The Research
Council of Norway

With the support of the Uni .
Erasmus+ Programme Supported by niversity
of the European Union LI of Stavanger

LEARNING OPTIMAL KERNELS FOR

REAL-TIME COMPLEX LANGEVIN

Alexander Rothkopf
Faculty of Science and Technology
Department of Mathematics and Physics
University of Stavanger

(1st part) with Daniel Alvestad, Rasmus Larsen & Denes Sexty

ey

JHEP 08 (2021) 138, JHEP 04 (2023) 057 & PRD 109 (2024) 3, L031502  Norwegian Particle, Astroparticie

(2 part) with J. Nordstrém & Will Horowitz & Cosmology Theorynetwork

JCP 498 (2024) 112652 and arXiv:2404.18676

ML MeEeTS LFT WoORKSHOP — JuLY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM



University
of Stavanger

Outline

LEARNING OPTIMAL KERNELS FOR REAL-TIME COMPLEX LANGEVIN g

= Motivation: Quantum Initial Value Problems
m; Part 1: Machine Learning Assisted Complex Langevin
m Part 2: Towards Exact Continuum Symmetries for ML Training

® Summary

ALEXANDER ROTHKOPF - UIS ML MEETS LFT WORKSHOP — JULY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM



LEARNING OPTIMAL KERNELS FOR REAL-TIME COMPLEX LANGEVIN

University
LI of Stavanger

Quantum Initial Value Problems
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Schwmger-KeIdysh Path Integral LS of Stavanter
t=t,
E —lp <O(to)O(t1)> = Tr[ p O(to)O(t1) ]
be @1 . .
=T ©6) =7 [ a1 [ ds: 0010 [ Dy7Dg™ O(@) &101510-
* *
sampling over statistically quantum “sum over paths”
distributed initial conditions
¢e(0)
(O(p)) = l / D¢Ee—55[¢E]/ D¢ D@~ O(¢) g Sle+1-iS[¢-]
4 ¢e(B)

Pure phase Feynman weight implies MC sign

Real-valued Feynman weight: :
Monte-Carl thod licabl problem. One strategy: Complex Langevin
onte-CLario methods applicable see C. Berger et.al. Phys.Rept. 892 (2021)

H| Sign problem is NP-hard: no generic solution strategy is likely to exist
Troyer, Wiese PRL 92 170201 (2004)
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Stochastic Quantization

®| Langevin evolution in fictitious additional time to reproduce quantum fluctuations
for an in-depth review: M. Namiki et.al. Stochastic Quantization (Springer) 1992
dp  6Selg]

dty — 8¢(x)

+n(x, 1) with  ((x,10)) =0, (n(x, w)n(x’, 7)) = 26(x = x")6(1L — 77)

Stochastic partial differential equation (SDE) with Gaussian noise

= Associated Fokker-Planck equation for P[¢]

2 p(g) =V [(Sel] + V4) P(@)]

OTL

" Proof of convergence: T}iiﬂoop[¢,TL] = ¢ El#]
P(¢(t2)

complexification: ~2PE2L 1 iZEL g(x ) = rlx ) + ir(x, )

T—oo

1 T
(O[¢]) « lim ?/ d1 O[pr(x,TL) +ipr(x,7)]
0
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Two major challenges for Complex Langevin LS of Stavanger
dpr - |.65(] dg:r . | .6sl¢)
d—TL = Re I§¢(X) bmesit: +I‘](X’ TL), dr, =Im I5¢()() ¢:¢R+i¢1}

Divergent solutions (runaways) Convergence to incorrect solutions

Underlying challenge: Sign Problem

Technical novelty: The Sign Problem was shown to be
Implicit solvers render runaway NP-hard, i.e. no generic solution algorithm
problem moot in polynomial time exists.
provide stability needed A loophole for NP-hard problems:

to t ML optimizati
carry ou optimization Mathematical proof does not exclude

system specific solution algorithm —
use ML to infuse system specific info
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Part 1. Machine Learning Assisted
Complex Langevin

See also talk by Denes Sexty
at Lattice 2024 - 30 Jul 2024, 15:05
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Reinforcement learning — a ML success LS of Stavanger

® Agent with a set of predefined actions [ e.g. move left, jump ]
in an environment

H Policy/Cost function that defines success
[ e.g. score on computer screen |

| Need to encode choice of actions and evaluate
gradients to minimize cost
EE s L Need to handle failure state
[e.g. falling into pits ]

Improving the score: allow for
more actions [ e.g. move right ]
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RL & Quantum simulation — executive summary g

d¢ 0s | OKIg]
dr IK[<I>] 9% K[¢]n

® Environment: space of distributions explored by a stochastic process

H Agent: controller of the non-neutral modification represented by the
kernel K. Limited actions — keep the kernel field & 1, independent

B Cost function: deviation of late T stationary distribution from prior knowledge
(symmetries, known cumulants, etc.)

® Use auto differentiation or shadowing analysis to compute robust
gradients of the inherently chaotic dynamics.

® \We achieve convergence to correct stationary distribution for model
systems in parameter regimes previously inaccessible.
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Manual exploration of kernels

® Simultaneous modification of drift and noise allows to modify convergence

d¢ 0s oKl
o = iK [¢] 3% Klgln

® QObservation in simple models: kernel that renders drift real restores convergence

Okamoto, Okano, Schiilke, Tanaka, PLB 324 684 (1989)
Free theory in real-time o

S — ¢tM¢ K = iM_l o5l

dS

IKd_¢ = —¢ sl

¢ = —¢+ViM-1ln L
d‘TL

m Stroke-of-genius approach: find bespoke kernel for your system (c.f. reformulation)
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Systematic learning of kernels
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® Optimal kernels via prior information from continuum theory

P =Y (G @ (- T e

CL Lyapunov exponents

-0.2

Re
n
-
°
»

Lbnd:ZZ{<Lc[¢i]Ok>Y)2 N T L
ik ‘

-0.6 +

| eucl :Z {(<¢0¢1> . DIE)Q} o8| A**

® Auto-differentiation techniques to compute

&
—lo0[FEEx* ¥ ¥y yyYyYYFYFYFYEFYEYREY

0.0 0.5 1.0 15
max

aLtOt :

[ note: deterministic dynamics chaotic] ~ 9Ki

<t+ronl

K»I
I .
;‘Irlght

I\"”free
K" free

®| In principle possible, in practice slow: cheaper optimization functional instead

ALEXANDER ROTHKOPF - UIS

minimizes drift away from the origin

but remains holomorphic)

Ny
LIOW cost __ 1 I 2 (similar to dynamic stabilization
=N m|¢o
bi=1
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Complex Langevin for 1+1d scalar fields

| Using a field independent kernel K = exp[A + iB] with A,B real matrices

Contour Deformations Optimal learned CL kernels

L ‘§ g
R . ‘ 3 L0 — — — BMC
5 s - X K1
S 00 : L = :Iit;} . Thimble -
& o A=t 2 ] < 0.5f X X Kou Re %S
-0.5. ©A=10 ! I ¢ ) ttix * Koy IM B2
n I T = : & oetrs| 08
0.0 0.5 ¢ 10 15 'é’ o 00 iiiﬁi!:!'fi—%%iﬁﬁ s ﬂéﬂ'
‘ ‘ — — & + i&% ex* & 3
00 5% % o ._? sl ‘!;! tttt . é&
2 & o A=10 2 %ﬂtttt =< % §
S 0.1 5% B X xX =)
E % c XX rgrx X 4
0oy ] = 0 1 2 3 a8
—0.2k { 2l 31 2 ] °
SO B T & < mt
0.0 0.5 t 1.0 1.5 <
_ _ m| avoid discretization artifacts with finer
= coarse grid due to high method cost grids, accessible dur to good scaling
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Learned Kernels

H Optimal learned kernels achieve convergence with minimal modification (sparse)

Re[K ool Im[Kopl
Xo X1 Xy Xz X4 X5 Xg X7Y¥s Xg X1 Xy X3 X4 X5 Xg X7 Ye

forward  img backward img
>-p- > |

-0.1

-0.2

-0.3

piemyoeq Buy pJemioy

-0.4

Sun

¥ ML results as starting point for a better analytic understanding of kernel structure
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Limits to our current strategy
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®| Constant kernel works well in theories with single critical point at the origin

simple
Gaussian
model

Lefschetz
thimbles

1 naive CL
S = Zix?
2

d¢ _dS

dr  dé

-20 -10 0 10 20

learned kernelled CL

—3 -2 — 0 1

=/ Multiple critical points may require a field dependent kernel: S = 2ix* + (1/2)x*

naive CL learned const. kernelled CL

L*=0.888

ALEXANDER ROTHKOPF - UIS

still incorrect
& convergence

L%=0.486
L*=0.023

ML MEETS LFT WORKSHOP — JULY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM

field dependent kernel
from Okamoto et.al. 1989

correct
2
convergence

-3 -2 -1 0 1 2 3
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Part 2. Towards Exact Continuum
Symmetries for ML Training
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The Continuum Symmetry Challenge LS of Stavanger
fExact Noether
Quantum Initial . charge preservation Quantum Boundary
Value Problems Value Problems
Complex Langevin o Euclidean Lattice QCD

707 20 30 40 50 60

Anisotropic lattices

-0.

Prior information (e.g.
continuum symmetries)

Absence of space-time
symmetries affects

f(T,0)2'505

key to achieve correct

Adaptive =\e inverse problem: prior
convergence coordinate information void
5 maps
D. Alvestad, A.R., D. Sexty 10700 R. Larsen, G. Parkar, A.R. J. Weber
PRD 109 (2024) 3, L031502 NOVG' SCL action arXiv:2402.10819
R. Larsen, A.R. & HotQCD
Classical Initial PRD 109 (2024) 7, 074504

Value Problems
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Worldline Formalism in GR LS of Stavanger
H| Relativistic point particle motion: "shortest path in given space-time” = geodesic

® Equal treatment of space & time as dynamic coordinate maps: .
from trajectory to world line [both t(y) and x(y) evolve dynamically] (t0s), w((l)

B V() \ dXO dX0 dXidX:
Sgeo - / d7 (_mc){\/(GOO + 2m62) d’y d’}/ +GmW d’)’ }

Y

t

V(Z)/2mce? <« 1
) [ =aVl
Gne=vlc <1 Xt = (t,7) 1d submanifold via
. abstract parameter y
Sor = / dt{ — me® + Sma(t) - V(:E(t))}
k@), x (i)

¥ mc denotes scale where motion through space and time becomes inseparable
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Advantages of the worldline formalism

B Discretizing the action in y leaves space-time coordinates X* = (¢, Z)" continuous

M Discretized world-line action invariant under infinitesimal coordinate transforms:

Noether’s theorem holds! (t(vf),x(vf))’
V4
i(y) //
AE(y) 20 NP

2.x107% o AE [f=1, Ny=32] SBP21 . AAAAAA ,— e R ’,
15x107% P Y 4 A
- 1.QMAAAAAAAAAA ,’ /Y
5. 10 51 10C00ECC0COCC00CA00000 00 /

5 o7 o5 o8 10’ 02 04 06 08 10" ‘,

Energy of the system preserved Resolution of the time grid (t(v), 2(7))
exactly at its continuum value adapts to dynamics of particle Vi), Vi
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A Field Theory Counterpart? LS of Stavanger
Independent variables Dependent variables Discrete solution
Wg;:(\ti,xj) Spacetime
: y - w7 symmetries
Qonventlonal ,/"/\\\‘/*’i A broken by
field theory - At and Ax
X ..
Spacetime
, , symmetries
dynamic coordinate At and Ac?
maps
YES!
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A world "volume” action for fields?

LEARNING OPTIMAL KERNELS FOR REAL-TIME COMPLEX LANGEVIN g

H| Starting point is the standard reparameterization invariant action
1
S = / DX/~ det[G] (G“”@uqb(X)&,qb(X) — V(¢))

® Are we perhaps overlooking a constant term, just as in the non-relativistic action?
1
S = / D x \/—det[G]{ ~T 2 (G“”a“¢(X)ay¢(X) - V(¢)) }
®| Consider as low energy limit of another more general action

Spvp = / @D X \/—det[G] ( —T){1 - —(Gwa $(X)8,p(X) — V(qS))} + O(k?)

ALEXANDER ROTHKOPF - UIS ML MEETS LFT WORKSHOP — JULY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM 20
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Towards the SCL action

®| Crucial next step: elevate spacetime coordinates to dynamical coordinate maps

worldline: ¢ — t(y) here: X* — X" (%) X = (1,6)" = (1,01,...,04)"

V(g) —1)detlg] + 7:0u9(2)Bb9(2)adllglas

adjlg] = g~ 'det|g]
®| Can absorb the Jacobian into new induced metric g on the space of parameters

v/ —det[J]det[G]det[J] = \/—det[JT]det[G]det[J] = \/—det[JTGJ] = 4/ —det][g]

¥ The scale T denotes where field and coordinate dynamics become inseparable
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Proof-of-principle in (1+1)d

®| Scalar wave propagation is numerically challenging (stability, accuracy)

Spvp = /dea (- T)\/ — det[g] + %6a¢(2)8b¢(2)adj [9]ab
= /deo (-7) {02(15:1:' — it')?
P4 (@) - @) + 290/ (6’ - i) + ()23 - )}
® Simplify by considering only time as dynamical mapping (trivial x[1,0]= 0)

eave =7 [drdo 3 {0 + 1 (#((¢)? - 1) - 2088 + (#)2()) }
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Summation-by-parts finite differences

® Derivation of Noether theorem or governing equations rely on integration by parts

® Mimetic discretization needed to preserve IBP in discrete setting:

D=H"! Q finite difference
stencil

Q+Q =Ey—IE
= diag|—1,0,...,0,1]

tf
/ dtu(t)v(t) ~u'Hv
t;

quadrature rule

For more details on the

discretization strategy (]Du)t Hv = —ut HDv
Lattice 2024 - 29 July 2024, 11:35 +unvy

— UoVo
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Classical wave propagation in (1+1)d

® Numerical search for critical point (¢4[T,0], t4[T,0]) of the classical action

1.0 0.0

field evolution ¢[T1,0] temporal map {[1,0] trivial spatial map x[1,0]= 0

® Here T=10.000, choice to obtain effects on the coordinate maps on percent level

ALEXANDER ROTHKOPF - UIS ML MEETS LFT WORKSHOP — JULY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM 24
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Coordinate maps adjust to dynamics ) of Stavanger

o
.-*"-""fr

é"

1.0 0.0

1.0 0.0

T derivative of t[1,0] o derivative of t[1,0] field evolution ¢[r,0]

Temporal map automatically adapts resolution according to wave dynamics

ALEXANDER ROTHKOPF - UIS ML MEETS LFT WORKSHOP — JULY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM
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Noether Charge — Time Translations

® Due to mimetic SBP discretization: continuum expression with

Q¥ = H, {(Drt1) + 7. (Do) 0 (Dr2) — (Dr1) 0 (Dopr) o (Do) }

I JOERNT XNgo Q L
g t
+{(RTX907(0] + (hZ5")07 [N, }, 2510
: Lagr. mult. contrib. I
2.505
. (00000000000000000000000000000000000000000000000000000000000)
H| Exact conservation of the Noether 2.500

charge associated with time

translations: vital prior information 2.495
for future use in machine learning
context. 0 10 20 30 40 50 60 AT
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Summary

B Real-time dynamics of quantum fields challenging due to NP-hard sign problem. Complex
Langevin one promising path forward.

B ML strategy: systematically incorporate system specific prior information (symmetries,
Euclidean correlators, etc.) in CL simulation via learned optimal kernels

Learned optimal field independent kernels

| Optimal kernels in 1+1d: new benchmark in accuracy & real-time extent (~2x)

B For effective machine learning prior knowledge (training data) plays crucial rule and
continuum space-time symmetries are among the most powerful

B Recent progress by developing a novel classical action for scalars with dynamical coordinate

maps that retains continuum space-time symmetries after discretization

ALEXANDER ROTHKOPF - UIS ML MEETS LFT WORKSHOP — JULY 25TH 2024 — SWANSEA UNIVERSITY — UNITED KINGDOM
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Discretizing the Worldline

®| We discretize in the world-line parameter, not in the time variable:
(t(ve),z(vr))

1{((02 N 2V(X)) ° ]Dt)T]H(]Dt) _ (Dx)H (]Dx)}

It =
BVP = 5 - °
+ A1 (B[1] = 45) + A2 ([N, ] — ty) /
+ A3(x[1] = ) + Aa(x[N,] — zy) //
"/ Note that the values of t and x remain continuous:/ < ~=7
explicit invariance under time translations in the A’y
discrete setting. No issue with finite domain.
/ 1d submanifold

®| Noether charge:
& embedded in (d+1)

Qe =2(Dt)o (1+2V(X)/m) (1013 4()
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Now reformulate as IVP

¥} Forward-backward construction for both time and space coordinate

(t(vr), z(vy))

— 2V (x _ _ _
Ervp = {(]DRt )Td [cz + #] H(D},) — (]DmRX1)T]H(1D5X1)} forward branch

l\.')li—‘ l\DIP—‘

{ (DRt2)Td [ 27514)(2)] H(D{*ts) — (ﬂ_)gXQ)T]I_{(]]_)mRXQ)} backward branch /.

A1 (61[1] = :) + Ao (Dt1)[1] — 45) + A3 (xa[1] — 24) /
+)\4((]Dx1) [1] — xz) initial conditions /
+X5 (t1[Ny] — t2[N,]) + X6 (x1[N5] — x2[N,]) connecting conditions T~
(D) [N, — (DE)[N]) + As ((Dx1)[V, ] — (Do) [V, ). / Aq/

/

u| Lagrange multipliers modify Noether charge /

+

1d submanifold
Q¢ = 2(Dt) o (14 2V(x)/m) & embedded in (d+1)

+ A20(y — i) + A70(y — vy) (t(vi), (7:))
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Discretized Schwinger-Keldysh action

¥ Introduce forward and backward branch (classical Schwinger-Keldysh)
Blave =5 {(D}41)? + 7 ((B1)? o (Dot)? 1)
—2(Dgebr) 0 (D¢ebs) o (D) o (Dhta) + (Debr)” o (DL£:)*) } o
o {BLto)? + 7 ((D262) o (D,8)” ~ 1)
— 2(Depa) 0 (D¥epa) o (D) o (Dhta) + (Depa)” o (DLta)?) } o

® Enforce initial (temporal), Dirichlet boundary (spatial) and connecting conditions

+(A) "o (BY[t1] — trc) + (A%) "o (P[h1] — rc) +(3) " ha (P (D) - P (D:22)])
+(X) by (BO(D, 41)] — x0) + (%) ", (B2(D, 1)) - ) (%) bo(B “D @] = B (D, 42)])

N hy (PN [ty] — PN [t, ) hy (PN [¢h1] — PN~ (b, +(5%) "0 (PS191] ~ 0) + (A%) " (P[] - 0)
(7)o (P [ta] = PY7[t]) + (7)o (P[] — P [2]) e h, (]Pg[¢2 )4 67 (B 3] —0)

B/ [ocate extremum via numerical optimization (Interior Point Optimization)
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