
Sampling SU(3) pure gauge theory with out-of-equilibrium evolutions and Stochastic
Normalizing Flows

Alessandro Nada
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Critical slowing down in lattice gauge theory

Long autocorrelation times characterize several observables when a → 0

Typical example are topological observables: for a → 0 sectors characterized by different values of the topological charge
Q emerge

Using standard MCMC algorithms the transition between these sectors is strongly suppressed

This talk: focus on SU(3) in 4 dimensions

Update algorithm of choice: 1 heat-bath step + 4
over-relaxation steps

Objective: mitigate freezing at β = 6.5 (r0/a ∼ 11)

τint(Q
2) ∼ 103 and L/a = 36
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Re-framing critical slowing down: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one?

Flow-based approach

mapping between the target p(ϕ) and some tractable distribution q0(z)

→ novel approach to fight critical slowing down

→ successfully applied in LFTs in 2d: ϕ4 scalar field theory [Albergo et al.; 2019], [Kanwar et al.; 2020], [Nicoli et al.; 2020],
[Del Debbio et al.; 2021], U(1) [Singha et al.; 2023], SU(N) [Boyda et al.; 2020]

→ including fermions [Albergo et al.; 2021] in U(1) and SU(N) [Abbott et al.; 2022], Schwinger model [Finkenrath et al.; 2022],
[Albergo et al.; 2022], and QCD [Abbott et al.; 2022]

→ first attempts in 4d [Abbott et al.; 2023] with interesting applications [Abbott et al.; 2024]

→ new architectures such as Continuous Normalizing Flows [Gerdes et al.; 2022], [Caselle et al.; 2023]

→ strongly related to the idea of trivializing maps [Lüscher; 2009], [Bacchio et al.; 2022], [Albandea et al.; 2023]

→ ...
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Re-framing critical slowing down: flowing from one distribution to the other

What if every new configuration is sampled independently from the previous one?

Flow-based approach

mapping between the target p(ϕ) and some tractable distribution q0(z)

→ novel approach to fight critical slowing down

Normalizing flows do not appear to scale well with the volume (i.e. with the degrees of freedom)

However: same approach is possible stochastically! (this talk) → better scaling?
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Out-of-equilibrium Monte Carlo evolutions



Out-of-equilibrium evolutions

sampling each consecutive step from a sequence of distributions

q0 ≃ e−Sc(0) → e−Sc(1) → · · · → p ≃ e
−Sc(nstep)

▶ c(n) is a parameter of the action Sc(n) of the model

▶ start at equilibrium from a distribution q0 = e−Sc(0)/Z0, the prior

▶ nstep intermediate steps

▶ at each step: MC update with transition probability Pc(n)(Un → Un+1)

▶ Pc(n) changes along the evolution according to the protocol c(n)

▶ end at the target probability distribution p = e
−Sc(nstep)/Znstep ≡ e−S/Z

”forward” transition probability

Pf [U0, . . . ,U] =

nstep∏
n=1

Pc(n)(Un−1 → Un)
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Crooks’ theorem

Look at the ratio of the forward evolution and its reverse

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
=

q0(U0)
∏nstep

n=1 Pc(n)(Un−1 → Un)

p(Unstep )
∏nstep

n=1 Pc(n)(Un → Un−1)

→ Crooks’ theorem for MCMC [Crooks; 1999]: if the update algorithm satisfies detailed balance

q0(U0)Pf [U0, . . . ,Unstep ]

p(U)Pr[Unstep , . . . ,U0]
= exp(W −∆F )

with the generalized work

W =

nstep−1∑
n=0

{
Sc(n+1) [Un]− Sc(n) [Un]

}
and the free energy difference

exp(−∆F ) =
Zc(nstep)

Zc(0)
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Jarzynski’s equality for MCMC

Integrating over all paths gives∫
[dU0 . . . dUnstep ]q0(U0)Pf [U0, . . . ,Unstep ] exp(−(W −∆F )) = 1 → ⟨exp (−Wd )⟩f = 1

with the dissipated work Wd = W −∆F

Formal derivation of Jarzynski’s equality [Jarzynski; 1997] for MCMC

⟨exp (−W )⟩f = exp(−∆F ) =
Z

Z0

A ratio of partition functions is computed directly with an average over ”forward” non-equilibrium evolutions

⟨A⟩f =
∫

[dU0 . . . dU]q0(U0)Pf [U0, . . . ,U] A[U0, . . . ,U]

Using Jensen’s inequality ⟨exp x⟩ ≥ exp⟨x⟩

exp(−∆F ) = ⟨exp(−W )⟩f ≥ exp (−⟨W ⟩f)

we get the Second Law of Thermodynamics
⟨W ⟩f ≥ ∆F
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Out-of-equilibrium stochastic evolutions

▶ it’s a non-equilibrium process!
qn(Un) ̸= exp(−Sc(n)(Un))/Zn

▶ valid process also far from equilibrium (e.g. nstep is ”small”: nstep = 1 is standard reweighting)

▶ the ⟨A⟩f average is taken over all possible evolutions (always true for infinite statistics)

This goes beyond computing free energy differences! The same derivation holds if you want to compute v.e.v. of an
observable for the target distribution p

⟨O⟩ =
⟨O exp(−W )⟩f
⟨exp(−W )⟩f

= ⟨O exp(−Wd )⟩f
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A non-equilibrium paradigm to perform MCMC
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Applications of Jarzynski’s equality in Lattice Field Theory

Several applications in the last 8 years!

▶ calculation of the interface free-energy in the Z2 gauge theory [Caselle et al.; 2016]

▶ SU(3) pure gauge equation of state in 4d from the pressure [Caselle et al.; 2018]

▶ renormalized coupling for SU(N) YM theories [Francesconi et al.; 2020]

▶ entanglement entropy [Bulgarelli and Panero; 2023]

▶ connection with Stochastic Normalizing Flows: ϕ4 scalar field theory [Caselle et al.; 2022] and Nambu-Goto effective
string model [Caselle et al.; 2023]

▶ Topological unfreezing for CP(N − 1) model [Bonanno et al.; 2023]
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How far are we from equilibrium?

With Normalizing Flows we minimize

D̃KL(q∥p) =
∫

dU q(U) log

(
q(U)

p(U)

)
q(U) =

∫
[dU0 . . . dUnstep−1]q0(U0)Pf [U0, . . . ,U]

but q(U) is not tractable in this case

However we can measure the similarity of forward and reverse processes

D̃KL(q0Pf∥pPr) =

∫
[dU0 . . . dU] q0(U0)Pf [U0, . . . ,U] log

q0(U0)Pf [U0, . . . ,U]

p(U)Pr[U,Unstep−1, . . . ,U0]

Clear ”thermodynamic” interpretation

D̃KL(q0Pf∥pPr) = ⟨W ⟩f + log
Z

Z0
= ⟨W ⟩f −∆F ≥ 0︸ ︷︷ ︸

Second Law of thermodynamics!

→ measure of how reversible the process is!

Interestingly

D̃KL(q∥p) ≤ D̃KL(q0Pf∥pPr)
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The effective sample size

Effective Sample Size: defined in general as the ratio between the ”theoretical” variance and the actual variance of the NE
observable

Var(O)NE

n
=

Var(O)p

nESS

but difficult to compute

We use the (customary) approximate estimator

ˆESS =
⟨exp(−W )⟩2f
⟨exp(−2W )⟩f

=
1

⟨exp(−2Wd )⟩f

Easy to understand in terms of the variance of exp(−W ):

Var(exp(−W )) =

(
1

ˆESS
− 1

)
exp(−2∆F ) ≥ 0

which leads to
0 < ˆESS ≤ 1
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Strategies for SU(3) in 4 dimensions



Non-equilibrium strategies for critical slowing down in SU(3)

How to sample frozen topological observables at βtarget on a L4 lattice?

Evolution in the boundary conditions Evolution in β

Prior thermalized Markov Chain at βtarget thermalized Markov Chain at β0 < βtarget

with OBC on a L3d defect (a0 > atarget)

Protocol Gradually switch on PBC Gradually increase β (compress the volume)

d.o.f. ∼ (Ld/a)
3 ∼ (L/a)4

Intermediate sampling — possible at any intermediate β
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Non-equilibrium evolutions in the boundary conditions

Based on work with Claudio Bonanno and Davide Vadacchino

▶ CP(N − 1) model in 2d [JHEP 04 (2024) 126, 2402.06561]

Promising results: τint ∼ 105 tamed to effectively a few thousands + length of non-equilibrium evolutions scales with
defect size

▶ SU(3) in 4d: this talk + poster at Lattice2024

▶ Parameter controlling the BC is switched linearly until PBC

▶ Test in 4d SU(3) at β = 6.4: scaling with defect and
calibration of algorithm for larger βs

▶ no ML (yet)

▶ 304 lattices at β = 6.4 (L = 1.4fm) with a L3d defect
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Switching BC in SU(3): scaling with the defect size
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Switching BC in SU(3): topology
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Switching BC in SU(3): autocorrelations
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Non-equilibrium evolutions in β

Implemented for the SU(3) equation of state [with M. Caselle and M. Panero, PRD 98 (2018) 5, 054513, 1801.03110] on
large lattices

Generalization to SNF: this talk + talk at Lattice2024, in collaboration with Andrea Bulgarelli and Elia Cellini

Strategy

▶ Inverse coupling β is increased linearly until
target value is reached

▶ Aim: analyze scaling with volume (L/a)4

▶ Set MCMC standard for flow-based
approach

▶ No topology yet (charge not frozen yet)

Setup:

▶ Increasingly large lattices, from L/a = 10 to
L/a = 20

▶ ”Jump” in β:

6.02 → 6.178

corresponding to

(1.8fm)4 → (1.4fm)4

for L/a = 20
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Evolutions in β: volume scaling
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Stochastic Normalizing Flows



SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

n
st
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nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

n
st

ep

nbetween

eq MC

non-eq MC

GE layer
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SNFs as systematic improvement of non-equilibrium evolutions

What if you introduce the same transformations used in NFs between the non-equilibrium Monte Carlo updates?

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

U0
g1−→ g1(U0)

Pc(1)−→ U1
g2−→ g2(U1)

Pc(2)−→ U2
g3−→ . . .

Pc(nstep)
−→ Unstep

The (generalized) work now is

W =

nstep−1∑
n=0

Sc(n+1)(gn(Un))− Sc(n)(gn(Un))︸ ︷︷ ︸
stochastic

− log |det Jn(Un)|︸ ︷︷ ︸
deterministic

▶ use gauge-equivariant layers to effectively decrease nstep

▶ how to do training? advantages from the architecture

▶ same scaling with the volume?
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Gauge-equivariant layers

Implementation of the coupling layers introduced in [Nagai and Tomiya; 2021] and the link-level flow used in [Abbott et al.;

2023]

Essentially a stout-smearing transformation [Morningstar and Peardon; 2003] with masks to make them invertible (and
compute log J)

U′
µ(x) = gl (Uµ(x)) = exp

(
Q

(l)
µ (x)

)
Uµ(x)

with the algebra-valued

Q
(l)
µ (x) = 2

[
Ω

(l)
µ (x)

]
TA

Ωµ(x) = Cµ(x)︸ ︷︷ ︸
frozen

U†
µ(x)︸ ︷︷ ︸

active

Sum of frozen staples

Cµ(x) =
∑
ν ̸=µ

ρµν(x) Sµν(x)︸ ︷︷ ︸
staple

in this work: ρµν(x) −→ ρ

→ 1 parameter per mask/8 parameters per layer
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Learning ρ

Architecture: (1 gauge-equivariant + 1 full MC update) ×nstep

Training: minimizing D̃KL(q0Pf∥pPr) = ⟨W ⟩f + const

Short trainings: 200-1000 epochs

Memory issues for large nstep and large volumes

Practical solution: train each layer separately during the
non-equilibrium evolution → reminiscent of CRAFT
[Matthews at al.; 2022]

Heavy use of transfer learning for each β0 → β evolution:

▶ training only at small volumes

▶ training only with small nstep: global interpolation of ρ

No retraining!

0 50 100 150 200 250
layer index

0.0000

0.0001

0.0002

0.0003

ρ

L/a = 12, β = 5.756→ 5.877
nstep = 16

nstep = 32

nstep = 64

nstep = 128

nstep = 256
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Improvements over purely stochastic approach

500 1000 1500 2000
nstep
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Improvements over purely stochastic approach
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Improvements over purely stochastic approach
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SNF evolutions in β: volume scaling
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Conclusions and future prospects

Stochastic approach guarantees a clear scaling with the degrees of freedom

nstep ∼ d.o.f. → fixed D̃KL or ESS

while providing a thermodynamic understanding of the flow

Overall strategy

systematically improve on stochastic approach by machine-learning deterministic transformations between MC steps

Future improvements

Better protocols (huge literature from non-eq SM):
only linear protocols were used in this work!

Better and deeper layers: include larger loops beyond
the plaquette + ρ as a neural network [Abbott et al.;

2023]

Future implementations

Implement SNF for evolutions in the BC

Push SNFs/evolutions in β at finer lattice spacings
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Thank you for your attention!
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Switching BC in SU(3): efficiency
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Switching BC in SU(3): work histograms
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SNF evolutions in β: volume scaling
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SNF evolutions in β: different evolutions
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SNF evolutions in β: different evolutions
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The Second Law of Thermodynamics

Clausius inequality for an (isothermal) transformation from state A to state B

Q

T
≤ ∆S

If we use {
Q = ∆E − W (First Law)

F
def
= E − ST

the Second Law becomes
W ≥ ∆F

where the equality holds for reversible processes.

Moving from thermodynamics to statistical mechanics we know that actually

⟨W ⟩f ≥ ∆F = FB − FA

for a given ”forward” process f from A to B
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A connection to traditional reweighting

A typical reweighting procedure is meant to sample a distribution p using a (close enough) distribution q0. It can be
written as

⟨O⟩RW =
⟨O(ϕ) exp(−∆S)⟩q0

⟨exp(−∆S)⟩q0

It is just Jarzynski’s equality for nstep = 1, see the work

W =

nstep−1∑
n=0

{
Sc(n+1) [ϕn]− Sc(n) [ϕn]

}
= ∆S(ϕ0)

with ϕ0 sampled from q0

▶ It’s important to note that there is no issue with the fact that ∆S itself can be large

▶ The real issue is that the distribution of ∆S (and in general of W ) can lead to an extremely poor estimate of ∆F →
highly inefficient sampling

▶ The exponential average can be tricky when very far from equilibrium!
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A common framework: Stochastic Normalizing Flows

Jarzynski’s equality is the same formula used to extract Z in NFs

Z

Z0
= ⟨w̃(ϕ)⟩ϕ∼qN = ⟨exp(−W )⟩f

The exponent of the weight is always of the form (note that for NFs ⟨. . . ⟩ϕ∼qN
= ⟨. . . ⟩f)

W (ϕ0, . . . , ϕN) = S(ϕN)− S0(ϕ0)− Q(ϕ1, . . . , ϕN)

Normalizing Flows

ϕ0 → ϕ1 = g1(ϕ0) → · · · → ϕN

”Q” = log J =

N−1∑
n=0

log |det Jn(ϕn)|

stochastic non-equilibrium evolutions

ϕ0

Pc(1)→ ϕ1

Pc(2)→ . . .
Pc(N)→ ϕN

Q =

N−1∑
n=0

Sc(n+1)(ϕn+1)− Sc(n+1)(ϕn)

Stochastic Normalizing Flows (introduced in [Wu et al.; 2020])

ϕ0 → g1(ϕ0)
Pc(1)→ ϕ1 → g2(ϕ1)

Pc(2)→ . . .
Pc(N)→ ϕN

Q =

N−1∑
n=0

Sc(n+1)(ϕn+1)− Sc(n+1)(gn(ϕn)) + log |det Jn(ϕn)|
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SNFs for ϕ4 at various volumes

Training length: 104 epochs for all volumes. Slowly-improving regime reached fast
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SNFs for ϕ4 at various volumes

SNFs with nsb = nab as a possible recipe for efficient scaling
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Taking cues from the SU(3) e.o.s.

Large-scale application: computation of the SU(3) equation of state [Caselle et al.; 2018]

Goal: extract the pressure with Jarzynski’s equality

p(T )

T 4
−

p(T0)

T 4
0

=

(
Nt

Ns

)3

log⟨e−WSU(Nc ) ⟩f

evolution in βg (inverse coupling) → changes lattice spacing a → changes temperature T = 1/(aNt)

Prior: thermalized Markov chain at a certain β
(0)
g

For systems with many d.o.f. (i.e. large volumes), JE works when N is large, i.e. evolution is slow (and expensive)
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SU(3) e.o.s. with Jarzynski’s equality
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The CPN−1 model with a defect

Improved action

S
(r)
L = −2NβL

∑
x,µ

{
k
(n)
µ (x)c1ℜ

[
Ūµ(x)z̄(x + µ̂)z(x)

]
+ k

(n)
µ (x + µ̂)k

(n)
µ (x)c2ℜ

[
Ūµ(x + µ̂)Ūµ(x)z̄(x + 2µ̂)z(x)

]}
with z(x) a vector of N complex numbers with z̄(x)z(x) = 1 and Uµ(x) ∈ U(1)

c1 = 4/3 and c2 = −1/12 are Symanzik-improvement coefficients

The k
(n)
µ (x) regulate the boundary conditions along a given defect D

k
(n)
µ (x) ≡

{
c(n) x ∈ D ∧ µ = 0 ;

1 otherwise.

at a given step n of the out-of-equilibrium evolution protocol c(n)
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Topological susceptibility for various protocols for N = 21, βL = 0.7, V = 1142 (roughly similar numerical effort)

Note that with OBC → τint(χ) ∼ 50
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Black band is from parallel tempering [Bonanno et al.; 2019] → with × ∼ 100 numerical cost
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