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Lingxiao Wang 
 
Learning hadron interactions from lattice QCD 
 
In this study, we develop a deep learning method to learn hadron interactions from Lattice QCD 
calculated correlations unsupervisedly. We present our approach of using neural networks to model 
potential functions that are learned from Nambu-Bethe-Salpeter (NBS) wave functions. This allows 
most general forms of interaction potentials to be incorporated into a Schrödinger-like equation for 
detailed hadron interaction analysis.  
 
 
Simran Singh 

Testing machine learning against finite size scaling for the chiral phase transition 

We extend an existing ML analysis using masked autoregressive flows to estimate the conditional 
probability density of the chiral condensate conditioned on the number of spatial lattice sites, gauge 
coupling and quark masses for Nf=5, degenerate light quarks. This was previously done for HISQ 
fermions by Neumann et.al to determine the Z2 phase boundary in this theory. In this contribution we 
extend this analysis to previously published data (by F. Cuteri et.al., JHEP 2021) to determine whether 
the ML analysis can recover the critical mass as determined by the finite size scaling analysis and 
hence offer an alternative. 
 
 
Elia Cellini 
 
Stochastic normalizing flows for new theories and observables 
 
Normalizing Flows (NFs) are a class of deep generative models proposed as a promising alternative to 
traditional Markov Chain Monte Carlo methods in lattice field theory calculations. In this talk, we 
explore Stochastic Normalizing Flows (SNFs), a combination of NF layers and out-of-equilibrium 
stochastic updates. We outline the relationship of this extended class of deep generative algorithms 
with Crooks' theorem and Jarzynski's equality, two fundamental results in non-equilibrium statistical 
mechanics. We then present numerical results for several observables in lattice-regularized Effective 
String Theory, a powerful non-perturbative framework used to study confinement in pure gauge 
theory, and for the calculation of the entanglement entropy in scalar field theory. 
 
 
Alessandro Nada 
 
Sampling SU(3) pure gauge theory with out-of-equilibrium evolutions and stochastic normalizing flows 
 
Non-equilibrium Monte Carlo simulations based on Jarzynski's equality are a well-understood method 
to compute differences in free energy and to sample from a target probability distribution that suffers 
from long autocorrelation times. Out-of-equilibrium evolutions are conceptually similar to 
Normalizing Flows and they can be combined into a recently-developed architecture called 
Stochastic Normalizing Flows (SNF). We first outline two computational strategies to mitigate critical 
slowing down in SU(3) pure gauge theory, either by switching from open to periodic boundary 
conditions or by changing the gauge coupling over each out-of-equilibrium evolution, with a focus on 
the promising scaling with the volume. Then, we introduce a SNF with gauge-equivariant layers 



between the out-of-equilibrium Monte Carlo updates, we analyse the improvements over the purely 
stochastic approach, and we conclude with a discussion on future prospects. 
  
 
Ankur Singha 
 
Multilevel sampling of lattice theories using RG-inspired autoregressive models 
 
We introduce a method for multilevel sampling of lattice theories, using insights from Renormalization 
Group (RG) analysis to design model architectures from coarse to fine levels. The interaction range of 
spins at each level, derived from the RG transformation of the lattice Hamiltonian, determines the 
CNN kernel size in the model. By training the model at a coarse level first and then using it as the initial 
point for the next level, we enhance training efficiency. This multilevel approach addresses the 
limitations of existing models, offering better scalability and accuracy for large-scale lattice sampling 
problems. 
 
 
Tej Kanwar 
 
Neural-network contour deformations for the signal-to-noise problem 
 
Path integral contour deformations provide a systematically exact method for redefining lattice field 
theory observables to minimize their statistical noise. This talk details recent developments based on 
applying a hierarchical U-net neural network architecture to define families of contour deformations 
for SU(N) variables. Numerical optimization within this family enables exponential improvements in 
the signal-to-noise ratio of Wilson loops in proof-of-principle applications to 2+1D SU(N) lattice gauge 
theories. The choice of gauge-fixing is a key ingredient in the success of this method, and a potential 
method to optimize over gauge-fixing schemes will be discussed. 
  
 
Alexander Rothkopf 
 
Learning optimal kernels for real-time complex Langevin 

In this talk I will present recent progress in extending the range of validity of complex Langevin real-
time simulations for 1+1d scalar field theory using a simple reinforcement learning approach. Our 
strategy relies on supplying complex Langevin with prior information of the simulated system to learn 
an optimal non-neutral kernel that modifies the convergence properties of the underlying stochastic 
process. Ongoing work towards retaining continuum symmetries in the discrete setting, crucial to 
exploit as prior information, are discussed. 
  
 
Biagio Lucini 
 
Topological data analysis for lattice gauge theories 
 
It is well known that in non-Abelian gauge theories topologically non-trivial configurations play a 
crucial role in determining non-perturbative behaviour. Topological data analysis is an investigation 
framework that enables robust definitions of topology for discrete sets of points. Therefore, lattice 
studies of gauge theories with non-trivial topological content provide ideal application scenarios for 
topological data analysis. In this talk, after a general introduction to the subject, I will show how 
topological data analysis can be used to characterise configurations with non-trivial topological 
features. Building on those results, I will provide constructions of (pseudo-)order parameters that 



enable to study quantitatively the deconfining phase transition in U(1), SU(2) and SU(3) lattice gauge 
theories. The role of machine learning in this process will be highlighted. 
 
 
Ryan Abbott 
 
Progress in normalizing flows for 4d gauge theories 
 
Normalizing flows have recently arisen as a potential tool for aiding in sampling lattice field theories. 
In this talk I will give an overview of our groups' recent progress in applying normalizing flows to 4-
dimensional nonabelian gauge theories, as well as current efforts to scale normalizing flows towards 
modern lattice field theory calculations. 
 
 
Fernando Romero Lopez 
 
Applications of flow models to the generation of correlated lattice QCD ensembles 
 
Machine-learned normalizing flows can be used in the context of lattice quantum field theory to 
generate statistically correlated ensembles of lattice gauge fields at different action parameters. In 
this talk, we show examples on how these correlations can be exploited for variance reduction in the 
computation of observables. Three different proof-of-concept applications are presented: continuum 
limits of gauge theories, the mass dependence of QCD observables, and hadronic matrix elements 
based on the Feynman-Hellmann approach. In all three cases, statistical uncertainties are 
significantly reduced when machine-learned flows are incorporated as compared with the same 
calculations performed with uncorrelated ensembles or direct reweighting. 
 
 
Mathis Gerdes 
 
Exploring continuous normalizing flows for gauge theories  
     
We explore equivariant architectures for continuous flows on gauge theories, taking inspiration from 
previous successes for scalar theories, and going beyond gradient flows. We focus on expressivity of 
the vector field architecture while maintaining computational efficiency, showing promising results for 
pure SU(2) Yang-Mills theory. 
 
 
Akio Tomiya 
 
MLPhys in Japan and developments of CASK: Gauge symmetric transformer 
 
This presentation will cover three main topics related to the MLPhys project, which integrates 
machine learning and AI into physics to tackle complex computational challenges. First, I will 
introduce the MLPhys project and its goals. Funded by Japan's Grants-in-Aid for Scientific Research 
(KAKENHI) and supported by the Fugaku supercomputer, this project aims to combine machine 
learning with physics. Next, I will discuss our development of the Gauge Symmetric Transformer 
(CASK: Covariant Attention for SU(N) Kernel). CASK, applicable to fermions and extendable as stout 
smearing, is demonstrated within self-learning HMC (SLHMC) to improve lattice QCD simulations. 
Finally, I will briefly cover the application of sparse modeling and All-Mode Averaging (AMA) 
techniques for computing 1/D^n, enhancing the precision of physical calculations. 
 
 



David Müller 
 
Lattice simulations with machine-learned classically perfect fixed-point actions 
 
Fixed-point actions are classically perfect lattice actions, i.e., they are free from classical lattice 
artifacts. Furthermore, they exhibit suppressed quantum artifacts. Monte Carlo simulations 
employing such actions may provide a way to efficiently approach the continuum limit on coarse 
lattices, thereby avoiding critical slowing down and topological freezing. Extending our previous work, 
we use lattice gauge equivariant convolutional neural networks (L-CNNs) to approximate a fixed-point 
action for SU(3) gauge theory in four dimensions to previously unseen accuracy. Using this new 
parametrization, we perform HMC simulations and classically perfect gradient flow. Our self-
consistent approach aims to extract gradient flow observables on much coarser lattices compared to 
simulations using the Wilson action. 
 
  
Chanju Park 
 
Empirical phase diagram of neural network and spin glass theory 
 
The stochastic gradient update of a neural network can be described by a Langevin equation with the 
strength of fluctuation proportional to α/|B|, which can be interpreted as the temperature of the 
system. Here we show an empirical phase diagram of one hidden layer neural network with tangent 
hyperbolic activation function, where three distinctive phases can be classified. The control 
parameter of the phase transition is shown to be α/|B| and the initial width of the weight matrix σ_W. 
Then, we argue that the phase diagram can be understood in the context of the spin glass theory, 
where each phase corresponds to ferromagnetic, paramagnetic, and spin glass. 
 
 
Tomasz Stebel 
 
Entanglement entropy with generative neural networks 
 
In this talk I will describe a method to estimate Rényi entanglement entropy, which is based on the 
replica trick and generative neural networks with explicit probability estimation. We demonstrate it on 
a one-dimensional quantum Ising spin chain. As the generative model, we use a hierarchy of 
autoregressive deep neural networks, allowing us to simulate up to 32 spins. We calculate the second 
Rényi entropy and its derivative. This method can be extended to any spin system or lattice field theory 
if the appropriate sampling algorithms are available. 
 
 
Shiyang Chen 
 
Exploring generative networks for manifolds with non-trivial topology 
 
The expressive power of neural networks in modelling complex distributions is desirable to bypass 
topological freezing and critical slowing down in simulations of lattice field theory. Some approaches 
suffer from problems with topology, which may lead to some classes of configurations not being 
generated. In this talk, I will present a novel generative approach inspired by a model previously 
introduced in the ML community (GFlowNets) and simulate triple ring models and phi^4 lattice model 
to demonstrate the capabilities of the method to solve issues connected with ergodicity. 
 
 
 



Gert Aarts 
 
Weight matrix dynamics and Dyson Brownian motion 
 
We apply concepts from random matrix theory to describe stochastic weight matrix dynamics, using 
the framework of Dyson Brownian motion. We derive the linear scaling rule between the learning rate 
of the optimisation and the mini-batch size, and identify universal and non-universal aspects of the 
weight matrix dynamics.  We test our hypothesis in the (near-)solvable case of the Gaussian 
Restricted Boltzmann Machine, and explicitly identify the Wigner surmise and semi-circle, and the 
linear scaling rule. 
 
 
Matteo Favoni 
 
Towards the application of random matrix theory to neural networks 
 
Random matrix theory was first examined in the context of nuclear physics to investigate properties of 
heavy atom nucleus spectra. This theory is suited for an application to machine learning algorithms, 
specifically to study the properties of their weight matrices. In this presentation, we study a teacher-
student model and discuss the role of hidden layers, showing that the matrix eigenvalues  
characterizing well-trained models are distributed according to the Wigner’s surmise and a 
generalized version of the Wigner’s semicircle. 
 
 
  


