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What’s the question?

Strongest evidence about severity of sign problem in the QCD phase
diagram ?

Quantify/define degree of severity of sign problem ?

µ

T

?

?

?
?

?

?

• later: focus on phase transition region

• from insights gained: suggest Znew method; “typicality” problems
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The sign problem in dense QCD

Partition function of grand canonical ensemble:

Z (β, µ) = Tr e−β(H−µN ) real and positive (µ ∈ R)

=
∑

{Ψ[φ(x)]}

〈Ψ|e−β(H−µN )|Ψ〉 sum of pos. terms, typicality

vastness of Hilbert space {Ψ}
→ Euclidean functional integral over classical field configurations

Z =

∫
DA

∫
DψDψ e

−
R β
0 dx4

R
d3x {ψ(D/ (A)−m−µγ4)ψ+ 1

4g2 F a
µνF aµν}

=

∫
DA (det M(A)) e

−
R β
0 dx4

R
d3x 1

4g2 F a
µνF aµν

with M(A) = D/ (A)−m − µγ4 not (similar to) Hermitian
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The sign problem in dense QCD

⇒ Z (β, µ) =

∫
DA (det M(A)) e−SG (A) ∈ R+ ,

although det M(A) ∈ C for generic A.

No probability interpretation for (det M(A)) e−SG (A)

→ sign problem or phase problem: importance sampling?

Idea: lump phase into observable O

〈O〉 =

∫
DA |det M(A)| e−SG (A) O(A)e iθ(A)∫
DA |det M(A)| e−SG (A) e iθ(A)

and sample with measure |det M(A)| e−SG (A)

→ phase/sign fluctuations in denominator/numerator; poor overlap?
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Reality of Z

First: make Z ∈ R more manifest:

Z = Re Z =

∫
DA Re

(
det M(A) e−SG (A)

)
=

∫
DA (Re det M(A)) e−SG (A)

physical reason:

a) det M(A′) = (det M(A))∗ for PC-conj. A′µ
(
~x , x4

)
≡ A∗µ

(
−~x , x4

)
(and ψ′

(
~x , x4

)
= γ5γ2ψ

∗ (
−~x , x4

)
)

b) in lattice formulation of gauge theories:
links U → U∗ ⇒ det M(U∗) = (det M(U))∗ and SG (U∗) = SG (U)
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Two positive ensembles: Z+ and Z−

Z =

∫
DA (Re det M(A)) e−SG (A)

{+}: set of configurations Aa
µ(x) with Re det M(A) > 0

{−}: Re det M(A) < 0

Z =
∑
{+}

|Re det M|e−SG (A;β) −
∑
{−}

|Re det M|e−SG (A;β)

≡ Z+ − Z−

• Z+ > Z− ≥ 0

• Z+, Z− partition functions of fictitious 4+1 dim systems?
“potential” V4+1(A) = SG (A)− ln |Re det M(A)|
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Independent ensembles?

Fictitious Hamiltonian(s) (→ molecular dynamics algorithm):

H4+1[A, π;β] =
∑

i

1

2
π2

i +

{
SG (A;β)− ln |Re det M(A)|

}
Potential barrier V4+1 = +∞ between {+} and {−}.

Aaµ(x)Aaµ(x)+

+

-
-

+

-

• If connected & ergodic, sampling with H-equations (in principle)
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Assumption – two separate ensembles

Assumption for the next part of this talk:

Z+, Z− are sensible ensembles on their own,
i.e. each is connected and allows for ergodic sampling

Z = Z+ − Z−: important split for following part of talk

useful to characterize severity of sign problem? → later
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Free energies

Free energy densities F+, F−: Z±(µ, β; V ) ≡ exp (−V F±(µ, β))

actually: F± are the intensive parts, but ∃ volume dependence

Z+(µ, β; V ) ≡ exp (−V f+(µ, β; V ))

→ then define: F+(µ, β) ≡ limV→∞ f+(µ, β, V )

but finite-volume corrections: f+(V ) = F+ + f̂+(V )

a) F+ < F− ⇒ Z+ dominates Z− exponentially at large V
→ MILD sign problem: Z−/Z+ → 0 for V →∞

b) F+ = F− ⇒ Z+ and Z− generically of same size
→ SEVERE sign problem: Z−/Z+ > 0 at V →∞
(if f̂−(V )− f̂+(V ) > 1/V → MILD sign problem)
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Free energy densities

Statistical Mechanics: free energy densities F± are analytic functions
of their arguments (µ, β), away from phase boundaries/transitions

• F+ = F− in open set ⇒ F+ ≡ F− in common domain of analyticity
• F+ 6= F− in open set ⇒ F+ = F− at most on submanifold

µ

F- (µ) - F+(µ)

(a)

(b)

(c)

µ µ1 2

Severe sign problem at
(potentially)
F+(µ) = F−(µ)
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Sign problem in the QCD phase diagram

Example: µ = 0

Z− = 0, Z+ = Z > 0

→ F+ < F− = +∞

µ

T

A
hadronic

B

C
D

quark-gluon plasma

super-
conducting

Tc
critical endpoint

µ
= 

0

Now: • examine different regions (A, B, C) of QCD phase diagram
• apply analyticity reasoning
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A: hadronic phase

phase of quark matrix: det M(A) = |det M(A)| e iθ(A)

chiral perturbation theory at low µ, T (Splittorff & Verbaarschot):

θ has Gaussian distribution ρ(θ), width =
√
〈θ2〉 − 〈θ〉2 ∼ V 1/2

0 π 2π 3π 4π 5π 6π 7π 8π−2π−3π−4π−5π−6π−7π−8π −π

+ + + + + + + + +- - - - - - - -

θ

ρ(θ)

width ~ V1/2

So: Z−/Z+ → 1 as V →∞, i.e. in particular F+ = F−
(see also: Z+ > Z−)
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A: hadronic phase

F+ = F− in open region of small µ, small T

analyticity ⇒ F+ ≡ F− in entire phase: SEVERE SIGN PROBLEM

at least for small (µ, T ): if V large enough → Z+/Z− ≈ 1
→ how can sampling at finite V give reliable results for V = ∞?

Order of limits to get ordinary QCD:

• V →∞ first, then µ→ 0:
limµ→0 F−(µ) < ∞

• µ = 0 at any V :
F−(µ = 0, V ) = +∞ µ

T

A
hadronic

µ→0
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The reasoning

What’s the strongest argument for SEVERE sign problem in all of A?

In all of the phase diagram?

µ

T

SEVERE

SEVERE ?!

?

?

MILD ?
A

B
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B: quark-gluon plasma phase

• N quark flavors with µ:
ZN =

∫
DA det M(A) e−SG (A)

• N/2 flavors with +µ, N/2 flavors with −µ:
Z|N| =

∫
DA |det M(A)| e−SG (A)

⇒ ZN ≤ Z|N| and
ZN

Z|N|
=

exp (−VFN)

exp (−VF|N|)

a) models have different physics (pion condensation in Z|N|)

b) FN , F|N| perturbatively for large T , small µ/T (Vuorinen):

→ terms linear in flavor chemical potentials ⇒ FN > F|N|

David Reeb Severity of the Sign Problem



B: quark-gluon plasma phase

⇒ exp (−VFN)

exp (−VF|N|)
=

ZN

Z|N|
=

∫
dθ ρ(θ) cos(θ) → 0 (V →∞)

So: a) ρ(θ) peaked at θ = (n + 1/2)π, i.e. det M imaginary → NO

b) ρ(θ) smooth with large width: ZN−/ZN+ → 1 (V →∞)

→ SEVERE SIGN PROBLEM in all of B by analyticity

µ

T

A

B

C

quark-gluon plasma
Tc

critical
endpoint D
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C: CSC phase

µ

T

A

B

D

Tc
C

color-super-
conducting

if no severe sign problem: QCD inequalities apply

– rely on positive measure dµ = DAa
µ e−SG (A) det M(A)

Vafa & Witten: NO spontaneous breaking of vector symmetries
(e.g., baryon number)

but: explicit calculations in far CSC phase show breaking
(Hong & Hsu; valid in µ→∞, T/µ→ 0)

⇒ SEVERE SIGN PROBLEM in all of CSC phase
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D: other phases

Possible reasonings about severity of sign problem:

analytic (crossover) or no phase transitions/boundaries
⇒ analyticity suggests severe/mild sign problem

A ↔ B transition?

QCD with N flavors µ1, ..., µN : if F ∼ µi + µ3
j + µ5

k + . . .
then FN > F|N| ⇒ severe sign problem (via ρ(θ) )

(FN > F|N| also if models have different physics)

as before in phase B

µ

T

A

B

D ?

Tc

C

?
FN ≠ F|N| ?
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Degrees of severity of the sign problem

So far: sign problem at (µ, T ) SEVERE if

Z−/Z+ > 0 for V →∞
generically if F+ = F−

Severe only if Z−/Z+ ≈ 1 for V →∞ ? → phases A & B

But MILD for, e.g., Z−/Z+ < 0.1 at V →∞ (Z− � Z+) ?
→ possible (only) for F+ = F− (subleading terms in free energy)

around high-T phase transition line from (Tc , µ = 0) to µ > 0 ?

→ NO analyticity arguments from now on, but split Z+, Z− useful
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high-T phase transition line

Good agreement at µ < 1.3Tc between:

derivatives (Taylor) at µ = 0

Taylor exp. from imaginary µ

multi-parameter reweighting

Also: 〈sign〉 > 10%
in this region

→ MILD in
new definition

Now: • argue: success of reweighting related to Z− � Z+

• suggest Znew-method
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(Multi-parameter) reweighting method

〈O〉(µ, β) =

∫
DA e−SG (β0) det M(µ0)

e−SG (β) detM(µ)

e−SG (β0) detM(µ0)
O(A)∫

DA e−SG (β0) det M(µ0)
e−SG (β) detM(µ)

e−SG (β0) detM(µ0)

∣∣∣∣∣∣
(µ0, β0)

Difficulties for reweighting if Z−/Z+ ≈ 1 at target point (µ, β):

denominator should be small ∼ (Z+ − Z−)/(Z+ + Z−) in
a true typical ensemble for target (µ, β)
→ sign problem: numerical uncertainties (also in numerator)

even if denominator small and uncertainties under control:
ensemble typical for target (µ, β) ???

if (somehow) only small uncertainties due to denominator:
Is there good overlap between (µ0, β0) and target (µ, β) ?

→ overlap problem more generally: typicality for C-measure at all?

• Z− � Z+ seems necessary for reweighting to work, not sufficient
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Znew method

MC method for whose success Z− � Z+ is also sufficient: Use

Znew ≡ Z+ + Z− =
∑
{+}

|Re det M|e−SG +
∑
{−}

|Re det M|e−SG

=

∫
DA |Re det M(A)| e−SG (A)

for sampling.

Remember: Z = Z+ − Z− (so: Z/Znew ' 1 for F− > F+)

Compute observable averages WITH sign of real part:

〈O〉 =

∫
DA (Re det M(A)) e−SG (A) O(A)∫
DA (Re det M(A)) e−SG (A)
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Characteristics of Znew method

if Z−/Z+|(µ, β) ≈ 1 ⇒ small denominator: sign problem
→ just as (it should be, at least) in reweighting method

samples via Znew = Z+ + Z− likely more typical of Z than
1 reweighting: relation Z |(µ0, β0)

vs. Z |(µ, β)

Configurations sampled in (µ0, β0) typical of (µ, β) ???

2 phase-quenched sampling: |det M| vs. |Re det M|

– different importance for
configurations on circle

– symmetric cropping

– modulus AND phase

Re

Im

Znew closest to Z =
∫
DA (det M(A)) e−SG (A) → biggest overlap

smallest possible fluctuations in reweighting factor
(de Forcrand, Kim, Takaishi: hep-lat/0209126)
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Consistency check during Znew method

• start at some (µ, β) where sign problem mild (e.g., µ = 0)

• slowly move in phase diagram, sampling with Znew

• at each point, compare {−} set to {+} set: approximation still ok?

• thus: “good” overlap; control when sign problem becomes severe

→ tells where/how long the Znew method can be trusted

µ

T

A

B

C

Tc

critical
endpoint D

• seems superior to (phase-)quenched or reweighting sampling
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Computational cost

probably need full computation of Re det M at each microstep:

cannot update whole lattice at once, since no bosonic integral for
Re det M → no Hybrid Monte Carlo

→ only local link updates + Metropolis tests ?

→ N × N3 operations for one sweep through the lattice

(HMC for phase-quenched/reweighting sampling: N9/4 for new
decorrelated configuration; but full (det M) ∼ N3 there)

maybe for small µ: approximate methods to determine phase e iθ

⇒ Re det M (by Taylor expansion)

method to try after numerics in conventional reweighting ok ?
(... and still disagreement)
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Conclusions & Questions

split into two independent positive ensembles Z = Z+ − Z−

analyticity reasoning for associated free energies

examined regions of QCD phase diagram → severe sign problem

degrees of severity of the sign problem

“mild” sign problem around phase transition line ?

Znew method with |Re det M| sampling

Is there meaning to “typicality” if measure ∈ C? Do existing
sampling methods have “good” overlap with target ensemble?

In how far do exisiting simulations rely on V �∞? Big
finite-volume effects? Artificial results?

In regions with maximally severe Z−/Z+ → 1: can any sampling
method ever be successful (for V →∞)?

Thank you!
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