
MLPhys in Japan and  
Developments of CASK: Gauge Symmetric Transformer

Jul, 26 (Fri), 2024

In person at Swansea 
9:30-10:10 

akio_at_yukawa.kyoto-u.ac.jp

Akio Tomiya (Lecturer/Jr Associate prof) 
Tokyo Woman's Christian University 

(I moved in this April)

ML meets LFT July 24-26 2024, Swansea University: Vivian Tower 516



MLPhys

CASK
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Outline of my talk

https://ogna-beer.com/products/caskstout

Covariant transformer
Main part



What is MLPhys

3
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My team: LQCD + ML

+…

https://mlphys.scphys.kyoto-u.ac.jp/en/

+…

+…

B01

B02

B03

A01

A02

A03

A04
2021

https://mlphys.scphys.kyoto-u.ac.jp/en/


5 https://mlphys.scphys.kyoto-u.ac.jp/ic_mlphys/

International conference in 2023 at Kyoto, Japan

Yukawa Institute, Kyoto Japan
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https://mlphys.scphys.kyoto-u.ac.jp/stringdata2024/String data 2024

2024, Dec.10-12

Yukawa Institute, Kyoto University, Japan

• 	 Yago Bea (University of Barcelona)

• 	 Gabriel Lopes Cardoso (Lisbon, IST)

• 	 François Charton (META AI)

• 	 Sergei Gukov (Caltech)

• 	 James Halverson (Northeastern University)

• 	 Song He (Jilin University / Max Planck Institute Potsdam)

• 	 Edward Hirst (Queen Mary, University of London)

• 	 Vishunu Jejjala (University of the Witwatersrand in Johannesburg)

• 	 Hyun-Sik Jeong (Institute for Theoretical Physics UAM-CSIC in Madrid)

• 	 Keun-Young Kim (GIST)

• 	 Sven Krippendorf (Arnold Sommerfeld Center for Theoretical Physics, LMU Munich)

• 	 Anindita Maiti (Perimeter Institute)

• 	 Fabian Ruehle (Northeastern University)

• 	 Matthew Schwartz (Harvard University)

• 	 Rak-Kyeong Seong (UNIST)

• 	 Eva Silverstein (Stanford)


Confirmed invited speakers

The deadline for the registration for the on-site participants is October 31st. 2024.

Organizers

Hashimoto, Koji (Kyoto University, chair)

Yoshida, Kentaroh (Saitama University)

Murata, Masaki (Saitama Institute of Technology)

Sugishita, Sotaro (Kyoto University)

Hirono, Yuji (Osaka University)

Sannai, Akiyoshi (Kyoto University)

Yoda, Takuya (Kyoto University)

Hikida, Yasuyuki (Kyoto University)

Tanahashi, Norihiro (Kyoto University)


https://icc.ub.edu/people/432
https://www.math.tecnico.ulisboa.pt/~gcardoso/
http://theory.caltech.edu/~gukov/
http://www.jhhalverson.com/
https://teachers.jlu.edu.cn/hesong/en/index.htm
https://www.qmul.ac.uk/spcs/staff/research-staff/profiles/ehirst.html
https://www.wits.ac.za/people/academic-a-z-listing/j/vjejjalawitsacza/
https://sites.google.com/view/for-hyun-sik
http://phys.gist.ac.kr/prog/gsPerson/gctp/P/view.do?personId=P00001422&mno=sub03_01_01
https://krippendorflab.github.io/
https://perimeterinstitute.ca/people/anindita-maiti
https://ruehlef.github.io/
https://scholar.harvard.edu/schwartz/home
https://rakkyeongseong.com/
https://sitp.stanford.edu/people/eva-silverstein
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My team (A01): LQCD + ML Akio Tomiya

PI: Akio Tomiya (Me) 
TWCU 
LQCD, ML

Kouji Kashiwa

Fukuoka Institute  
of Technology

LQCD, ML

Hiroshi Ohno

U. of Tsukuba

LQCD

Tetsuya Sakurai

U. of Tsukuba

Computation

- Apply machine learning techniques on LQCD 
   (To increase what we can do) 
- Find physics-oriented ML architecture 
- Making codes for LQCD + ML

Yasunori Futamura

U. of Tsukuba

Computation

B. J. Choi

U. of Tsukuba

J. Takahashi

Meteorological College

Y. Nagai

U. of Tokyo

post-docs

& external members

https://mlphys.scphys.kyoto-u.ac.jp/en/

https://mlphys.scphys.kyoto-u.ac.jp/en/


ML Phys

A01
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Gauge covariant neural net

Phys. Rev. D 107, 054501

Open source

Flow based   
sampling

with 　

Global symmetric

Transformer for 


fermionic spin system

(arXiv: 2311.15233)

 0.01

 0.1

 1

 10

 1  10  100

es
tim

at
ed

 M
SE

num. of trainable parameters

Transformers
Linear

Finite density and

temperature


using QC

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

(Figure from 1812.11506)

Path optimization

for finite μ

Gauge invariant 
self-learning MC
 Spectral function with


Sparse Modeling


arXiv: 2103.11965

arXiv: 2208.08903

2310.13222

2306.11527

PoS LATTICE2022 (2023) 039 

ML + QC:

Quantum  

thermodynamics using

Density matrix


and MADE

Open source

LQCD (+ML) with 


This covers most of modern tech
https://github.com/akio-tomiya/LatticeQCD.jl
(and associated sub-libraries )

+ on going

On going

measurement with BDT 

TDA of 
deconfinement 

transition

Phys. Rev. D 108, 094504

1810.07635

https://github.com/akio-tomiya/LatticeQCD.jl
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Open source LQCD code in Julia Language

Akio Tomiya

Functions: SU(Nc)-heatbath, (R)HMC, Self-learning HMC, SU(Nc) Stout 
                  Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall

                  Measurements, Gauge covariant net, Auto-grad for gauge fields, 

Start LQCD

 in 5 min 

(super-easy)

Lattice QCD code for generic purpose
AT & Y. Nagai (A01, A03)

1. Download Julia binary

2. Add this package through Julia package manager

3. Execute! (no explicit compile is needed)

https://github.com/akio-tomiya/LatticeQCD.jl

Machines: Laptop/desktop/Jupyter/Supercomputers

Open source (Julia Official package, Now updated to v1.0)

Fast as a fortran code

https://github.com/akio-tomiya/LatticeQCD.jl


Two new textbooks 
+ review are publishing

• An introduction to “machine learning physics” (PhysML members)


• Published in this autumn in Japanese 
this will be translated to English (probably) using LLM


• Contents: Statistical estimation, Basics of neural nets 
Transformers, language model, Mean field theory for neural nets, 
Neural net wave functions, …


• Introduction to lattice QCD (Kashiwa, Ohno, Tomiya)


• Published in this Winter in Japanese (I’m not sure about English ver)


• I am writing a review paper LQCD/QFT + ML, please let me know if you 
have things worth to write. This will be published in JPSJ.

10



Two related talks in Lattice2024

11

B. J. Choi

U. of Tsukuba

J. Takahashi

Meteorological College

Using idea based on B. Yoon+ 1807.05971, 
we estimate higher order of 1/D using ML.

Impact of bias correction will be discussed

Reconstruction of spectral function

using machine learning (sparse modeling)

Other than my talk

H. Ohno H. Ohno

Algorithms and artificial intelligence

Jul 29 (Mon), 2024, 11:15  AM

Algorithms and artificial intelligence

Jul 29 (Mon), 2024, 3:35  PM 



  1. Gauge covariant net

  2. Transformer for fermion-spin systems

12

Two previous works to realize Gauge symmetric 
Transformer for LQCD

arXiv: 2103.11965 AT+

2310.13222 AT+

2306.11527 AT+



ML for LQCD is needed
• Neural networks


• Data processing techniques mainly for 2d 
image (a picture = pixels = a set of real #)


• Neural network helps data processing 
e.g. AlphaFold3


• Lattice QCD requires numerical effort 
but is more complicated than pictures 


• 4 dimension


• Non-abelian gauge d.o.f. and symmetry 

• Fermions (Fermi-Dirac statistics)


• Exactness of algorithm is necessary


• Q. How can we deal with neural nets?

13

http://www.physics.adelaide.edu.au/theory/staff/leinweber/VisualQCD/QCDvacuum/
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What is the neural networks?
Attempts to gauge symmetry

Akio Tomiya

In my paper for fields generation using ML (1712.03893),

(2310.13222, AT+: Global symmetric transformer for fermion-spin system)

2103.11965, AT+ Gauge covariant self-learning HMC for 4d LQCD

2010.11900, AT+: Gauge invariant self-learning MC for 4d LQCD

This work, AT+: Gauge symmetric transformer for 4d LQCD

We have created several architectures:

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402 

(Covariant NN = adaptive gradient flow = adaptive stout)

7,8 years! 😯 

https://arxiv.org/abs/2305.02402
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Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)
2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

This talk

(I want to mimic

this by NN)

1. 2.

3.

Overview/outline
Gauge covariant transformer for LQCD



Related topics in this 
meeting

• Wednesday


• Alessandro Nada, Sampling SU(3) pure gauge theory with out-of-
equilibrium evolutions and stochastic normalizing flows


• Thursday


• Ryan Abbott, Progress in normalizing flows for 4d gauge theories


• Fernando Romero Lopez, Applications of flow models to the 
generation of correlated lattice QCD ensembles


• Mathis Gerdes, Exploring continuous normalizing flows for gauge 
theories

16
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Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)

This talk

(I want to mimic

this by NN)

1. 2.

3.

2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

Overview/outline
Gauge covariant transformer for LQCD
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What is conv. neural networks?
The convolution layer can treat a translation transformation

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

Laplacian filter

Edge detection

(Discretization of )∂2

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)



19

What is conv. neural networks?
Convolution layer = trainable filter

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

w11 w12 w13

w21 w22 w23

w31 w32 w33*

Convolution layer

Laplacian filter

Edge detection

Trainable filter

→
Edge detection
Smoothing
…

This can be any filter which helps feature extraction 
but still transitionally equivariant!

Fukushima, Kunihiko (1980)

Zhang, Wei (1988) + a lot!

1 2 1

2 4 2

1 2 1

1
16

Gaussian filter

(Discretization of )∂2

(Gaussian filter)

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)
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Smearing
Smoothing improves global properties

Akio Tomiya

Eg. Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable


We want to smoothen gauge configurations

with keeping gauge symmetry

APE-type smearing

Stout-type smearing
Two types:

M. Albanese+ 1987
R. Hoffmann+ 2007

C. Morningster+ 2003

1 2 1

2 4 1

1 2 1

1
16

Gaussian filter
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Smearing
Smoothing with gauge symmetry, APE type

Akio Tomiya

APE-type smearing

Uμ(n) → Ufat
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)]

V†
μ[U](n) = ∑

μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M

= + ∑
ν

α
6𝒩[ ]

Schematically,

V α /6
𝒩 [⋯] U(1)U Mult


Sum

(1 − α)

1 − α

In the calculation graph,

+

Or projection

M. Albanese+ 1987
R. Hoffmann+ 2007

&   shows same transformationV†
μ[U ](n) Uμ(n)

→  is as wellU fat
μ [U ](n)

+

NormalizationCovariant sum

Smearing is a map with gauge covariance
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Smearing makes a map between configurations, 
works as a filter



23

Gauge covariant neural network
= trainable smearing (= residual flow)

Akio Tomiya

Gauge covariant neural network = smearing with tunable parameters w

U(l+1)
μ (n) = 𝒩(z(l)

μ (n)){

Gauge covariant variational map: Uμ(n) ↦ UNN
μ (n) = UNN

μ (n)[U]

Trainable param

AT Y. Nagai arXiv: 2103.11965

Smearing = gauge covariant way of transform gauge configurations

Uμ(n) → Usmr
μ (n) = 𝒩 [(1 − α)Uμ(n) +

α
6

V†
μ[U](n)] V†

μ[U ](n) = ∑
μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

𝒩 [M] =
M

M†M
Or projection

Normalization

Covariant sum

UNN
μ (n)[U] = U(4)

μ (n)[U(3)
μ (n)[U(2)

μ (n)[Uμ(n)]]]

link-wise projection/normalization (local)

Gauge covariant NN:

staple

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402 

z(l)
μ (n) = w1Uμ(n) + w2V†

μ[U](n)

Stout type can be constructed in the same way

https://arxiv.org/abs/2305.02402
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Gauge covariant neural network
= trainable smearing (= residual flow)

Akio Tomiya

AT Y. Nagai arXiv: 2103.11965

Stout-type

Uμ(n) → Usmr
μ (n) = e∑i ρiLi[U]Uμ(n) V†

μ[U ](n) = ∑
μ≠ν

Uν(n)Uμ(n + ̂ν)U†
ν (n + ̂μ) + ⋯

staple

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402 

Trainable param

Following results using this stout type

Training done  by the back-prop

(extension to the stout paper [1])

[1] C. Morningster+ 2003

https://arxiv.org/abs/2305.02402
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Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢( ⃗u (t))

ResNet

Neural ODE
(Neural IPS 2018 best paper)

arXiv: 1806.07366

arXiv: 1512.03385

Continuum

Layer 

Limit
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Gauge covariant neural network
Neural ODE of Cov-Net = “gradient flow”

Akio Tomiya

U(l)
+

⃗u (l)\⃗u (l−1)
+𝒢

d ⃗u (t)

dt
= 𝒢( ⃗u (t))

ResNet

dU(t)
μ (n)
dt

= 𝒢θ̄(U(t)
μ (n))

U(l+1)
𝒢θ̄

“Continuous stout smearing is the Wilson flow”

AT Y. Nagai arXiv: 2103.11965

Neural ODE

Gauge-cov net

Neural ODE

for Gauge-cov NN 

arXiv: 1806.07366

arXiv: 1512.03385

2010 M. Luscher

(Neural IPS 2018 best paper)

Continuum

Layer 

Limit

Continuum

Layer 

Limit

“Gradient” flow 
(not has to be gradient of S)

AT Y. Nagai arXiv: 2103.11965
cf. 2212.11387 AT+



(convolutional) 
Neural network

Gauge Covariant

Neural network

Input Image 
(2d data, structured)

gauge config

(4d data, structured)

Output Image 
(2d data, structured)

gauge config

(4d data, structured)

Symmetry Translation Translation, rotation(90°), 
Gauge sym.

Gauge sym

with Fixed param Image filter (APE/stout …) Smearing

Local operation Summing up nearest 
neighbor with weights

Summing up staples 
with weights

Activation function Tanh, ReLU, sigmoid, … projection/normalization 
in Stout/HYP/HISQ

Formula for chain rule Backprop “Smeared force 
calculations” (Stout)

Training? Backprop + Delta rule AT Nagai 2103.11965

27

Gauge covariant neural network
= trainable smearing

Akio Tomiya

Dictionary

AT Y. Nagai arXiv: 2103.11965

Well-known

(Index i in the neural net corresponds to n & μ in smearing. Information processing with NN is evolution of scalar field)
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Gauge covariant neural net
Simulation parameter

Akio Tomiya

Construct effective  
action using operators


with Ueff

Ueff

U

• Self-learning HMC (1909.02255, 2021 AT+),  
an exact algorithm


• Exact Metropolis test and MD with effective action


• Target  : , dynamical staggered 
fermion, Nf=2, , SU(2), 


• Effective action in MD ( )


• Same gauge action


•  dynamical staggered 
fermion, Nf=2


•  links are replaced by  in 


• “Adaptively reweighted HMC”

S m = 0.3
L4 = 44 β = 2.7

Seff

meff = 0.4

U Ueff Dstag

St
ou

t
St

ou
t



Akio Tomiya
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Details (skip)
Network: trainable stout (plaq+poly)

Gauge covariant neural network and full QCD simulation

Lθ[U ] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Structure of NN

U(l+1)
μ (n) = exp(Q(l)

μ (n))U(l)
μ (n)

Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

UNN
μ (n)[U] = U(2)

μ (n)[U(1)
μ (n)[Uμ(n)]] 2- layered stout

All  is weightρ
(Polyakov loop+plaq 
in  the stout-type)

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)

2.Perform SLHMC with fixed parameter

Neural network  
Parametrized action:

Action for MD is built by 

gauge covariant NN

with 6 trainable parameters

TA: Traceless, anti-hermitian operation

 meas an loop operatorO

arXiv: 2103.11965

Invariant under,

rot, transl, gauge trf.



Akio Tomiya
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Details (skip)
Results: Loss decreases along with the training

Lθ[U ] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Prior HMC run (training)

C: one U removed Ω
Λ: A polynomial of U. (Same object in stout)

Training history

We perform SLHMC with these values!

arXiv: 2103.11965

Ω: sum of un-traced loops

Intuitively, e^(-L) is understood as 

Boltzmann weight or reweighting factor.

Without  training,  e^(-L)<< 1,

this means that candidate with approximated action

never accept.

After training,   e^(-L) ~1, and we get

practical acceptance rate!



Akio Tomiya
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Application for the staggered in 4d
Results are consistent with each other (stout-type used)

Expectation value

arXiv: 2103.11965

Implemented by
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Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)

This talk

(I want to mimic

this by NN)

1. 2.

3.

2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+

Overview/outline
Gauge covariant transformer for LQCD



Akio Tomiya
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Convolutional Neural network have been good job but local
Equivariance and convolution

Convolutional neural layers in neural networks keep translational symmetry, 
it can be generalized to any continuous/discrete symmetry in the theory. It helps generalization.

However, 1 step of convolutional layer can pick up only local correlation 
and representability of  neural networks is limited. Global correlations are 
sometimes important. 
How can we overcome these difficulties?

Distant correlations here can be captured  
by 3 steps of convolutional operation

(Repetition of local operation)

e.g.  
1d Input image

conv ~ neural net with n-th nearest neighbor connections (local)

conv

conv

Layer
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Attention layer used in Transformers (GPT, Bard)

Akio TomiyaTransformer and Attention
arXiv:1706.03762

Attention layer (in transformer model) has been 
 introduced in a paper titled 

“Attention is all you need” (1706.03762)

State of the art architecture of language 

processing.

Attention layer is essential.
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Attention layer can capture non-local correlations

Akio TomiyaTransformer and Attention

I am Akio Tomiya living in Japan, who studies machine learning and physics

Modifier in language can be non-local

In physics terminology, this is non local correlation.

The attention layer enables us to treat non-local correlation 
 with a neural net!

arXiv:1706.03762

Eg.

X =
I

am
Akio

⋮

WQX

WKX

WVX

M = WQX(WKX )⊤

ReLU(M )WVX

Self-Attention

Weighted 
Block- 
spin 
Transf. 
(Trainable)

Add & normalization

Skip connection

Non-local product 
(Non-local  

correlation)
X′￼

Array of 

word vectors

Word~vector

X: matrix These can be repeated

Simplified version of Attention/Transformer

(This example is single-head)
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Transformer shows scaling lows (power law)

Akio Tomiya

- Transformers requires huge data  
   (e.g. GPT uses all electric books in the world) 
   Because it has few inductive bias (no equivariance) 
- It can be improved systematically

Transformer and Attention
arXiv: 2001.08361
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Physically symmetric Attention layer

Akio TomiyaTransformer and Attention

Attention layer can capture global correlation 
Equivariance reduces data demands for training

Equivariance Capturable 
correlation Data demmands Applications

Convolution 
(∈ equivariant 

layers)
Yes 👍 Local 😲 Low 👍

Image recognition

VAE, GAN 

Normalizing flow

Standard 
Attention layer No 😲 Global 👍 Huge 😲  

ChatGPT

GEMINI


Vision Transformer

 Physically 
Equivariant 

attention 
layer

Yes 👍 Global 👍 ? Kondo system

(this work)

arXiv: 2306.11527

arXiv:1706.03762
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Target: Double exchange model

Akio TomiyaSelf-learning Monte-Carlo

H = − t ∑
α,⟨i,j⟩

( ̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

Target system: Classical Heisenberg spin + Fermion on 2d latticeSi

e−

e−

Two different phases 
- Anti-ferromagnet (~staggered mag) 
- Paramagnet (~normal metal)

(This system is similar to lattice QCD

but easier)

(Kondo model)

3d vectors on 2d lattice 
Anti-ferro magnet
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Previous work

Akio TomiyaSelf-learning Monte-Carlo

HLinear
eff = − ∑

⟨i,j⟩n

Jeff
n Si ⋅ Sj + E0

H = − t ∑
α,⟨i,j⟩

( ̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

Target system: Classical Heisenberg spin + Fermion on 2d latticeSi

Naive effective model:

Self-learning Monte-Carlo: 
    Update with  , and Metropolis-Hastings with  &  
    Cancel inexactness. This is an exact algorithms

Heff H Heff

: n-th nearest neighborJeff
n

 is determined by regression (training) to improve approximationJeff
n

(Kondo model)
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Previous work

Akio TomiyaSelf-learning Monte-Carlo

H = − t ∑
α,⟨i,j⟩

( ̂c†
iα ̂cjα + h . c.) +

J
2 ∑

i

Si ⋅ ̂σi − μ∑
α,i

̂c†
iα ̂ciα,

Target system: Classical Heisenberg spin + Fermion on 2d latticeSi

Heff = − ∑
⟨i,j⟩n

Jeff
n SNN

i ⋅ SNN
j + E0We replace this by


“translated” spin 

with a transformer

and used in self-learning MC

SNN
i

HLinear
eff = − ∑

⟨i,j⟩n

Jeff
n Si ⋅ Sj + E0

Naive effective model:

: n-th nearest neighborJeff
n

mimics effects from fermions

with smeared spins

(Kondo model)
This has fermion det

This doesn’t have fermion det
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Physically equivariant Attention layer/Transformer

Akio TomiyaSelf-learning Monte-Carlo

S′￼=

Equivariant Transformer block

Self-
Attention Add & 

Norm

arXiv: 2306.11527.

S =

S WQS

WKS

WVS

M = WQS(WKS)⊤

S(A) = ReLU(M )WVS

Self-Attention

Block- 
spin

Block- 
spin

Block- 
spin

S(A)

Add & Norm (normalization)

S′￼

A Spin configuration A Spin configuration

Skip connection

Non-local product 
(Correlation functions)

𝒩 (S + S(A)) ≡ S′￼

Array  
of spin 

vectors

(1 conf)

Our neural network respects symmetries 
in the system. Also, it can capture  
long-range correlations



Equivariant attention
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Akio Tomiya

arXiv: 2306.11527.
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Attention block makes effective spin field with non-local BST

Akio TomiyaSelf-learning Monte-Carlo

S =

Self-Attention block

Add & Norm

arXiv: 2306.11527.

S̃ =
SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M )WVS

Self-Attention block

S

Smearing (BST) 
Rot. equivariant 
Trsl. equivariant 
trainable!
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Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S = (S⊤
1 S⊤

2 S⊤
3 S⊤

4 )⊤

S⊤
i = (s1

i s2
i s3

i )⊤

|Si | = (s1
i )2 + (s2

i )2 + (s3
i )2

S̃α
i = ∑

l=0

wα
l Si+l

- Local weighted sum over neighbors 
   = “Smeared spin” with parameters 
   ~ “Block spin sum” with parameters

arXiv: 2306.11527.

S1 S2

S3 S4

= 1

Translationally equivariant

Rotationally equivariant

α = Q, K, V

wα
l ∈ ℝ : trainable

3 component scalar, normalized

S⊤
3 = (s1

3 s2
3 s3

3)⊤

sμ
n : O(3) vector
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Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M )WVS

Self-Attention block

S = (S⊤
1 S⊤

2 S⊤
3 S⊤

4 )⊤

S⊤
i = (s1

i s2
i s3

i )⊤

M = G̃α ≡ (S̃α)⊤S̃α
Gram matrix with averaged spin

arXiv: 2306.11527.

α = Q, K, V

S̃α
i = WαS = ∑ wα

l Si+l  “averaged spin” 
by neighbors

G ≡ S⊤S =

S⊤
1 S1 S⊤

1 S2 S⊤
1 S3 S⊤

1 S4

S⊤
2 S1 S⊤

2 S2 S⊤
2 S3 S⊤

2 S4

S⊤
3 S1 S⊤

3 S2 S⊤
3 S3 S⊤

3 S4

S⊤
4 S1 S⊤

4 S2 S⊤
4 S3 S⊤

4 S4
Translationally covariant, Rotationally invariant

A set of correlators

sμ
n : O(3) vector
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Equivariant under spin-rotation & translation

Akio TomiyaSelf-learning Monte-Carlo

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M )WVS

Self-Attention block

M = G̃α ≡ (S̃α)⊤S̃α

arXiv: 2306.11527.

Translationally covariant

Rotationally invariant

α = Q, K, V

SA = ReLU(M)WVS

= ReLU(M)S̃V

S̃α
i = WαS = ∑ wα

l Si+l

A set of correlators

correlators

S = (S⊤
1 S⊤

2 S⊤
3 S⊤

4 )⊤

S⊤
i = (s1

i s2
i s3

i )⊤

sμ
n : O(3) vector

Gram matrix with averaged spin

 “averaged spin” 
by neighbors
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Akio TomiyaSelf-learning Monte-Carlo

S =

Self-Attention block

Add & Norm

arXiv: 2306.11527.

S̃ =
SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M )WVS

Self-Attention block

Smearing (BST) 
Rot. equivariant 
Trsl. equivariant 
trainable!

Smeared fields 
Rot. equivariant 
Trsl. equivariant 
Skip connection 
Normalized!

𝒩(Si) = Si/∥Si∥

S(l) ≡ 𝒩 (S(l−1) + SA) position-wise

S

Attention block makes effective spin field with non-local BST

correlators
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Variational Hamiltonian with Equivariant Attention layers

Akio TomiyaSelf-learning Monte-Carlo

S =

S′￼ Heff

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

Self-Attention block

Add & Norm

S

SA

WQS WKS WVS

M = WQS(WKS)⊤

SA = ReLU(M )WVS

Self-Attention block

𝒩(Si) = Si/∥Si∥

S(l) ≡ 𝒩 (S(l−1) + SA)

Smeared fields 
Rot. equivariant 
Trsl. equivariant 
Skip connection 
Normalized!

arXiv: 2306.11527.

position-wise

Smearing (BST) 
Rot. equivariant 
Trsl. equivariant 
trainable!

correlators



Akio TomiyaSelf-learning Monte-Carlo
arXiv:1610.03137+

W({S}) ∝ exp[−βH({S})]
For statistical spin system, we want to calculate expectation value with

{S} {S} {S}{S} this distributes Weff({S}) ∝ exp[−βHeff({S})]
 if the update「→」 satisfies the detailed balance. We can employ Metropolis test like 

Aeff({S′￼}, {S}) = min (1,Weff({S′￼})/Weff({S})) .

On the other hand, an effective model  can compose in MCMC,Heff({S})
ef ef ef

SLMC = MCMC with an effective model/ Adaptive rew
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SLMC = MCMC with an effective model/ Adaptive rew

Akio TomiyaSelf-learning Monte-Carlo

- Effective model can have fit parameters 
- Exact! It satisfies detailed balance with  (exact) 
- It has been used for full QCD too (arXiv: 2010.11900, 2103.11965)

W({S})

W({S}) ∝ exp[−βH({S})]

{S} {S} {S}{S} {S} {S} {S}{S}

SLMC: Self-learning Monte-Carlo

We can construct double MCMC with  and H({S}) Heff({S})

A({S′￼}, {S}) = min (1,
W({S′￼})
W({S})

Weff({S})
Weff({S′￼}) ) .with Metropolis-Hastings test:

For statistical spin system, we want to calculate expectation value with
arXiv:1610.03137+

{S} {S} {S}{S} this distributes Weff({S}) ∝ exp[−βHeff({S})]
 if the update「→」 satisfies the detailed balance. We can employ Metropolis test like 

Aeff({S′￼}, {S}) = min (1,Weff({S′￼})/Weff({S})) .

On the other hand, an effective model  can compose in MCMC,Heff({S})
ef ef ef

ef ef ef ef ef ef
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Application to O(3) spin model with fermions

Akio TomiyaTransformer and Attention

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  1  2  3  4  5  6  7  8

Ac
ce

pt
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ce
 ra

tio

Num. of attention layers

Transformers
Linear

Nx=Ny=6

(Lattice sites)

Note: CNN-type does not work in this case. 
No improvements with increase of layers. 

(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

~ # of parameters

(same as previous work 
No attention)

arXiv: 2306.11527 + update

Models with the attention

Physical values are consistent  
(as we expected)

Acceptance rate ~ efficiency

Note: As far as we tested,  
CNN-type does not work in this case. 

No improvements with increase of layers. 
(Global correlations of fermions from


Fermi-Dirac statistics make acceptance bad?)

Observables

Staggered mag.
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 1  10  100
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tim
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num. of trainable parameters

Transformers
Linear

Line is just for 
guiding eyes

(no meaning)
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Loss function shows Power-type scaling law as LLM

Akio TomiyaTransformer and Attention

Acceptance rate = exp (− MSE)

Model w/o  
attention

Models with the attention

arXiv: 2306.11527 + update

(1 layer ~ 30 parameters)

Lo
ss

 (M
SE

)

fit range

fit ~(7.1/x)^(1.1)

Es
tim

at
ed

Scaling in LLM [1]

[1] arXiv:2001.08361




Gauge covariant transformer

(CASK)

53

A. Tomiya, H. Ohno, Y. Nagai

Work in progress

Lattice 2024

Jul 29 (Mon), 2024, 11:55 AM

Algorithms and artificial intelligence
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Overview/outline
Gauge covariant transformer for LQCD

Akio Tomiya

Two conditions/restrictions in LQCD:

Gauge symmetry

U(x, x+μ)

Non-locality from  
pseudo-fermions

(1/D) ~ non-local

Solutions in neural net:
Gauge covariant net Transformer with global symmetry

Gauge symmetric Transformer for LQCD

(Heisenberg spin + electron)(adaptive stout)

This talk

(I want to mimic

this by NN)

1. 2.

3.

2310.13222 AT+

2306.11527 AT+

arXiv: 2103.11965 AT+
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Gauge covariant transformer
CASK?

Akio Tomiya

Cask stout 
(Whisky Barrel-Aged Stout beer) 

= stout beer in a cask

https://loughgillbrewery.com/products/cask-irish-coffee-stout
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Gauge covariant transformer
= CASK

Akio Tomiya

https://loughgillbrewery.com/products/cask-irish-coffee-stout

It is named in an obvious reason😜

Covariant attention block  
CASK = Covariant Attention  

with Stout Kernel

Cask stout 
(Whisky Barrel-Aged Stout beer) 

= stout beer in a cask
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Gauge covariant transformer
Collection of ML/LQCD

Akio Tomiya

Stout & Flow

(nothing. 
mean field?)

・Demon method (inverse MC)

・Hopping parameter

CNN/Equivariant NN

Transformer - GPT

Linear regression

Lattice ML(Framework)

arXiv1508.04986 AT+

Gauge covariant net

・Global symmetric 
Transformer

Gauge inv. SLMC

Trivializing with SD eq a la Luscher

ML/Lattice 
Phys. Rev. D 107, 054501 AT+

2021 AT+

・CASK (this talk)

2212.11387 AT+

https://loughgillbrewery.com/products/cask-irish-coffee-stout

2306.11527 AT+
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Gauge covariant transformer
Idea: Attention must be covariant

Akio Tomiya

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with “correlation function for links” in a covariant way

ji

aij ∼ (R ⃗S )⊤
i R ⃗S j = ⃗S ⊤

i
⃗S j

ji

aiμ,jμ ∼ Re tr Uμ(i)U†
μ( j)

not invariant

(cannot be used)

invariant under 
local SU(N)

ji

Vinvariant

under global O(3)

aiμ,jμ ∼ Re tr Vμ(i)U†
μ( j)

U U†

U†

aij ∼ ⃗S i ⋅ ⃗S j

In total, output is covariant

(with activation)

(with activation)

In total, output is covariant
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Gauge covariant transformer
Structure of gauge symmetric attention using stout

Akio Tomiya

2. Construct attention matrix (Rectangular Wilson loop) using ,  -> UQ UK a(*,*)

3. Construct “stout smeared” [1] link with weight  and ,  (as matrix mult)a(*,*) UV U

1. 3 types of (trainable) stout [1]  -> , ,  (they have different weights)UQ UK UV

Procedure in three steps:

Uout = exp[a(*,*)L[UV]]Uin

Loop operator  
projected on Lie algebra

VQ UK†

Uα = exp[ραL[Uin]]Uin α = Q, K, V
Loop operator  
projected on Lie algebra

0.  : Input configuration/LinksU in

∼ a(*,*)

weights

cf. sparse attention
(with activation)

Covariant

(This can be extend to have multi-head trivially)

[1] 2021 AT+
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Gauge covariant transformer
Simulation parameter

Akio Tomiya

Construct effective  
action using operators


with Ueff

Ueff

U

• Self-learning HMC (1909.02255, 2021 AT+),  
an exact algorithm


• Exact Metropolis test and MD with effective action


• Target  : , dynamical staggered fermion, 
Nf=2, , SU(2), 


• Effective action in MD ( )


• Same gauge action


•  dynamical staggered fermion, Nf=2


• CASK with plaquette covariant kernel 


• Attention = 7-links rect staple (=3 plaq)


•  links are replaced by  in 


• “Adaptively reweighted HMC”

S m = 0.3
L4 = 44 β = 2.7

Seff

meff = 0.4

U Ueff Dstag
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Gauge covariant transformer
Loss = difference of action

Akio Tomiya

0.0001

0.001

0.01

0.1

1

10

100

0 200 400 600 800 1000

STOUT
CASK 2
CASK 3
CASK 4

|S
f(m

=0
.3
)-S

fe
ff (
m
=0
.4
)|

epoch

(I got this in yesterday)

Preliminary
Loss w.r.t. training

• Loss decreases along 
with the training steps


• it works as same as the 
stout (covariant net)


• No gain?

= MC steps
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Gauge covariant transformer
Some gain

Akio Tomiya

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

STOUT
CASK 2
CASK 3
CASK 4

Ac
ce
pt
an
ce

ra
tio

epoch

(I got this in yesterday)

Preliminary
CASK

Stout

(covariant net)

Acceptance rate w.r.t. training

• In terms of acceptance, 
CASK has some gain


• It is still improving

= MC steps
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Summary
Transformer NN for Lattice QCD

Akio Tomiya

63

• Gauge covariant attention layer (CASK) has been developed


• Test case for 4d SU(N) with dynamical fermions in tiny lattice


• it is implemented with 


• Training is done using back-prop for gauge fields


• It works as covariant nn and it has some gain 😀


• It is still working in progress


• Scaling law for model size (and system size?)


• Removing pseudo-fermions? (as same as the spin 2306.11527 AT+)


• Optimization of architecture


• Sparse-attention/star-attention/etc


• Bigger model? Applications?
KAKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Thanks!
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• CASK gives 
consistent results 
with other gauge 
cov net (as 
expected)



Configuration generation for 2d scalar

Akio Tomiya

66

Restricted Boltzmann machine + HMC: 2d scalar

GAN (Generative adversarial network ): 2d scalar

Flow based model: 2d scalar, pure U(1), pure SU(N)
Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian.

Exact algorithm, no dynamical fermions.  SU(N) is treated with diagonalization. 

Self-learning Monte Carlo (SLMC) for lattice QCD
Non-abelian gauge theory with dynamical fermion in 4d

Using gauge invariant action with linear regression

Exact. Costly (Diagonalize Dirac operator)

Results look OK. No proof of exactness

The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.
A. Tanaka,  AT 2017

J. Pawlowski+ 2018

G. Endrodi+ 2018

Applications
Configuration generation with machine learning is developing

Gauge covariant neural network and full QCD simulation

arxiv 2010.11900 Y. Nagai, AT, A. Tanaka

Self-learning Hybrid Monte Carlo for lattice QCD (SLHMC, This talk)
arxiv 2103.11965 Y. Nagai, AT

2019, 2020, 2021

Non-abelian gauge theory with dynamical fermion in 4d

Using covariant neural network to parametrize the gauge invariant action

Exact

Dynamical fermions, 4 Dimension

Exact algorithm, gauge symmetry

L2HMC for 2d U(1) (Sam Foreman+ 2021) 
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Problems to solve

Akio Tomiya

Gauge covariant neural network and full QCD simulation

Application for the staggered in 4d

Our neural network enables us to parametrize gauge symmetric action

covariant way.

arXiv: 2103.11965

SNN[U] = Splaq [UNN
μ (n)[U]]

SNN[U] = Sstag [UNN
μ (n)[U]]

Test of our neural network?
Can we mimic a different Dirac operator using neural net?

e.g.

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{
Q. Simulations with approximated action can be exact?

 -> Yes! with SLHMC (Self-learning HMC)

Artificial example for HMC:
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SLHMC for gauge system with dynamical fermions

Akio Tomiya

Gauge covariant neural network and full QCD simulation

SLHMC = Exact algorithm with ML

HMC U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use 

HHMC =
1
2 ∑ π2 + Sg + Sf

SLHMC U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated 

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965 and reference therein



69

Lattice setup and question

Akio Tomiya

Gauge covariant neural network and full QCD simulation

Two color QCD (plaquette + staggered)

Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Plaquette, Polyakov loop, Chiral condensate ⟨ψ ψ⟩

Application for the staggered in 4d

Full scratch, 

fully written in Julia lang.

Observables

(But we added some functions on the public version)

Parameter

Target

Code

Action in MD 
(for SLHMC) Sθ[U] = Sg[U] + Sf[ϕ, UNN

θ [U]; mh = 0.4],

Target action S[U] = Sg[U] + Sf[ϕ, U; m = 0.3], For Metropolis Test

AT+ (in prep)

SLHMC, HMC (comparison)Algorithms

arXiv: 2103.11965



What is          ?
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We made a public code in Julia Language

Akio Tomiya

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover 

Domain-wall (experimental) + Measurements

3 steps in 5 min

Lattice QCD code

Gauge covariant neural network and full QCD simulation

AT & Y. Nagai in prep

1. Download Julia binary

2. Add the package through Julia package manager

3. Execute!

1.Open source scientific language (Just in time compiler)

2.Fast as C/Fortran (sometime, faster)

3.Productive as Python

4.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)

5.Supercomputers support Julia

https://github.com/akio-tomiya/LatticeQCD.jl

: Laptop/desktop/PC-cluster/Jupyter (Google colab)(Official package)

https://github.com/akio-tomiya/LatticeQCD.jl


Akio Tomiya
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Details (skip)
Network: trainable stout (plaq+poly)

Gauge covariant neural network and full QCD simulation

Lθ[U ] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Structure of NN

U(l+1)
μ (n) = exp(Q(l)

μ (n))U(l)
μ (n)

Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

UNN
μ (n)[U] = U(2)

μ (n)[U(1)
μ (n)[Uμ(n)]] 2- layered stout

All  is weightρ
(Polyakov loop+plaq 
in  the stout-type)

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)

2.Perform SLHMC with fixed parameter

Neural network  
Parametrized action:

Action for MD is built by 

gauge covariant NN

with 6 trainable parameters

TA: Traceless, anti-hermitian operation

 meas an loop operatorO

arXiv: 2103.11965

Invariant under,

rot, transl, gauge trf.



Akio Tomiya
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Details (skip)
Results: Loss decreases along with the training

Gauge covariant neural network and full QCD simulation

Lθ[U ] =
1
2

Sθ[U, ϕ] − S[U, ϕ]
2
,Loss function:

Prior HMC run (training)

C: one U removed Ω
Λ: A polynomial of U. (Same object in stout)

Training history

We perform SLHMC with these values!

arXiv: 2103.11965

Ω: sum of un-traced loops

Intuitively, e^(-L) is understood as 

Boltzmann weight or reweighting factor.

Without  training,  e^(-L)<< 1,

this means that candidate with approximated action

never accept.

After training,   e^(-L) ~1, and we get

practical acceptance rate!
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Equivariance and convolution
Knowledge ∋ Convolution layer = trainable filter, Equivariant

Akio Tomiya

0 1 0

1 -2 1

0 1 0* =
Filter on image

Convolution layer

Laplacian filter

Edge detection

Fukushima, Kunihiko (1980)

Zhang, Wei (1988) + a lot!

(Discretization of )∂2

Translational operation is commutable with filtering (equivariant)

shift to right shift to right

* =
shift to right shift to right

Translational operation is commutable with convolutional neurons (equivariant)

w11 w12 w13

w21 w22 w23

w31 w32 w33

Trainable filter

This can be any filter which helps feature extraction (minimizing loss) 
Equivariance reduces data demands. Ensuring symmetry (plausible Inference) 
Many of convolution are needed to capture global structures
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Akio Tomiya
Machine learning for theoretical physics

Detecting phase transition

Quantum computing

for quantum field theory

https://cometscome.github.io/DLAP2020/

Kakenhi and others
Leader of proj A01 Transformative Research Areas, Fugaku

https://scholar.google.co.jp/citations?user=LKVqy_wAAAAJ

Others: 
Supervision of Shin-Kamen Rider

The 29th Outstanding Paper Award of the Physical Society of Japan 
14th Particle Physics Medal: Young Scientist Award

+quantum computer

Organizing “Deep Learning and physics”

I am a particle physicist, working on lattice QCD. 

I want to apply machine learning on lattice QCD.

What am I?

My papers

Biography
2006-2010  : University of Hyogo (Superconductor)

2015            : PhD in Osaka university (Particle phys)

2015 - 2018 : Postdoc in Wuhan (China)

2018 - 2021 : SPDR in Riken/BNL (US)

2021 - 2024 : Assistant prof. in IPUT Osaka (ML/AI) 
2021 - 2024 : ML(ML/AI)
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SLHMC for gauge system with dynamical fermions

Akio TomiyaSLHMC = Exact algorithm with ML

HMC U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom Metropolis
Both use 

HHMC =
1
2 ∑ π2 + Sg + Sf

Self

Learning

HMC

U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated 

fermion action but exact

Non-conservation of H cancels since

the molecular dynamics is reversible

arXiv: 2103.11965  
and reference therein SLHMC works as an adaptive reweighting!

Gauge covariant neural network can mimics gauge invariant functions  
-> It can be used in simulation? -> Self learning HMC!
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Problems to solve

Akio TomiyaApplication for the staggered in 4d
arXiv: 2103.11965

Mimic different actions:

Action in MD Sθ[U] = Sg[U] + Sf[ϕ, UNN
θ [U]; mh = 0.4],

Target action 
(Metropolis) S[U] = Sg[U] + Sf[ϕ, U; m = 0.3],

{

(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

U U U U U U

U′￼U

π

ϕ

π′￼

ϕ M
et

ro
po

lis

G
au

ss Eo
m

Eo
m

Eo
m

Eo
m

Eo
m

SLHMC works as an adaptive reweighting! 76

Eom

Metropolis

H =
1
2 ∑ π2 + Sg + Sf[U]

H =
1
2 ∑ π2 + Sg+Sf[UNN[U]]

Neural net approximated 

fermion action but exact

Self

Learning

HMC



Akio Tomiya
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Application for the staggered in 4d
Results are consistent with each other

Expectation value

arXiv: 2103.11965

Implemented by


