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Outline of my talk

CASK

Main part :
Covariant transformer




What is MLPhys



My team: LQCD + ML

“Machine Learning Physics Initiative” ML PhYs
2022-2027, 10M USD, 70 researchers
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https://mlphys.scphys.kyoto-u.ac.jp/en/

International conference in 2023 at Kyoto, Japan

¥

Yukawa Institute, Kyoto Japan

5 https://mlphys.scphys.kyoto-u.ac.jp/ic_mlphys/
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My team (AO1): LQCD + ML

Pl: Akio Tomiya (Me)

TWCU Kouji Kashiwa
LQCD, ML Fukuoka Institute

of Technology
LQCD, ML

B. J. Choi
U. of Tsukuba

post-docs
& external members ,

MLPhYs
Hiroshi Ohno Tetsuya Sakurai Yasunori Futamura
U. of Tsukuba U. of Tsukuba U. of Tsukuba
LQCD Computation Computation

ol ;

J. Takahashi Y. Nagai

Meteorological College U of Tokyo
e 'go P N ey

- Apply machine learning techniques on LQCD
(To increase what we can do)

- Find physics-oriented ML architecture

- Making codes for LQCD + ML

https://miphys.scphys.kyoto-u.ac.jp/en/
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' MLPhYs

measurement with BDT
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https://github.com/akio-tomiya/LatticeQCD.jl

Lattice QCD code for generic purpose

Open source LQCD code in Julia Language
= =g Open source (Julia Official package, Now updated to v1.0)
ﬁlattlceucndl Fast as a fortran code
-

Machines: Laptop/desktop/Jupyter/Supercomputers

Functions: SU(Nc)-heatbath, (R)JHMC, Self-learning HMC, SU(Nc) Stout
Dynamical Staggered, Dynamical Wilson, Dynamical Domain-wall
Measurements, Gauge covariant net, Auto-grad for gauge fields,

~

(" Start LQCD 1. Download Julia binary )
In 5 min 2. Add this package through Julia package manager
. (super-easy) 3. Execute! (no explicit compile is needed) y

https://github.com/akio-tomiya/LatticeQCD.jl

SU(3), Quenched, L=4"4, Heatbath Energy density at t = 0.25 x 10 *' s
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https://github.com/akio-tomiya/LatticeQCD.jl

s Two new textbooks
+ review are publishing

* An introduction to “machine learning physics” (PhysML members)

e Published in this autumn in Japanese
this will be translated to English (probably) using LLM

e Contents: Statistical estimation, Basics of neural nets

Transformers, language model, Mean field theory for neural nets,
Neural net wave functions, ...

e Introduction to lattice QCD (Kashiwa, Ohno, Tomiya)
e Published in this Winter in Japanese (I’'m not sure about English ver)

e | am writing a review paper LQCD/QFT + ML, please let me know if you
have things worth to write. This will be published in JPSJ.

10
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Two related talks in Lattice2024

Algorithms and artificial intelligence
Jul 29 (Mon), 2024, 11:15AM

| 1Al 1
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Using idea based on B. Yoon+ 1807.05971,
we estimate higher order of 1/D using ML.
Impact of bias correction will be discussed

B. J. Choi
U. of Tsukuba

Other than my talk

Algorithms and artificial intelligence
Jul 29 (Mon), 2024, 3:35PM

1oo. Vector // ki
' channel J/
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0.00+ : . | .
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w [GeV]

Reconstruction of spectral function
using machine learning (sparse modeling)

J. Takahashi
Meteorological College



Two previous works to realize Gauge symmetric
Transformer for LQCD

1 . Gauge Covarlant net arXiv: 2103.11965 AT+

2. Transformer for fermion-spin systems

2310.13222 AT+
2306.11527 AT+




ML for LQCD is needed

e Neural networks

e Data processing techniques mainly for 2d
image (a picture = pixels = a set of real #)

e Neural network helps data processing
e.g. AlphaFold3

o [attice QCD requires numerical effort
but is more complicated than pictures

I jrir'—IT*f _
T
T
L

e 4 dimension

e Non-abelian gauge d.o.f. and symmetry

e Fermions (Fermi-Dirac statistics)

e Exactness of algorithm is necessary

° Q. HOW can we deal Wlth neural nets? http://www.physics.adelaide.edu.au/theorsIinweber/VisuaIQCD/QCDvacuum/

13



What is the neural networks?

Attempts to gauge symmetry

7,8 years! G
In my paper for fields generation using ML (1712.03893),

If we want to use generative models as lattice QCD
sampler, we must guarantee the gauge symmetry of a
probability distribution for the model. This is because,
configurations which are generated by a algorithm must

1 1 . rf TA1°*. Y 11 : Fa¥al 1

We have created several architectures:

2010.11900, AT+: Gauge invariant self-learning MC for 4d LQCD

2103.11965, AT+ Gauge covariant self-learning HMC for 4d LQCD

(Covariant NN = adaptive gradient flow = adaptive stout)

(2310.13222, AT+: Global symmetric transformer for fermion-spin system)

This work, AT+: Gauge symmetric transformer for 4d LQCD

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402


https://arxiv.org/abs/2305.02402

Ove rVi eW/O Utl i ne Akio Tomiya

Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from

Gauge symmetry pseudo-fermions

U(X, X+
( H (1/D) ~ non-local
(I want to mimic
this by NN)
Solutions in neural net: v | v
. arXiv: 2103.11965 AT+ _

1. Gauge covariant net 2. Transformer with global symmetry
(adaptive stout) (Heisenberg spin + electron)
—[ Add&Norm | 2310.13222 AT+
UGl o3 J | D r 2306.11527 AT+

L ? | Self-Attention block I

3. Gauge symmetric Transformer for LQCD
This talk




Related topics in this
meeting

* Wednesday

e Alessandro Nada, Sampling SU(3) pure gauge theory with out-of-
equilibrium evolutions and stochastic normalizing flows

 Thursday

 Ryan Abbott, Progress in normalizing flows for 4d gauge theories

* Fernando Romero Lopez, Applications of flow models to the
generation of correlated lattice QCD ensembles

 Mathis Gerdes, Exploring continuous normalizing flows for gauge
theories

16



Ove rVi eW/O Utl i ne Akio Tomiya

Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from

Gauge symmetry pseudo-fermions

U(X, X+
( H (1/D) ~ non-local
(I want to mimic
this by NN)
Solutions in neural net: v | v
] arXiv: 2103.11965 AT+ _

1. Gauge covariant net 2. Transformer with global symmetry
(adaptive stout) (Heisenberg spin + electron)
—[ Add&Norm | 2310.13222 AT+
UbL ™ o3 J | y+D r 2306.11527 AT+

L ? | Self-Attention block I

3. Gauge symmetric Transformer for LQCD
This talk




Akio Tomiya

What is conv. neural networks?

The convolution layer can treat a translation transformation

Filter on image

Laplacian filter
110
-2 | 1
110

ol Y

Edge detection

(Discretization of 0°)

IMPORTANT: If inputs are shifted to right, outputs are shifted to right
= translationally equivaliant (similar to covariance, operation just commute)




Akio Tomiya

What is conv. neural networks?

Convolution layer = trainable filter

Filter on image

Laplacian filter
O|11]0
1121
0(1]0

Edge detection

(Discretization of 0°)

Fukushima, Kunihiko (1980)
Zhang, Wei (1988) + a lot!

Trainable filter

Edge deteCtiOn Gaussian filter

W11 | W12| W13 I

Smoothin — 2|42
W21 | W22 [ W23 (Gaussian filter) 16 o |4

W31 | W32 [ W33

This can be any filter which helps feature extraction

but still transitionalli eiuivariant!



Smea ring Akio Tomiya

Smoothing improves global properties
Coarse image Smoothened image

Numerical derivative is unstable Numerical derivative is stable

We want to smoothen gauge configurations
with keeping gauge symmetry

APE-type smearing M. Albanese+ 1987
Two types: R. Hoffmann+ 2007
Stout-type smearing C. Morningster+ 2003



Smea ring Akio Tomiya

Smoothing with gauge symmetry, APE type

M. Albanese+ 1987
APE_type smearing R. Hoffmann+ 2007

Covariant sum Normalization

M
fat — a T — i i
U(n) — Uktn) = [(1 ~ )U,(n) + EVM[U](n)] M) =~ Orproectn
VZ[U](H) = Z Uy(n) Uﬂ(n + D) Uj(n + )+ - VJ[U](n)& U, (n) shows same transformation
UFv *U;at[U](n) is as well

Schematically,

— =N [o-o—>—+iZF1+14 ]

In the calculation graph,

H{E ()

Smearing is a map with gauge covariance




Smearing makes a map between configurations,
works as a filter

I_rT
"Ii 41‘# ‘—ll—fi_fH
HEOTHT
ﬂ—uf D" W

22



Gauge Covariant neural network Akio Tomiya

= trainable smearing (= residual flow) N N R TR
Smearing = gauge covariant way of transform gauge configurations

Covariant sum

. a staple
Uﬂ(l’l) — U; n)y=N [(1 — a)Uﬂ(n) + EV;[U](H)] ViU () = Z U,(mU,(n + DU (1 + fi) + -
UFV
N L
ormalization v
N [M] = Or projection
VMM

Gauge covariant neural network = smearing with tunable parameters w
z/fll)(n) =wU,(n) + sz;f [U](n)

\ \ Trainable param
(1+1) ) —
+ _ . AT . . . .
U p (n)y=N (Z,Ll (n)) link-wise projection/normalization (local)

Gauge covariant NN: UNn)[U] = U (n) (U m) |UP () |U, ()] ||

Gauge covariant variational map: Uﬂ(n) e U};IN(H) — U}J\IN(H)[U]

Stout type can be constructed in the same way

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402


https://arxiv.org/abs/2305.02402

Gauge Covariant neural network Akio Tomiya

= trainable smearing (= residual flow) N N R TR

Stout-type

staple

Ulu(n) — U/imr(n) = e zi szl[U] Ulu(n) VZ[U](n) = Z U,mU,(n+ U (n+ ) + -

\ HFV
Trainable param

Training done by the back-prop
(extension to the stout paper [1])

Following results using this stout type

[1] C. Morningster+ 2003

There are several realization of gauge covariant maps arXiv:2012.12901 arXiv: 2305.02402


https://arxiv.org/abs/2305.02402

Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet =D { Cg l l D arXiv: 1512.03385

Continuum
Layer
Limit

-
' du' ) |
Neural ODE — cg( U ) arXiv: 1806.07366

dl. (Neural IPS 2018 best paper)




Gauge Covariant neural network Akio Tomiya

Neural ODE of Cov-Net = “gradient flow”

ResNet w=D Cg w® arXiv: 1512.03385
Continuum
Layer
Limit
v duw®
-7 () -
Neural ODE — cg( 1 ) arXiv: 1806.07366
(Neural IPS 2018 best paper)
dt
Gauge—cov net U(l) ( é U(H'l) AT Y. Nagai arXiv: 2103.11965
l Continuum L ?
Layer
Limit
(1)
Neural ODE dU,M (n) . ?é U(t) “Gradient” flow
for Gauge-cov NN It — ( U (I”l)) (not has to be gradient of S)

“Continuous stout smearing is the Wilson flow”

2010 M. Luscher

AT Y. Nagai arXiv: 2103.11965
cf. 2212.11387 AT+




Gauge Covariant neural network Akio Tomiya

= trainable smearing AT Y. Nagai arXiv: 2103.11965

P (convolutional) Gauge Covariant
D|Ct|0nary Neural network Neural network
- Image gauge config
P (2d data, structured) (4d data, structured)
Image gauge config
Output (2d data, structured) | (4d data, structured)
Symmetry Translation Translation, rotation(90°),
Gauge sym.
with Fixed param Image filter (APE/stout ...) Smearing
. Summing up nearest Summing up staples
Local operation | i hbor with weights with weights

projection/normalization
in Stout/HYP/HISQ

: “Smeared for
Formula for chain rule Backprop calc?ulaet%s(sj” ?Sfc;c()eut) Well-known

Activation function | Tanh, RelLU, sigmoid, ...

Training? Backprop + Delta rule AT Nagai 2103.11965

(Index i in the neural net corresponds to n & p in smearing. Information processing with NN is evolution of scalar field)



Gauge Covariant neural net Akio Tomiya

Simulation parameter

Construct effective

action using operators ¢ Self_learnln HMC (1 90902255, 2021 AT+),

with e an exact algorithm

N . e * Exact Metropolis test and MD with effective action
1%y

o - . e Target S : m = 0.3, dynamical staggered

fermion, Nf=2, L* = 4% SU@), f = 2.7
3 |k e Effective action in MD (S¢")
dp]
e Same gauge action

3 o m.y = 0.4 dynamical staggered

?oL fermion, Nf=2
. o U links are replaced by U in Dy,
——t

R ___________ e “Adaptively reweighted HMC”



Deta i IS (S ki p) Akio Tomiya

Network: trainable stout (plag+poly)

arXiv: 2103.11965

(0) poly _ _ _
Structure of NN QfP(M — p‘()‘llq()zlaQ(n) + {/’?;))lyAOsOly(") (1= 4?, All p is weight
(Polyakov loop+plaq PootysVi (1), (u=1=1,2,3) O meas an loop operator

in the stout-type)
QY (n) = 2[ (n)]1a TA: Traceless, anti-hermitian operation

U D(n) = exp(Q(m) U (n)

2- layered stout

NN _ 772 (D
U U] =U;"(n) [Uu (”)[Uﬂ(”)” with 6 trainable parameters

Neural network
Parametrized action:

Action for MD is built by
gauge covariant NN

SlU1 = S,|U| + S¢|, UpN UL my, = 0.4],

2
Invariant under,

SH[Ua ¢] - S[U’ ¢]
rot, transl, gauge trf.

b

: 1
Loss function: L(U] = >

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)
2.Perform SLHMC with fixed parameter

Gauge covariant neural network and full QCD simulation



Deta i IS (S ki p) Akio Tomiya

Results: Loss decreases along with the training

arXiv: 2103.11965
Intuitively, e”(-L) is understood as

. 1 ?
Loss function: LlU] = 9 SLU. 91 = SLU. ¢]] Boltzmann weight or reweighting factor.
Prior HMC run (training) Training history
0Ly(D) gof 107 T =04
ac 00— :
m = QRCZ tr "l ' ITl‘—(l)] T] 80 ’ 60 -
u'm
o f gl OLg(D)  OLy(D) 05y 2
: -t 1 — 40 -
sum of un-traced loops PROEY 95, Bwa n 3
C: one U removed Q
A: A polynomial of U. (Same object in stout) 20"
0_

0 20 40 60 80 100
MD time (= training steps)
Without training, e/ (-L)<< 1,
this means that candidate with approximated action
never accept.
After training, e”(-L) ~1, and we get
practical acceptance rate!

We perform SLHMC with these values!




Application for the staggered in4d *“~*™

Results are consistent with each other (stout-type used)

2500 L
2000 - 1

1500 1

Count

1000 - ;

500 - ,

0.70
Plaquette

3000
25001 B

+ 2000 1 |

C

3

3 1500
10001 ~

500 -

0

038 0.40 0.42 0.44

Chiral condensate

0.48

0.50

Implemented by ﬁl_attice[]cn\jl le

arXiv: 2103.11965

| HMC |
4000 + | SLHMC X
J
., 30001 1
C
S !
© 2000 -
}
1000 - ‘ s
T
O . . SPVETSSP S B ) b I" " ; ;
—-1.0 -0.5 0.0 0.5 1.0
Polyakov loop
Expectation value
Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)
SLHMC  Chiral condensate 0.4241(5)

=



Ove rVi eW/O Utl i ne Akio Tomiya

Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from

Gauge symmetry pseudo-fermions

U0, x+u) (1/D) ~ non-local
(I want to mimic
this by NN)
Solutions in neural net: v | v
. arXiv: 2103.11965 AT+ ]
1. Gauge covariant net 2. Transformer with global symmetry
(adaptive stout) (Heisenberg spin + electron)

2310.13222 AT+
2306.11527 AT+

3. Gauge symmetric Transformer for LQCD
This talk




Akio Tomiya

Equivariance and convolution

Convolutional Neural network have been good job but local

Convolutional neural layers in neural networks keep translational symmetry,
it can be generalized to any continuous/discrete symmetry in the theory. It helps generalization.

conv ~ neural net with n-th nearest neighbor connections (local)

ﬁ\

conyv

e.d.
1d Input image

conv
\ Distant correlations here can be captured
/. by 3 steps of convolutional operation
(Repetition of local operation)

However, 1 step of convolutional layer can pick up only local correlation
and representability of neural networks is limited. Global correlations are

sometimes important.
How can we overcome these difficulties?




Transformer and Attention

Attention layer used in Transformers (GPT, Bard)  axi:1706.0s762

Output @} OpenAl
Probabilities
| Softtmax ) ChatG PT

| Linear |
3

(. )
| Add & Norm |}~
Feed

For\;vard
() ‘ =
Feed Attention
Forward D D) N x
A ‘ J
Nx | _—{Add & Norm J [ Ad,\j:;:gm .
Multi-Head Multi-Head
Attention Attention
— ) = Attention layer (in transformer model) has been
Positional Positional . " '
encoding (P ¢ =i introduced in a paper titled
Input Output - -
Embé;ddmg Embfding “Attention is all you need” (1706.03762)
- o State of the art architecture of language
(shifted right)

processing.
Attention layer is essential.

Figure 1: The Transformer - model architecture.



Transformer and Attention

Attention layer can capture non-local correlations axi:170s.0s7:2
Modifier in language can be non-local

rel T

Eg.| am Akio Tomiya living in Japan, who studies machine learning and physics

In physics terminology, this is non local correlation.
The attention layer enables us to treat non-local correlation
with a neural net!

Simplified version of Attention/Transformer

| Skip connection

I > WOX | M= WX (WEX)T
/' Non-local product v
X = am B WKX (Non-local
Akio correlation)
: [ VY Add & normalization |— X’
— ReLUM)W'X |— T
A f Weighted
rray O Block- (This example is single-head)
word vectors spin
Transf. )
Word~\{ector (Trainable) Self-Attention
X: matrix T

hese can be reieated



Transformer and Attention

Transformer shows scaling lows (power law) rXiv: 200108361
7 4.2
6 —— L=(D/5.4-1013)700% | 5.6 —— L=(N/8.8-101%)"0076
3.9
4.8
o 5
2 3.6 4.0
- 4
® 3.3 3.2
= 3
3.0
2.4
L= (Cmm/2.3 . 108)—0'050
2 . - - - 2.7 Y . - - .
107 1077 107> 103 10°! 10! 108 109 10° 107 107
Compute Dataset Size Parameters
PF-days, non-embedding tokens non-embedding

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset
size, and amount of compute’ used for training. For optimal performance all three factors must be scaled
up in tandem. Empirical performance has a power-law relationship with each individual factor when not
bottlenecked by the other two.

- Transformers requires huge data
(e.g. GPT uses all electric books in the world)
Because it has few inductive bias (no equivariance)
- It can be improved systematically



Transformer and Attention

Physically symmetric Attention layer

Attention layer can capture global correlation
Equivariance reduces data demands for training

Equivariance Captura!o le Data demmands Applications
correlation
Convolution | . | Image recognition
(€ equivariant Yes = | ocal & Low = VAE, GAN
layers) Normalizing flow
Standard * 3 ChatGPT
Attention layer No Q) GIObaI -E Huge @ . GEMINI
Vision Transformer
arXiv:1706.03762
Physically
Equivariant | | N Kondo system
layer arXiv: 2306.11527




Self-learning Monte-Carlo

Target: Double exchange model

Target system: Classical Heisenberg spin S + Fermion on 2d lattice

H=—1t Z (6:(0{’\](1 +h.c.)+— 2 S. - 0; (Kondo model)

Two different phases

- Anti-ferromagnet (~staggered mag)
- Paramagnet (~normal metal)

(This system is similar to lattice QCD
but easier)

3d vectors on 2d Iattice
Anti-ferro magnet



Self-learning Monte-Carlo

Previous work

Target system: Classical Heisenberg spin S + Fermion on 2d lattice

H=—1t Z (6:(0{’\](1 +h.c.)+— 2 S. - 0; (Kondo model)

Naive effective model:

Linear __ eft eff. -
H " = — Z JE'S. - Sj E, J.:n-th nearest neighbor
<i’j>7’l

J,‘,:“ff Is determined by regression (training) to improve approximation

Self-learning Monte-Carlo:

Update with H ¢, and Metropolis-Hastings with H & H
Cancel inexactness. This is an exact algorithms




Self-learning Monte-Carlo

Previous work

Target system: Classical Heisenberg spin S + Fermion on 2d lattice

H=—tz (C zaJOf_I_h C.) + — ZS O; (Kondo model)

a,(i,j) This has fermion det

Naive effective model:

HLmear — Z ]’fl’ffsl. : Sj E, J: n-th nearest neighbor
<i’j>n

e S ) A Z ]’SffSNN . QNN E,
We replace this by eft l J

“translated” spin ST () T | |

_ ; mimics effects from fermions
with a transformer with smeared spins
and used in self-learning MC This doesn’t have fermion det



Self-learning Monte-Carlo

Physically equivariant Attention layer/Transformer

Equivariant Transformer block

Add & |—— S’ =%ﬁ
\v

A Spin configuration

A Spin configuration

Skip connection

> /V(S-I—&A))ES' -

Akio Tomiya

arXiv: 2306.11527.

— S’

\_ Add & Norm (normalization) Y

Our neural network respects symmetries

In the system. Also, it can capture

Attention
Norm
I
:
4 N
S >| WOS [— | M = WOS(WKS)T
Array Block- Non-local product
of spin spin l(CorreIation functions}
vectors L
(1 conf) WEKS | [SW =ReLUM)W"S > §(A) —
Block- A
spin
—p
wYs
Block-|
spin
long-range correlations

\_ Self-Attention )




Equivariant attention



Self-learning Monte-Carlo

Akio Tomiya

arXiv: 2306.11527.

Attention block makes effective spin field with non-local BST

L
1

A

—>I Add & Norm I

T

| Self-Attention block |
A

1

SA

A

Self-Attention block

S, = ReLUM) WS | <=

T

M = WOS(WESHT

] 1

Wos | [WES| | WS |4

r 1 1

S

Smearing (BST)
Rot. equivariant
Trsl. equivariant
trainable!




Self-learning Monte-Carlo

Equivariant under spin-rotation & translation o 2308 11807
ST=(s1 2 )’ -
. O(3) vect _ T T T T)
S/ ; ) veetar S=(s 8 S 8,
® 3 ® 4
- Local weighted sum over neighbors
= “Smeared spin” with parameters
~ “Block spin sum” with parameters
ca __ o
S, S, 5; = ZWZ i+l  a=QK,V
‘ T [=0
w/ € R : trainable
o7 — (1 2 3)'
;= (Si S; Si) Translationally equivariant

Rotationally equivariant

;1 = /(617 + 627 + (57

=1
3 component scalar, normalized



Self-learning Monte-Carlo

Equivariant under spin-rotation & translation

S=(s7 s s s])

SA

A

Self-Attention block
Sy = ReLUM)W" S| <+

T

M = WOS(WESHT

] 1

wWos | |WES| | wWYs

1 1

§?=W“S=Zwl“i

+1

S = (S‘

by ne

Gram matrix with averaged spin

M = G* = (S%)TS* «a=QKV

SISy 818,
5,81 8,5,
S35 835
S;S, SJS,

G=S'S =

S S
S S
S5 S
S; S,

Akio Tomiya

arXiv: 2306.11527.

)

st O(3) vector

l

“averaged spin”

ighbors

S!'S,
S)S,
SJS,
S.S,

Translationally covariant, Rotationally invariant

A set of correlators



Self-learning Monte-Carlo

Equivariant under spin-rotation & translation

S=(s7 s s sI)

SA

A

S, = ReLUM)W"S

correlators T

M = WOS(WESHT

] 1

—

Self-Attention block

Wes | | WES | | WYs
! I ]
S

S =WS= ) wis,

[

Akio Tomiya

arXiv: 2306.11527.

= (s 5 )]

st O(3) vector
“averaged spin”
by neighbors

Gram matrix with averaged spin
M = ~a — (SOC)TSG’ a=0Q.K,V

Translationally covariant

Rotationally invariant

S, = ReLUM)W"S

= ReLUWM)S"

A set of correlators



Self-learning Monte-Carlo

arXiv: 2306.11527.

Attention block makes effective spin field with non-local BST

( )

SO = (S(l_l) + SA> position-wise

A =S/IS
N A

)]
1

A

Self-Attention block

—>I Add & Norm I

T

| Self-Attention block |
A

S, = ReLUM) WS | <=

Smeared fields
Rot. equivariant
correlators T Trsl. equivariant

M = WOS(WKS)T Skip connection
T T Normalized!
Smearing (BST)
Q K V .
W=3 W=S WS Rot. equivariant

1 T T Trsl. equivariant
trainable!




Self-learning Monte-Carlo

arXiv: 2306.11527.

Variational Hamiltonian with Equivariant Attention layers

5 — H L SO = <S(l_1) + SA> position-wise
t C
— | Add & Norm I d 7
1) N (S, = Si/“Si”
Self-Attention block g
I eA ention bioC I \ ‘A
—>| Add & Norm I
t Self-Attention block
| SeII_Attentlon block | Sy = ReLUM) W' S |+ Smeared fields
—[ AddaNorm | , Rot. equivariant
3 / ] correlators T Trsl. equivariant
I Self-Attention block |<I\ M = WQS(WKS )T :Iklp cc:-nnzftlon
2 i ormalized!
|1

Smearing (BST)
0 K Vo |4
WSS WS WS |4 Rot. equivariant

1 T T Trsl. equivariant
trainable!




Self-learning Monte-Carlo

SLMC = MCMC with an effective model/ Adaptive rew.. ..o

For statistical spin system, we want to calculate expectation value with

W({S}) o exp[—pH({S})]
On the other hand, an effective model H_+({S}) can compose in MCMC,
{ S }—={ S } = S }—{ S } this distributes W_5({S}) o exp[—fH_({S})]

if the update "—, satisfies the detailed balance. We can employ Metropolis test like

Ae({S}, (S}) = min (1,Wx({S'})/Wex({S))) .



Self-learning Monte-Carlo

SLMC = MCMC with an effective model/ Adaptive rew.. ..o

For statistical spin system, we want to calculate expectation value with

W({S}) x exp[—/H({S})]
On the other hand, an effective model H_+({S}) can compose in MCMC,
{ S }—={ S } = S }—{ S } this distributes W_5({S}) o exp[—fH_({S})]

if the update "—, satisfies the detailed balance. We can employ Metropolis test like

Ae({S}, (S}) = min (1,Wx({S'})/Wex({S))) .

SLMC: Self-learning Monte-Carlo
We can construct double MCMC with H({S}) and H,({S})

S} {8} = {S}—= {8} {S} —={S} = {S}—{S}—

W({S'}) Wer(1S})
WS} Wes({S) )

with Metropolis-Hastings test: A({S’}, {S}) = min (1

- Effective model can have fit parameters

- Exact! It satisfies detailed balance with W({S}) (exact)
- It has been used for full QCD too (arXiv: 2010.11900, 2103.11965)



Transformer and Attention aXiv: 230811527 » uodare

Application to O(3) spin model with fermions

Acceptance rate ~ efficiency Observables
11 Transformers —e— g2,
Linear —&— 0.15 ,-1 e
2 08 = 01 -
© Pz Original —<—
o . _ 0.05 ¢ Linear .
S 0.6 Models with the attention 0 - 3layer attention —=—
= e
A &
g 04 o8 | Staggered mag.
< | < 06
0.2 I (same as previous work , = 04}
No attention) 02 | g
O | | | | \ \ \ 0 * ] * s .
0 1 2 3 4 5 6 7 8 0.01 0.1 1 10

Num. of attention layers T
~ # of parameters
Note: As far as we tested,
CNN-type does not work in this case.
No improvements with increase of layers.
(Global correlations of fermions from

Fermi-Dirac statistics make acceptance bad?)

o Io.o NXZNyZG

uli ‘Lattice sitesl

Physical values are consistent
(as we expected)



Transformer and Attention

Loss function shows Power-type scaling law as LLM

arXiv: 2306.11527 + update
Acceptance rate = exp (—\/ MSE)

10 —_—
3 Transfor_mers O 5.6 —— L=(N/8.8-1013)0076
m Linear © | _ s
) | 8 o
= 1 | Model w/o g 2
— - attention
7p *4| Scaling in LLM [1
2, 105 107 10°
3 Parameters
- 0.1
L :
= . . 1 Line is just for
= Models with the attention | guiding eyes
L fit range (no meaning)
0.01 — ——
1 10 100
. num. of trainable parameters
julii] (1 layer ~ 30 parameters) fit ~(7.1/x)A(1.1)

[1] arXiv:2001.08361 52



Gauge covariant transformer
(CASM Work in progress

Lattice 2024
Jul 29 (Mon), 2024, 11:55 AM
¢ A. Tomiya, H. Ohno, Y. Nagai Algorithms and artificial intelligence




Ove rVi eW/O Utl i ne Akio Tomiya

Gauge covariant transformer for LQCD

Two conditions/restrictions in LQCD:

Non-locality from

Gauge symmetry pseudo-fermions

U(X, X+
( H (1/D) ~ non-local
(I want to mimic
this by NN)
Solutions in neural net: v | v
. arXiv: 2103.11965 AT+ _

1. Gauge covariant net 2. Transformer with global symmetry
(adaptive stout) (Heisenberg spin + electron)
—[ Add&Norm | 2310.13222 AT+
UGl o3 J | D r 2306.11527 AT+

L ? | Self-Attention block I

3. Gauge symmetric Transformer for LQCD
This talk




Gauge Covariant tranSformer Akio Tomiya

CASK?

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

IRISH COFFEE STOUT |33

CASK | BARREL AGED IMPERIAL ]2;9‘7
~ AGED IN paRR

ELS FROM CLONAKILTY DISH




Gauge Covariant tranSformer Akio Tomiya

= CASK

Cask stout
(Whisky Barrel-Aged Stout beer)
= stout beer In a cask

Add and la stout ) i
m Covariant attention block

T CASK = Covariant Attention

Self-Attention with Stout Kernel
_ It is named in an obvious reason&




Gauge Covariant tranSformer Akio Tomiya

Collection of ML/LQCD

Lattice ML(Framework) ML/Lattice
i Phys. Rev. D 107, 054501 AT+
- Demon method (inverse MC -
ar)giv1508.04986 AT-?— Linear regression o Qauge inv. SLMC
- Hopping parameter Trivializing with SD eq a la Luscher
2212.11387 AT+
Stout & Flow CNN/Equivariant NN Gauge covariant nzeo’c2 .
| - Global symmetric
m(ene(l)r:r:‘:glgd 2 Transformer - GPT Transformer 2306.11527 AT+

- CASK (this talk) (g8




Gauge Covariant tranSformer Akio Tomiya

Idea: Attention must be covariant

Attention matrix in transformer ~ correlation function (with block-spin transformed spin)

-> we replace it with “correlation function for links” in a covariant way

X a, , ~ Retr UU())

U T not invariant

SRR s ! I B M 1 (cannot be used
_______ DOOQ)

UT invariant under
local SU(N)

Invariant
under global O(3)

In total, output is covariant Qi ju ™~ Re tr V, (Z)U T(] ) (with activation)

In total, output is covariant




Gauge Covariant tranSformer Akio Tomiya

Structure of gauge symmetric attention using stout

Procedure in three steps:
0. U™ : Input configuration/Links

[1] 2021 AT+

1. 3 types of (trainable) stout [1] -> U, UX, UV (they have different weights)

[J¢ = eXp[paL[Uin]]Uin a=Q,K,V

Loop operator
weights / \_/projected on Lie algebra

2. Construct attention matrix (Rectangular Wilson loop) using UQ, Uk - A )

SALCRD

(with activation)

cf. sparse attention

3. Construct “stout smeared” [1] link with wei Qg ) and Uv,U (as matrix muilt)

U out — cXp [Cl(*,*)L[ U V]] U n Covariant

(This can be extend to have multi-head trivially) \_/ Loop operator

projected on Lie algebra



Gauge Covariant tranSformer Akio Tomiya

Simulation parameter

Construct effective

e Self-learning HMC (1909.02255, 2021 AT+),

action using operators an exact algoritAm
with Ut
4 * Exact Metropolis test and MD with effective action
I e Target S4: m = 0.3, dynamical staggered fermion,
P« Nf=2, L* = 4", SUQ), f = 2.7
(Rt s et s o Effective action in MD ($ eff)
Self-Attention
t

e Same gauge action

»| Add and norm a /a stout

. o m.+ = (.4 dynamical staggered fermion, Nf=2

4
1

T — e CASK with plaquette covariant kernel
T

Self-Attention

; e Attention = 7-links rect staple (=3 plaq)

o U links are replaced by U in D

stag

B + “Adaptively reweighted HMC”



Gauge Covariant tranSformer Akio Tomiya

Loss = difference of action

Loss w.r.t. training

100
10} { * | oss decreases along
= . with the training steps
o 1E
L |
s | o it works as same as the
5 oot stout (covariant net)
0.001 — .
(I got this in yesterday) e NO gainf)
0.0001 : : : : .
0 200 400 600 800 1000
epoch
= MC steps



Akio Tomiya

Gauge covariant transformer

Some gain

Acceptance rate w.r.t. training

0.3 T T T T T T T [
—~"""CASK__|
0.25 1 Stout
(covariant net)
e 02 * |n terms of acceptance,
S sl CASK has some gain
g
2 0.1 I u u u |
e |t is still improving
0.05 STOUT —— -
(I got this in yesterday) 8?2% -
0 ] ] ] ] ] ] (I:ASK 4 ]
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
epoch
= MC steps



Su m m a ry Akio Tomiya

Transformer NN for Lattice QCD
 (Gauge covariant attention layer (CASK) has been developed

e Test case for 4d SU(N) with dynamical fermions in tiny lattice
e it is implemented with J.U“.h

e Training is done using back-prop for gauge fields

e |t works as covariant nn and it has some gain &

e |t is still working in progress

e Scaling law for model size (and system size?)
* Removing pseudo-fermions? (as same as the spin 2306.11527 AT+)
e Optimization of architecture

e Sparse-attention/star-attention/etc

* Bigger model? Applications?

s AKENHI: 20K14479, 22H05112, 22H05111, 22K03539 Th anks!






Plaquette
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e CASK gives
consistent results
with other gauge
cov net (as
expected)



ApplicatiOns Akio Tomiya

Configuration generation with machine learning is developing

Configuration generation for 2d scalar

Restricted Boltzmann machine + HMC: 2d scalar A. Tanaka, AT 2017
The first challenge, machine learning + configuration generation. Wrong at critical pt. Not exact.

GAN (Generative adversarial network ): 2d scalar J. Pawlowski+ 2018
Results look OK. No proof of exactness G. Endrodi+ 2018

. .| Exact algorithm, gauge Symmetry - -« .o oo viiii it i ittt ittt ittt sttt aeannn

Flow based model: 2d scalar, pure U(1), pure SU(N) IIiIT %% Google Brain 2019, 2020, 2021

Mimicking a trvializing map using a neural net which is reversible and has tractable Jacobian.
Exact algorithm, no dynamical fermions. SU(N) is treated with diagonalization.

L2HMC for 2d U(1) (Sam Foreman+ 2021)

. .lDynamical fermionS, 4 Dimension .....................................................................
Self-learning Monte Carlo (SLMCQ) for lattice QCD arxiv 2010.11900 Y. Nagai, AT, A. Tanaka

Non-abelian gauge theory with dynamical fermion in 4d
Using gauge invariant action with linear regression
Exact. Costly (Diagonalize Dirac operator)

Self-learning Hybrid Monte Carlo for lattice QCD (SLHMC, This talk)
Non-abelian gauge theory with dynamical fermion in 4d arxiv 2103.11965 Y. Nag, AT
Using covariant neural network to parametrize the gauge invariant action = & N
Exact Pk

Gauge covariant neural network and full QCD simulation



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965
Our neural network enables us to parametrize gauge symmetric action

covariant way.

e.g. SNN[UT = S,

laq : U};IN(n) [ U]:

SNN[UT = S,

UNNwIUY

tag

Test of our neural network?

Can we mimic a different Dirac operator using neural net?

Artificial example for HMC:
Target action  S[U] = Sg[U] + Sf[Cb, Uim = 0-3],

ActioninMD  SplU1 = S, |U| + S¢[p, Up™[UT; my, = 0.4],

Q. Simulations with approximated action can be exact?
-> Yes! with SLHMC (Self-learning HMC)

Gauge covariant neural network and full QCD simulation



SL MC = Exact algorithm with ML *°™"

SLHMC for gauge system with dynamical fermions

arXiv: 2103.11965 and reference therein

m Metropolis

Both use
1
_ 2
Hinve = 5 E n°+ 8y + 5

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis E

Metropolis

1
— Z: 2
H—E T +Sg+Sf[U]

1
— z: 2 NN
H= 5 -+ Sg+Sf[U [U]]

Neural net approximated
fermion action but exact

Metropolis &

Gauge covariant neural network and full QCD simulation



Application for the staggered in4d *“~*™

Lattice setup and question

arXiv: 2103.11965

Target Two color QCD (plaguette + staggered)
Algorithms SLHMC, HMC (comparison)
Parameter Four dimension, L=4, m = 0.3, beta = 2.7, Nf=4 (non-rooting)

Targetaction  S[U] = S,|U| + S;[¢p, U;m = 0.3], For Metropolis Test

Action in MD _ NN : _

Observables Plaqguette, Polyakov loop, Chiral condensate (1/71//)

Code  Fullscratch, i LatticeQCD.jl AT+ (in prep)

fU”y written in Julia lang' (But we added some functions on the public version)

Gauge covariant neural network and full QCD simulation



Lattice QCD code

We made a public code in Julia Language

\_

(What isju“"a? 1.0pen source scientific language (Just in time compiler) )

2.Fast as C/Fortran (sometime, faster)
3.Productive as Python

4.Machine learning friendly (Julia ML packages + Python libraries w/ PyCall)
5.Supercomputers support Julia )

(ﬁ LatticeQCD.jl (Official package) : Laptop/desktop/PC-cluster/Jupyter (Google Colab)\

SU(Nc)-heatbath/SLHMC/SU(Nc) Stout/(R)HMC/staggered/Wilson-Clover
Domain-wall (experimental) + Measurements

s 1. Download Julia binary A
3 steps in 5 min 2. Add the package through Julia package manager
\_ 3. Execute! Y,

https://github.com/akio-tomiya/LatticeQCD. ||

rll

SU(3), Quenched, L=4"4, Heatbath

065
o060
§ 055} |
g 050
o 045

040

fffffffffff

o N H o))

0.450.500.550.600.650.70 5 10 15 20 25 00 01 02 03 04 05 06
Plaguette MC time |Polyakov loop|

Polyakov loop

go‘s | | 01} oo o..
9 o4 RN 00/© o © o ®
3 AN -01 &°
S o3 I\ 0. I\ °
8
<

! fol
5 10 15 20 25 -0.10.0 0.1 02 0304 05 5 10 15 20 25
MC time Re MC time

Arg(Polyakov loop)
N - o - N w

|

Gauge covariant neural network and full QCD simulation


https://github.com/akio-tomiya/LatticeQCD.jl

Deta i IS (S ki p) Akio Tomiya

Network: trainable stout (plag+poly)

arXiv: 2103.11965

(0) poly _ _ _
Structure of NN QfP(M — p‘()‘llq()zlaQ(n) + {/’?;))lyAOsOly(") (1= 4?, All p is weight
(Polyakov loop+plaq PootysVi (1), (u=1=1,2,3) O meas an loop operator

in the stout-type)
QY (n) = 2[ (n)]1a TA: Traceless, anti-hermitian operation

U D(n) = exp(Q(m) U (n)

2- layered stout

NN _ 772 (D
U U] =U;"(n) [Uu (”)[Uﬂ(”)” with 6 trainable parameters

Neural network
Parametrized action:

Action for MD is built by
gauge covariant NN

SlU1 = S,|U| + S¢|, UpN UL my, = 0.4],

2
Invariant under,

SH[Ua ¢] - S[U’ ¢]
rot, transl, gauge trf.

b

: 1
Loss function: L(U] = >

Training strategy: 1.Train the network in prior HMC (online training+stochastic gr descent)
2.Perform SLHMC with fixed parameter

Gauge covariant neural network and full QCD simulation



Deta i IS (S ki p) Akio Tomiya

Results: Loss decreases along with the training

arXiv: 2103.11965

. 1 ? Intuitively, eA(-L) is understood as
Loss function: LUl = 5 SolU. #1 = SLU. 41| Boltzmann weight or reweighting factor.
Prior HMC run (training) Training history

1\ 10 — mh=0.4
(‘)C] 6 «— 0 — naLgé ), »

Hl [T rrl‘—)(l)
OLy(D) _ 9Ly(D) Sy ¢
au)gL—l) 85’9 d’lU(L 1) _l 40 -

m _QRCZU

u'm 60 -

Q): sum of un-traced loops

C: one U removed Q

20 -
A: A polynomial of U. (Same object in stout)

0 20 40 60 80 100
MD time (= training steps)
Without training, e/ (-L)<< 1,
this means that candidate with approximated action
never accept.
After training, e”(-L) ~1, and we get
practical acceptance rate!

We perform SLHMC with these values!

Gauge covariant neural network and full QCD simulation



Equivariance and convolution

Knowledge > Convolution layer = trainable filter, Equivariant

Filter on image Laplacian filter

01110
>I< 11-2| 1 — Edge detection
ol1]0 : Rl
shift to right

(Discretization of 9%)

Trainable filter

W11 | W12 | W13

— Fukushima, Kunihiko (1980)
W21 | W22 | W23 — = | Zhang, Wei (1988) + a lot!

W31 | W32 | W33

shift to right shift to right

Translational operation is commutable with convolutional neurons (equivariant)

This can be any filter which helps feature extraction (minimizing loss)
Equivariance reduces data demands. Ensuring symmetry (plausible Inference)
Many of convolution are needed to capture global structures



Akio Tomiya

Machine learning for theoretical physics

What am 1?
| am a particle physicist, working on lattice QCD.
| want to apply machine learning on lattice QCD.

My papers https://scholar.google.co.jp/citations?user=LKVqy wAAAAJ

Detection of phase transition via convolutional neural networks

A Tanaka, A Tomiya Detecting phase transition
Journal of the Physical Society of Japan 86 (6), 063001

Digital quantum simulation of the schwinger model with topological term via adiabatic

state preparation _
B Chakraborty, M Honda, T Izubuchi, Y Kikuchi, A Tomiya Quantum computing
arXiv preprint arXiv:2001.00485 for quantum field theory

Biography
2006-2010 : University of Hyogo (Superconductor)
2015 : PhD in Osaka university (Particle phys)
2015 - 2018 : Postdoc in Wuhan (China)
2018 - 2021 : SPDR in Riken/BNL (US)
2021 - 2024 : Assistant prof. in IPUT Osaka (ML/AI)
2021 - 2024 : ML(ML/AI)

Kakenhi and others
Leader of proj AO1 Transformative Research Areas, Fugaku

o maEE Program for Promoting Researches

ThEbbhs MLPhYs Foundation of "Machine Learning Physics" | [liheiciien

Deep Learning
and Physics AT

Large-scale lattice QCD simulation

ﬁfm%g?@? P Grantin-Aid for Transformative Research Areas(A) and develongi i Yo chrology
" +quantum computer
Others:
— | T Supervision of Shin-Kamen Rider
Organizing "Deep Learning and physics The 29th Outstanding Paper Award of the Physical Society of Japan

14th Particle Physics Medal: Young Scientist Award



SLHMC = Exact algorithm with ML *~*

SLHMC for gauge system with dynamical fermions

Gauge covariant neural network can mimics gauge invariant functions
-> It can be used in simulation? -> Self learning HMC!

HMGC

Self

Learning
HMC

arXiv: 2103.11965
and reference therein

Metropoliis -

Metropoliis --

m Metropolis

Both use
1

HHMC=52n2+Sg+Sf

Non-conservation of H cancels since
the molecular dynamics is reversible

Metropolis

1
— z: 2
H_E T +Sg+Sf[U]

1
H = Z: 2 NN
— 5 T +Sg+Sf[U [U]]

Neural net approximated
fermion action but exact

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Problems to solve

arXiv: 2103.11965

Mimic different actions:
(Final target: Domain-wall vs overlap)

A toy problem: Staggered (heavy) vs Staggered (light)

Target action . o
(Metropolis) SIUT = Sg[U] T Sf[ﬁb, Usm = 0.3] ,

ActioninMD  SplU1 = S, |U| + S¢|p, Up"[U Ty my, = 0.4],

Metropolis

Self ry
Learning H = %Zn2+sg+sf[U]
HMC ' Eom

1
H = Z: 2 NN
— 5 T +Sg+Sf[U [U]]

Metropoliis --

Neural net approximated
fermion action but exact

SLHMC works as an adaptive reweighting!



Application for the staggered in4d *“~*™

Results are consistent with each other
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Polyakov loop
Expectation value
Algorithm Observable Value
HMC Plaquette 0.7025(1)
SLHMC Plaquette 0.7023(2)
HMC |Polyakov loop| 0.82(1)
SLHMC |Polyakov loop| 0.83(1)
HMC Chiral condensate 0.4245(5)
SLHMC  Chiral condensate 0.4241(5)

Implemented by ﬁl_attice[]cn\jl lei..a



