{f}_-(V) - \hat{f}_+(V) > 1/V \rightarrow \text{MILD sign problem}$)

Free energy densities

Statistical Mechanics: free energy densities F_{\pm} are analytic functions of their arguments (μ , β), away from phase boundaries/transitions

- $F_+ = F_-$ in open set $\Rightarrow F_+ \equiv F_-$ in common domain of analyticity
- $F_+ \neq F_-$ in open set $\Rightarrow F_+ = F_-$ at most on submanifold

Severe sign problem at (potentially) $F_{+}(\mu) = F_{-}(\mu)$

Sign problem in the QCD phase diagram

Now: • examine different regions (A, B, C) of QCD phase diagram

• apply analyticity reasoning

A: hadronic phase

phase of quark matrix: det $M(A) = |\det M(A)| e^{i\theta(A)}$

chiral perturbation theory at low μ , T (Splittorff & Verbaarschot): θ has Gaussian distribution $\rho(\theta)$, width = $\sqrt{\langle \theta^2 \rangle - \langle \theta \rangle^2} \sim V^{1/2}$

So: $Z_-/Z_+ \rightarrow 1$ as $V \rightarrow \infty$, i.e. in particular $F_+ = F_-$ (see also: $Z_+ > Z_-$)

A: hadronic phase

 $F_{+} = F_{-}$ in open region of small μ , small Tanalyticity $\Rightarrow F_{+} \equiv F_{-}$ in entire phase: SEVERE SIGN PROBLEM at least for small (μ, T) : if V large enough $\rightarrow Z_{+}/Z_{-} \approx 1$ \rightarrow how can sampling at finite V give reliable results for $V = \infty$?

Order of limits to get ordinary QCD:

- $V \to \infty$ first, then $\mu \to 0$: $\lim_{\mu \to 0} F_{-}(\mu) < \infty$
- $\mu = 0$ at any V: $F_{-}(\mu = 0, V) = +\infty$

What's the strongest argument for SEVERE sign problem in all of A? In all of the phase diagram?

B: quark-gluon plasma phase

- *N* quark flavors with μ : $Z_N = \int \mathcal{D}A \det M(A) e^{-S_G(A)}$
- N/2 flavors with $+\mu$, N/2 flavors with $-\mu$: $Z_{|N|} = \int DA |\det M(A)| e^{-S_G(A)}$

$$\Rightarrow \qquad Z_N \leq Z_{|N|} \qquad \text{and} \qquad \frac{Z_N}{Z_{|N|}} = \frac{\exp\left(-VF_N\right)}{\exp\left(-VF_{|N|}\right)}$$

- a) models have different physics (pion condensation in $Z_{|N|}$)
- b) F_N , $F_{|N|}$ perturbatively for large T, small μ/T (Vuorinen): \rightarrow terms linear in flavor chemical potentials $\Rightarrow F_N > F_{|N|}$

B: quark-gluon plasma phase

$$\Rightarrow \quad \frac{\exp\left(-VF_{N}\right)}{\exp\left(-VF_{|N|}\right)} = \frac{Z_{N}}{Z_{|N|}} = \int d\theta \ \rho(\theta)\cos(\theta) \ \rightarrow \ 0 \qquad (V \to \infty)$$

So: a) $\rho(\theta)$ peaked at $\theta = (n + 1/2)\pi$, i.e. det *M* imaginary $\rightarrow NO$ b) $\rho(\theta)$ smooth with large width: $Z_{N-}/Z_{N+} \rightarrow 1 \quad (V \rightarrow \infty)$ \rightarrow SEVERE SIGN PROBLEM in all of B by analyticity

C: CSC phase

• if no severe sign problem: QCD inequalities apply

– rely on positive measure $d\mu = \mathcal{D}A^a_\mu \ e^{-S_G(A)} \det M(A)$

- Vafa & Witten: NO spontaneous breaking of vector symmetries (e.g., baryon number)
- but: explicit calculations in far CSC phase show breaking (Hong & Hsu; valid in $\mu \to \infty$, $T/\mu \to 0$)
 - \Rightarrow SEVERE SIGN PROBLEM in all of CSC phase

D: other phases

Possible reasonings about severity of sign problem:

- analytic (crossover) or no phase transitions/boundaries
 ⇒ analyticity suggests severe/mild sign problem
 - $\mathsf{A} \ \leftrightarrow \ \mathsf{B} \ \mathsf{transition}?$
- QCD with N flavors μ₁, ..., μ_N: if F ~ μ_i + μ_j³ + μ_k⁵ + ... then F_N > F_{|N|} ⇒ severe sign problem (via ρ(θ)) (F_N > F_{|N|} also if models have different physics) as before in phase B

Degrees of severity of the sign problem

So far: sign problem at (μ, T) SEVERE if

•
$$Z_-/Z_+ > 0$$
 for $V \to \infty$

• generically if $F_+ = F_-$

Severe only if $Z_{-}/Z_{+} \approx 1$ for $V \to \infty$? \to phases A & B But MILD for, e.g., $Z_{-}/Z_{+} < 0.1$ at $V \to \infty$ $(Z_{-} \ll Z_{+})$? \to possible (only) for $F_{+} = F_{-}$ (subleading terms in free energy)

• around high-T phase transition line from (T_c , $\mu = 0$) to $\mu > 0$?

 \rightarrow NO analyticity arguments from now on, but split Z₊, Z₋ useful

high-T phase transition line

Good agreement at $\mu < 1.3T_c$ between:

- derivatives (Taylor) at $\mu = 0$
- Taylor exp. from imaginary μ
- multi-parameter reweighting

Now: \bullet argue: success of reweighting related to $Z_- \ll Z_+$

• suggest Z_{new}-method

Also: $\langle sign \rangle > 10\%$ in this region \rightarrow MILD in new definition

(Multi-parameter) reweighting method

$$\langle \mathcal{O} \rangle_{(\mu,\beta)} = \frac{\int \mathcal{D}A \ e^{-S_G(\beta_0)} \det M(\mu_0) - \frac{e^{-S_G(\beta)} \det M(\mu)}{e^{-S_G(\beta_0)} \det M(\mu_0)} \mathcal{O}(A)}{\int \mathcal{D}A \ e^{-S_G(\beta_0)} \det M(\mu_0) - \frac{e^{-S_G(\beta)} \det M(\mu)}{e^{-S_G(\beta_0)} \det M(\mu_0)}} \Big|_{(\mu_0,\beta_0)}$$

Difficulties for reweighting if $Z_-/Z_+ \approx 1$ at target point (μ, β) :

• denominator *should* be small $\sim (Z_+ - Z_-)/(Z_+ + Z_-)$ in a *true typical* ensemble for target (μ, β)

 \rightarrow sign problem: numerical uncertainties (also in numerator)

- even if denominator small and uncertainties under control: ensemble typical for *target* (μ, β) ???
- if (somehow) only small uncertainties due to denominator:
 ls there good overlap between (μ₀, β₀) and target (μ, β)?
- \rightarrow overlap problem more generally: typicality for $\mathbb{C}\text{-measure}$ at all?
- $Z_- \ll Z_+$ seems *necessary* for reweighting to work, not *sufficient*

Z_{new} method

MC method for whose success $Z_{-} \ll Z_{+}$ is also *sufficient*: Use

$$Z_{\text{new}} \equiv Z_{+} + Z_{-} = \sum_{\{+\}} |\operatorname{Re} \det M| e^{-S_{G}} + \sum_{\{-\}} |\operatorname{Re} \det M| e^{-S_{G}}$$
$$= \int \mathcal{D}A |\operatorname{Re} \det M(A)| e^{-S_{G}(A)}$$

for sampling.

Remember: $Z = Z_+ - Z_-$ (so: $Z/Z_{new} \simeq 1$ for $F_- > F_+$)

Compute observable averages WITH sign of real part:

$$\langle \mathcal{O} \rangle = \frac{\int \mathcal{D}A(\operatorname{Re}\det M(A)) e^{-S_G(A)} \mathcal{O}(A)}{\int \mathcal{D}A(\operatorname{Re}\det M(A)) e^{-S_G(A)}}$$

Characteristics of Z_{new} method

- if $Z_-/Z_+|_{(\mu,\beta)} \approx 1 \Rightarrow$ small denominator: sign problem \rightarrow just as (it should be, at least) in reweighting method
- samples via $Z_{new} = Z_+ + Z_-$ likely more typical of Z than
 - reweighting: relation Z|_(μ0,β0) vs. Z|_(μ,β)
 Configurations sampled in (μ0, β0) typical of (μ, β) ???

2 phase-quenched sampling: $|\det M|$ vs. $|\operatorname{Re} \det M|$

- different *importance* for configurations on circle
- symmetric cropping
- modulus AND phase

- Z_{new} closest to $Z = \int \mathcal{D}A(\det M(A)) e^{-S_G(A)} \rightarrow biggest \text{ overlap}$
- smallest possible fluctuations in reweighting factor (de Forcrand, Kim, Takaishi: hep-lat/0209126)

Consistency check during Z_{new} method

- \bullet start at some ($\mu,\,\beta)$ where sign problem mild (e.g., $\mu=$ 0)
- slowly move in phase diagram, sampling with Z_{new}
- at each point, compare $\{-\}$ set to $\{+\}$ set: approximation still ok?
- thus: "good" overlap; control when sign problem becomes severe \rightarrow tells where/how long the Z_{new} method can be trusted

• seems superior to (phase-)quenched or reweighting sampling

Computational cost

- probably need full computation of $\operatorname{Re} \det M$ at each microstep:
 - cannot update whole lattice at once, since no bosonic integral for Re det $M \rightarrow$ no Hybrid Monte Carlo
 - $\bullet \ \rightarrow \ \text{only local link updates} + \text{Metropolis tests} \, ?$
- $\rightarrow N \times N^3$ operations for one sweep through the lattice (HMC for phase-quenched/reweighting sampling: $N^{9/4}$ for new *decorrelated* configuration; but *full* (det M) $\sim N^3$ there)
- maybe for small μ : approximate methods to determine phase $e^{i\theta}$ \Rightarrow Re det M (by Taylor expansion)
- method to try after numerics in conventional reweighting ok?
 (... and still disagreement)

Conclusions & Questions

- split into two *independent* positive ensembles $Z = Z_+ Z_-$
- analyticity reasoning for associated free energies
- $\bullet\,$ examined regions of QCD phase diagram $\rightarrow\,$ severe sign problem
- degrees of severity of the sign problem
- "mild" sign problem around phase transition line?
- Z_{new} method with |Redet M| sampling
- Is there meaning to "typicality" if measure ∈ C? Do existing sampling methods have "good" overlap with target ensemble?
- In how far do exisiting simulations rely on $V \ll \infty$? Big finite-volume effects? Artificial results?
- In regions with maximally severe $Z_-/Z_+ \rightarrow 1$: can any sampling method ever be successful (for $V \rightarrow \infty$)?

Thank you!