Complex Langevin:
Mathematical results and problems

Erhard Seiler

Max-Planck-Institut für Physik, München
(Werner-Heisenberg-Institut)
Overview

1. Introduction
2. General discussion
3. Quadratic actions
4. Mathematical and Practical Problems
5. Extension to manifolds?
6. Outlook
1. Introduction

Successes and Failures

In some simple cases good convergence to the right limit.
Example: $U(1)$ LGT in $2D$ (Ambjørn et al 1986).

Practical Problems:

- Runaways (divergence)
- convergence to wrong limit.

Mathematical questions unresolved:

Quotes: …conspicuous absence of general spectral theorems
…(Klauder&Petersen 1984)
…a rather experimental character: for some situations the method works, while it fails for other choices of the action
…(Haymaker&Wosiek 1988)
Resurrection

Berges & Stamatescu 2005: Simulation of Minkowski space QFT
(precurser: Hüffel & Rumpf 1984, Nakamoto & Yamanaka 1986)

Continuation: Berges et al 2007, Berges & Sexty 2007

Finite density: Aarts & Stamatescu 2008

– Numerically impressive results
– approach appears again promising
– but problems lingering.

Guralnik & Pehlevan 2008-2009 Solutions to some?
2. General discussion

‘Flat’ case: defined on $\mathcal{M} = \mathbb{R}^n$, analytically continued to $\mathcal{M}_c \equiv \mathbb{C}^n$.

Complex Langevin:

$$dz = -\nabla S dt + dw$$

dw increment of Wiener process on \mathbb{R}^n (formally $dw = \eta(t) dt$, η white noise).

This is real stochastic process:

$$dx = K_x dt + dw$$

$$dy = K_y \nabla_x S(x + iy) dt,$$ \hspace{1cm} (1)
\[K_x = -\text{Re}\nabla_x S(x + iy) \]
\[K_y = -\text{Im}\nabla_x S(x + iy) \]

(2)

⇒ Real Fokker-Planck equation

\[\frac{\partial}{\partial t} P(x, y; t) = L_{FP} P(x, y; t); \quad P(x, y; 0) = \delta(x-x_0)\delta(y-y_0) , \]

\(P \) probability density in \(\mathbb{R}^{2n} \),
real Fokker-Planck operator:

\[L_{FP} \equiv \nabla_x [\nabla_x - K_x] - \nabla_y K_y \]
Complex Fokker-Planck Equation: Given y_0, define

$$\frac{\partial}{\partial t} \rho_{y_0}(x; t) = L_{y_0}^c \rho_{y_0}(x; t),$$

where $\rho_{y_0}(x; t)$ is complex density defined on $\mathbb{R}^n + iy_0$,

$$L_{y_0}^c \equiv \nabla_x [\nabla_x + (\nabla_x S(x + iy_0))].$$

Special case: $S(x)$ real for x real:
Complex FPE \rightarrow standard FPE
Real FPE lives still in \mathbb{R}^{2n}, but has stationary solution

$$P(x, y) \propto \exp[-S(x)]\delta(y).$$
FP Hamiltonian

$L^c_{y_0}$ operator on $\mathcal{H}_2 \equiv L^2(e^{Re S} dx)$.

Unitary map $U : L^2(dx) \to \mathcal{H}_2$:

$$U \psi = \exp(-\frac{1}{2}S)\psi ,$$

$$H_{FP} \equiv -U^{-1}L^c_{y_0} U = - (\nabla - \frac{1}{2}(\nabla S)) (\nabla + \frac{1}{2}(\nabla S)) ;$$

S real: H_{FP} manifestly positive.

Fact: spectrum and numerical range of $-H_{FP}$ and $L^c_{y_0}$ agree.
Goal and Questions

Goal: Produce expectation values of holomorphic observables O:

$$\langle O \rangle \equiv \frac{\int O(x+iy_0)e^{-S(x+iy_0)} d^n x}{\int e^{-S(x+iy)} d^n x} ;$$

independent of y_0 by Cauchy’s theorem.

Hope: obtainable as long time limit of

$$\langle O \rangle_{P,t} \equiv \frac{\int O(x+iy)P(x,y;t)d^n x d^n y}{\int P(x,y;t)d^n x d^n y} ;$$

and by ergodicity as

$$\lim_{t \to \infty} \frac{1}{t} \int O(z(t)) dt .$$
Question: Relation to ‘ρ-expectations’

\[
\langle O \rangle_{\rho,t} \equiv \frac{\int O(x+iy_0)\rho(x;t)d^n x}{\int \rho_y(x;t)d^n x}
\]

Transposer operators:

\[(L^c_{y_0})^T \equiv [\nabla_x - (\nabla_x S(x + iy_0))] \nabla_x ,\]

\[L^T_{FP} \equiv \left[\nabla_x - \text{Re}(\nabla_x S(x + iy))\right] \nabla_x - \text{Im}(\nabla_x S(x + iy)) \nabla_y\]

defined such that

\[\partial_t \langle O \rangle_{\rho,t,y} = \langle (L^c_{y_0})^T O \rangle_{\rho,t} \text{ and } \partial_t \langle O \rangle_{P,t} = \langle L^T_{FP} O \rangle_{P,t} .\]
Result

Assume

- for all \(y_0 \) \(L_{y_0}^c \) generates bounded holomorphic semigroup,
- for all \(y_0 \) \(O(x + iy_0) \in L^1(\mathbb{R}^n, d^n x) \cap L^2(\mathbb{R}^n, d^n x) \),
- \(L_{FP} \) generates quasibounded (strongly continuous) semigroup (i.e. \(\| e^{tL_{FP}} \| \leq C_1 e^{C_2 t} \)).

\[\Rightarrow \langle O \rangle_{\rho,t} = \langle O \rangle_{P,t} \]

for all \(t \geq 0 \) and all \(y_0 \).
Proof

1. Initial conditions agree (Cauchy)
2. By assumption, \(\exp \left[t\left(L_{y_0}^c \right)^T \right] O(x + iy_0; t) \) is in \(L^2 \) and unique solution of DE

\[
\partial_t O(x + iy_0; t) = \left(L_{y_0}^c \right)^T O(x + iy_0; t).
\]

By Cauchy-Riemann equations

\[
\left(L_{y_0}^c \right)^T O(x + iy_0) = L_{FP}^T O(x + iy)\big|_{y_0},
\]

and hence

\[
\exp(t L_{y_0}^T) O(x + iy_0) = \exp(t \left(L_{FP}^c \right)^T) O(x + iy)\big|_{y_0}.
\]

Integration by parts completes the proof.
Comments

- $\rho dx, Pdx dy$ measures: δ functions allowed
Comments

- $\rho dx, Pdxdy$ measures: δ functions allowed
- Existence of semigroup $\exp(tL_{FP})$ highly nontrivial (see below). Danger from runaways!
Comments

• ρdx, $P dx dy$ measures: δ functions allowed

• Existence of semigroup $\exp(t L_{FP})$ highly nontrivial (see below). Danger from runaways!

• Want to evaluate $O(x + iy) = \exp[i k (x + iy)]:$ need strong decay of $P(x, y; t)$ in imaginary direction!
Comments

- \(\rho dx, P dx dy \) measures: \(\delta \) functions allowed
- Existence of semigroup \(\exp(t L_{FP}) \) highly nontrivial (see below). Danger from runaways!
- Want to evaluate \(O(x + iy) = \exp[ik(x + iy)] \): need strong decay of \(P(x, y; t) \) in imaginary direction!
- Convergence of \(P(x, y; t) \) not necessary. Need only convergence of \(\rho(x; t) \).
Comments

• $\rho dx, Pdx dy$ measures: δ functions allowed

• Existence of semigroup $\exp(\tau L_{FP})$ highly nontrivial (see below). Danger from runaways!

• Want to evaluate $O(x + iy) = \exp[ik(x + iy)]$: need strong decay of $P(x, y; t)$ in imaginary direction!

• Convergence of $P(x, y; t)$ not necessary. Need only convergence of $\rho(x; t)$.

• Need: spectrum of L^c_0 in left half plane.
Comments

• $\rho dx, Pdxdy$ measures: δ functions allowed

• Existence of semigroup $\exp(tL_{FP})$ highly nontrivial (see below). Danger from runaways!

• Want to evaluate $O(x + iy) = \exp[ik(x + iy)]$: need strong decay of $P(x, y; t)$ in imaginary direction!

• Convergence of $P(x, y; t)$ not necessary. Need only convergence of $\rho(x; t)$.

• Need: spectrum of L_{y0}^c in left half plane.

• $\text{spec}(L_{y0}^c) \subset \text{spec}(L_{FP})$. Pseudospectrum?
3. Quadratic Actions

Almost trivial, but instructive. Complete analysis possible.

Setting:

\[S = \frac{1}{2} (x, Ax), \quad x \in \mathbb{R}^n, \]

\[A = A_r + iA_i \] complex symmetric matrix; \(A_r \) and \(A_i \) real symmetric matrices.

Assumptions:

- **A strictly dissipative:** \(A_r = \frac{1}{2} (A + A^\dagger) < 0 \).
- **A diagonalizable by a complex orthogonal matrix \(O \):**
 \[A = O^T D O \] with \(D = \text{diag}(\lambda_1, \ldots, \lambda_n) \). Generic!
Fact: \(\text{Re } \lambda_1, \ldots \lambda_n < 0 \) because \(A \) strictly dissipative.
Converse not true:

\[
A = -\begin{pmatrix} 1 & 2 + 2i \\ 2 + 2i & 1 \end{pmatrix}
\]

has eigenvalues \(\lambda_{1,2} = -1 \pm \sqrt{8}i \), but

\[
\frac{1}{2}(A + A^\dagger) = -\frac{1}{2} \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}
\]

not negative definite (eigenvalues \(-1, 3\)).
1D example

\[S = \frac{1}{2} ax^2, \quad a = a_r + ia_i, \quad a_r > 0 \]

\[L_{FP} = \partial_x^2 + a_r (\partial_x x + \partial_y y) + a_i (-\partial_x y + \partial_y x). \]

\(L_{FP} \) not dissipative:

\[\frac{1}{2} (L_{FP} + L_{FP}^\dagger) = \partial_x^2 + 2a_r. \]

But stationary solution:

\[P(x, y; \infty) = c \exp \left[-a_r x^2 - \frac{2a_r^2}{a_i} xy - \frac{a_r}{a_i^2} (2a_r^2 + a_i^2) y^2 \right]. \]

Integrable for \(a_r > 0 \).
Remark: Level lines of $P(x, y; \infty)$ are tilted ellipses:

$$P(x, y; \infty) = c \exp[-Q(x, y)]$$

with

$$Q(x, y) = \frac{a_r}{2} \left[x + y(\alpha + \sqrt{1 + \alpha^2}) \right]^2 +$$

$$\frac{a_r}{2} \frac{1+\alpha^2-\sqrt{1+\alpha^2}}{1+\alpha^2+\sqrt{1+\alpha^2}} \left[x(\alpha + \sqrt{1 + \alpha^2}) - y \right]^2.$$ \hspace{1cm} (2)

where $\alpha = a_r/a_i$.
Time-dependent solution

(Haymaker & Peng 1989):

\[X = \begin{pmatrix} x \\ y \end{pmatrix}, \quad X_0 = \begin{pmatrix} x_0 \\ y_0 \end{pmatrix}, \quad Z(t) = X - e^{-at} \begin{pmatrix} \cos at & \sin at \\ -\sin at & \cos at \end{pmatrix} X_0; \]

\[P(x, y; t) = \exp \left[-\frac{1}{2} Z(t)^T \Sigma^{-1}(t) Z(t) \right] \]

with \(\Sigma(t) = \begin{pmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{12} & \sigma_{22} \end{pmatrix} \)
\[\sigma_{11} = \frac{1}{a_r} + \frac{a_r}{2(a_r^2 + a_i^2)} + e^{-2a_r t}\left[\frac{-a_r \cos(2a_i t) + a_i \sin(2a_i t)}{2(a_r^2 + a_i^2)} - \frac{1}{2a_r}\right] \]

\[\sigma_{12} = -\frac{a_r}{2(a_i^2 + a_i^2)} + e^{-2a_r t}\left[\frac{a_r \sin(2a_i t) + a_i \cos(2a_i t)}{2(a_r^2 + a_i^2)}\right] \]

\[\sigma_{22} = \frac{1}{a_r} - \frac{a_r}{2(a_r^2 + a_i^2)} + e^{-2a_r t}\left[\frac{a_r \cos(2a_i t) - a_i \sin(2a_i t)}{2(a_r^2 + a_i^2)} - \frac{1}{2a_r}\right] \]
Complex FP equation

\[L^c_{y_0} = \partial_x^2 + a \partial_x (x + iy_0); \]

not dissipative if \(a_i \neq 0 \).

FP Hamiltonian:

\[H_{FP} = -\partial_x^2 - \frac{1}{2} a + \frac{1}{4} a^2 (x + iy_0)^2, \]

For \(y_0 = 0 \) and rescaled \(x \mapsto x\sqrt{2} \): standard harmonic oscillator

\[H_{h.o.} = -\frac{1}{2} \frac{d^2}{dx^2} + \frac{1}{2} \omega^2 x^2 - \frac{\omega}{2} \]
Mehler formula

\[\exp(-tH_{h.o.}(x, x_0)) \equiv Q_t(x, x_0), \]

with

\[Q_{\omega t}^\omega (x, x_0) = \sqrt{\frac{\omega}{\pi(1-e^{-2\omega t})}} \exp \left[-\frac{\omega(x^2+x_0^2)}{2 \tanh(\omega t)} - \frac{\omega xx_0}{\sinh(\omega t)} \right]. \]

Using unitary map \(U \):

\[\exp(tL_0^c)(x, x_0) = e^{-ax^2/4} Q_t^\omega \left(\frac{x}{\sqrt{2}}, \frac{x_0}{\sqrt{2}} \right) e^{ax_0^2/4}. \]

Reintroduce \(y_0 \):

\[\exp(tL_{y_0}^c)(x, x_0) = \exp(tL_0^c)(x + iy_0, x_0 + iy_0). \]
Higher dimensions

\[L_{FP} = \Delta_x + \nabla_x \cdot A_r x + \nabla_y \cdot A_r y - \nabla_x \cdot A_i y + \nabla_y \cdot A_i x , \]

\[L_{FP}^\dagger = \Delta_x - (A_r x) \cdot \nabla_x - (A_r y) \cdot \nabla_y + \nabla_x \cdot A_i y - \nabla_y \cdot A_i x . \]

\[\frac{1}{2} (L_{FP} + L_{FP}^\dagger) = \Delta_x + 2 \text{tr} A , \]

so \(L_{FP} \) is again not dissipative.
Solution by Mehler kernel

First $A_i = 0$: exists O (orthogonal)

$$A = O^T D$$

with $D = \text{diag}(\lambda_1, \ldots, \lambda_n)$.

Put $Ox = x'$, $Ox_0 = x'_0$:

$$\exp(-tH_{FP})(x, x_0) = \prod_{i=1}^{n} Q^\lambda_i \left(\frac{(Ox)_i}{\sqrt{2}}, \frac{(Ox_0)_i}{\sqrt{2}} \right).$$

$$e^{L_{y_0} t}(x, x_0) = \exp\left(-\frac{S(x+iy_0)}{2}\right) \prod_{i=1}^{n} Q^\lambda_i \left(\frac{(Ox)_i}{\sqrt{2}}, \frac{(Ox_0)_i}{\sqrt{2}} \right) \exp\left[\frac{S(x_0+iy_0)}{2}\right].$$
Remarks:

• By analytic continuation this remains valid for complex \(A \).
Remarks:

• By analytic continuation this remains valid for complex \(A \).

• Relaxation to equilibrium if \(\text{Re} \lambda_i > 0, \ i = 1, \ldots, n \).
Remarks:

• By analytic continuation this remains valid for complex A.

• Relaxation to equilibrium if $\Re \lambda_i > 0$, $i = 1, \ldots, n$.

• Moral reason: all classical trajectories attracted to origin.
4. Problems

Mathematical and practical difficulties:

- **Existence** of the semigroup generated by L_{FP}. Not known: L_{FP} never manifestly dissipative.
 Hope: with new scalar product L_{FP} dissipative.
4. Problems

Mathematical and practical difficulties:

- **Existence** of the semigroup generated by L_{FP}. Not known: L_{FP} never manifestly dissipative. Hope: with new scalar product L_{FP} dissipative.

- **Runaways:** In typical cases deterministic motion can go to ∞ in finite time. Reason: Drift ∇S grows in some directions. 1D:

 $$\dot{z} = -S' \implies t - t_0 = -\int \frac{dz}{S'}$$

 (integration on curve with dz real multiple of S').
Example (Aarts& Stamatescu 2008)

\[S = -\beta \cos x - \kappa \cos(x - i\mu) \]

Complex Langevin equation

\[dx = K_x dt + dw, \quad dy = K_y dt \]

with

\[K_x = -\sin x [\beta \cosh y + \kappa \cosh(y - \mu)] \]
\[K_y = -\cos x [\beta \sinh y + \kappa \sinh(y - \mu)] \]

(1)
From (Aarts & Stamatescu 2008): Drift pattern
Real FP operator:

\[L_{FP} = \partial_x [\partial_x - K_x] - \partial_y K_y \]

Complex FP operator:

\[L_{y_0}^c = \partial_x [\partial_x + \beta \sin(x + iy_0) + \kappa \sin(x + iy_0 - i\mu)] \]

Drift \(K_x, K_y \) parallel to gradient of

\[G(x, y) = \exp \left[- \frac{\cos x}{\beta \cosh y + \kappa \cosh(y - \mu)} \right]. \]
G is Lyapunov function:

$$\frac{d}{dt} G(x(t), y(t)) = (K_x \partial_x + K_y \partial_y) G(x, y) =$$

$$- \left[\sin^2 x + \cos^2 x \left(\frac{\beta \sinh y + \kappa \sinh(y-\mu)}{\beta \cosh y + \kappa \cosh(y-\mu)} \right)^2 \right] G \leq 0,$$

Vanishes only on stable fixed point (x, y_*);
⇒ all points attracted to (x, y_*).

ECT Trento, March 4, 2009 – p.30/37
G also candidate stochastic Lyapunov function:

$$L_{FP}^T G < 0$$

for $|y|$ large enough.

Need (Khasminskii 1980):

$$L_{FP}^T G \to -\infty \quad \text{for } |y| \to \infty .$$

Open problem.

Practically large excursions cause problems even if stationary $P(x, y)$ exists.
• *Spectral* projections of complex FP operator: Example Davies&Kuilaars, 2004: Spectral projections P_n of complex harmonic oscillator grow:

$$\|P_n\| \geq a C^{2n+1}, \quad C > 1;$$

poor convergence of eigenfunction expansions:

$$e^{-Ht}\psi = \sum_n e^{-\omega(n+1/2)t} P_n\psi$$

– Eigenfunctions do not form Riesz basis
– e^{-Ht} not bounded semigroup
– \exists pseudospectrum far from spectrum!

(Davies 1999)
Riesz basis \((\phi_n)_{n=1}^{\infty} \):

\[\exists \text{ bounded operator } S \text{ with } S^{-1} \text{ bounded such that} \]

\[S\phi_n = e_n \quad n = 1, \ldots \infty, \]

where \((e_n)_{n=1}^{\infty} \) orthonormal basis.

Pseudospectrum:

\[\text{spec}_\epsilon(A) \equiv \{ z \in \mathbb{C} \mid \|(A - z)^{-1}\| > \epsilon^{-1} \} \]

Signifies instability:

\[\text{spec}_\epsilon(A) = \bigcup_B \{ \text{spec}(A + B), \|B\| < \epsilon \} \]

Tiny perturbation can eliminate “pseudo”
• Convergence to wrong limit
 Noticed by Klauder&Petersen 1985
 – Ambjørn et al 1986:
 “Quantum mechanical disasters of the first degree”:

 \[S = -\beta \cos \theta - i\theta \]

 works for large \(\beta \), fails for small \(\beta \).

 “Non-abelian disasters of the third degree”:

 \[S = -\beta \text{tr}\ U - \log \text{tr}\ U, \quad U \in SU(2), SU(3) \]

 works for large \(\beta \), fails for small \(\beta \).
– Haymaker&Wosiek 1987:

\[S = -\beta \cos \theta - \log \cos \theta \]

Simulates restricted range \([-\pi/2, \pi/2]\).

Reason: zero of \(\cos \theta\).

1. 1D, \(S\) polynomial, \(e^{-S} \in S\)
2. \(\int_{\mathbb{R}} e^{-S(x)} \, dx \neq 0\)
3. \(\forall k \in \mathbb{R} \quad \lim_{t \to \infty} \langle e^{ikz} \rangle_{P,t} \) exists and is \(\in S(\mathbb{R})\).

Not really practical.
5. Extension to manifolds

Gausterer & Thaler 1998, Aarts & Stamatescu 2008:
Compact connected Lie groups.

Examples:
$U(1)$ complexified to $U(1) \times \mathbb{R}$
$SU(N)$ complexified to $SL(N, \mathbb{C})$

More generally:
– \mathcal{M} Riemannian manifold $\Rightarrow \exists$ Wiener process \Rightarrow
 noise in real directions well defined
– Real manifold \mathcal{M} has to have complexification \mathcal{M}_C.

Formal arguments carry over; problems remain.
6. Outlook

- Method shows some promise
6. Outlook

- Method shows some promise
- Practical usefulness has to be checked
6. Outlook

• Method shows some promise

• Practical usefulness has to be checked

• Validation necessary: check with analytic or otherwise known result.
6. Outlook

- Method shows some promise
- Practical usefulness has to be checked
- Validation necessary: check with analytic or otherwise known result.
6. Outlook

- Method shows some promise
- Practical usefulness has to be checked
- Validation necessary: check with analytic or otherwise known result.
- Hope for the best, be prepared for the worst