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Introduction to Multillevel Sampling
State Space Decomposition:

Let X denote the state space, which can be decomposed into multiple
levels or scales:

X =

L∪
k=1

Xk

where L is the number of scales, and Xk represents the state space at the
k-th scale.

Multilevel Representation:
Each state x ∈ X can be represented hierarchically:

x = (x1, x2, . . . , xL)

where xk ∈ Xk. e.g. (x1) is coarse lattice and (xL) is the fine lattice.
Probability Distribution:

Assume the target distribution P (x) can be factorized hierarchically:

P (x) = P (x1)

L∏
k=2

P (xk | x1:k−1)
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Multilevel Monte Carlo Sampling

Concept:
Divide the problem into multiple hierarchical levels or scales.
Sample at each level, using results from the previous level.

Steps:
1 Coarse-Grained Level:

Sample the coarsest lattice from the lowest dimensional distribution.
Interactions depend on the marginalization process.

2 Intermediate Levels:
Refine sampling by focusing on higher scales, informed by coarse samples.
Incorporate intermediate details and interactions.

3 Fine-Grained Level:
Complete the sampling process by adding fine details.
Accurately capture target interactions at a detailed level.

Benefits:
Reduces computational burden by focusing on relevant scales.
Enhances convergence and accuracy of Monte Carlo simulations.
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Monte Carlo multilevel approach: [K. Jansen,2020]

The target density: q(φ|kf ) = e
−βH(φ|kf )

Z ;φ = [φf : a, φi :
√
2a, φc : 2a]

Multilevel proposal:
q(φ; kf , ki, kc) = q(φf |φf , φc; kf )q(φi|φc; ki)q(φc; kc)

Figure: Taken from [K. Jansen,2020][1]
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Traditional multilevel approach

Sample the coarse variables φc from the distribution

φc ∼ q(φc|kc)

using Monte Carlo method from a distribution defined by the
Renormalised Hamiltonian at 2a.
Sample the intermediate φi from φi ∼ q(φi|ki, φc) from a renormilized
Hamiltonian at

√
2a and and fine variables φf ∼ q(φf |kf , φi, φc) from

the target Hamiltonian using Heatbath method.
One we have φ = [φf , φi, φc], do a Metropolish-Hasting:

α = min
(
1,

p(φt)

p(φt−1)
.
q(φt−1)

q(φt)

)
Where, the new proposal at time t, φt = [φt

f , φ
t
i, φ

t
c]
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Multilevel: Traditional Approach for Ising Model

Low acceptance
The overlap between the target and the proposal distribution is very low and we get a
very low acceptance rate in the MH step [Schmidt, 1983], [Faraz, 1985].

Poor proposals
The RG approach is not exact and hence the action derived at different levels is not
the true action or the action of the true marginal distribution.

Observations:

Parameterize proposal distribution q(φ; kf , ki, kc): Optimizing parameters
(ki, kc) does not provide a significant impact on acceptance rate.

The maximum acceptance rate from the proposal is less than 10% for 32× 32.

The assumption of the same order of interactions at other scales is not true
anymore.
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Variational Autoregressive Networks (VAN)

Variational Autoregressive Networks (VAN) model the joint probability of a
lattice configuration φ using a product of conditional probabilities:

qθ(φ) =

N∏
i=1

qθ(φi|φ1, · · · , φi−1)

Example
Ising spins:

qθ(si|s<i) = ŝiδsi,+1 + (1− ŝi)δsi,−1

where,

ŝi = σ(gθ(s<i))

with gθ autoregressive netwok such as the Pixel CNN.
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Autoregressive-based Multilevel: [K. Jansen,2020]

One block Multilevel proposal:
q(φ; θ) = q(φf |φf , φc; θf )q(φi|φc; θi)q(φc; θc)

Coarse Level: The coarse level distribution is modeled by a Variational
Autoregressive Network (VAN).

φc ∼ q(φc; θc)

Interaction range
At the coarse level interactions range is not known, so a model cable of generating
long range interactions is suitable.

Training a VAN
The coarse distribution is quite low dimension; 2× 2; 4× 4. Thus training is efficient
and faster.
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Autoregressive-based model:

Intermediate Level: The intermediate distribution is learned
represented by a conditional auto-regressive model.

φi ∼ q(φi;φc, θi)

The interactions range is decide to be next nearest neighbour on the current sites.
This is fixed by choosing suitable kernel.
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Autoregressive-based model

Fine Level: The fine distribution sampled via Heatbath given the
coarse and intermediate spins: φf ∼ q(φf ;φi, φc)

Heatbath
Since the target distribution is local, hence given [φi, φc], the Heatbath
sampling is more efficient to sample φf instead of the conditional
auto-regressive model.
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Multilevel Blocks

One Block
N ×N → 2N × 2N
One block distribution: q(φ; θ) = q(φf |φi, φc; θf )q(φi|φc; θi)q(φc; θc)

n blocks
N ×N → 2nN × 2nN

q(φ; θ) = q(φf |φ1φ2,...,φ2n−1; θf )

2n−1∏
i=1

q(φi|φ0φ1,...,φi−1; θi)q(φ0; θ0)

Components
I) The coarse distribution is sampled via VAN II) All intermediate are
sampled conditional VAN and III) The final level by Heatbath.
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Objective Function

Training can be proceeded by minimizing the Kullback-Leibler (KL)
divergence as:

DKL(qθ ∥ p) =
∑
φ

qθ(φ) ln
(
qθ(φ)

p(φ)

)
= β(Fq − F )

This is equivalent as minimizing the variational free energy:

Fq =
∑
φ

qθ(φ)

[
βH(φ) + ln qθ(φ)

]
(1)

We don’t train this multilevel model directly at fine level model. We start
from the coarse level and move block-wise to the fine level.
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Block wise Training procedure

Example: Lc = 2× 2 → 64× 64. We have to train 6 multilevel blocks.
Lc = 2× 2 → 4× 4:
The first the coarse level is trained independently using VAN. Then train
C-VAN for intermediates (blue) and complete intermediates (red).

Lc = 4× 4 → 8× 8: While training the 2nd block we transfer the
weights from the last block. This gives a good starting point for the
training.

...continues until the last last block.
In the last block the fine distribution does not need initialization.
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Training ESS Curve

We train the model using both the standard method and block-wise weight
transfer, ensuring the same computational time for each.

result:
We find that the block transfer method significantly reduces training time and
converges faster.
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Hierarchical Autoregressive Network (HAN)

HAN: (P. Bialasl, 2022)

Figure: The Hierarchical Autoregressive Network (HAN) Approach.
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ESS: HAN vs Multilevel

The Importance weight: w = p(φ)/qθ(φ);

Estimator: ŵ = 1
Ẑ

exp (−βH(φ))
qθ(φ)

Ẑ =
1

N

∑
i

exp (−βH(φi))

qθ(φi)

ESS =
1

Eq[w2(φ)]

(Hackett, 2021; Vaitl, 2022)

Result
The ESS for HAN is significantly lower compared to the multilevel method
for 64× 64 and 128× 128.
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ESS (log-scale) : HAN vs Multilevel

result:
For the 128× 128 grid, the ESS for HAN is three orders of magnitude lower
than that of the multilevel method
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Free Energy: HAN vs Multilevel

The Free Energy:
F̂ = − 1

β
log Ẑ

result:
The Free Energy is biased for HAN 128× 128

T
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ESS and Free Energy vs Sample size

result:
The bias in Free Energy cannot be reduced even with up to half a million
samples.
The ESS initially starts at similar values for both methods but decreases
for HAN as the sample size increases.
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Investigating the HAN bias: Forward ESS

We investigated the bias and low ESS for HAN by examining the ESS of both
Forward and Reverse estimators. ESS = 1

Ep[w(φ)] (Hackett, 2021; Vaitl, 2022)

result
The Forward ESS is zero for 128× 128, indicating that the model samples do not
adequately represent the target distribution. This suggests a likelihood of effective
mode dropping in the model.
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Compatibility of F/R Free Energy: HAN vs Multilevel

F̂Fw = − 1

β
log(Ẑp); F̂Rv = − 1

β
log(Ẑq)

result:
The Forward and Reverse Free Energy are consistent for the multilevel
approach, but this is not the case for HAN.

Ankur Singha (ML group, BIFOLD TU Berlin) ML meets LFT, Swansea University 21 / 27



Mode dropping estimator

We define a mode dropping estimator: w̄ ≈ 1
Ẑp

( 1
N

∑
i

exp (−βH(φi))
qθ(φi)

)
(Nicoli, 2023)

result:
From the mode dropping estimator it is clear that the HAN model smaller
effective support than the target.
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Other Observables: HAN vs Multilevel

result:
Magnetization and Eenergy are also biased for 128× 128.
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Autocorrelation Comparison

result:
The integrated autocorrelation time for multilevel is much lower then HAN
specially for larger lattices.
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Summary and Conclusion

We build a multilevel sampling method for Ising model following the traditional
approach incorporating autoregressive models.
We use a training strategy inspired by RG where fine level distributions are
initialised with coarser level trained models.
We find that the baseline method HAN model’s ESS declines as the lattice size
increases.
The autocorrelation for multilevel is roughly 200 times smaller than HAN.
VAN struggles to scale up, whereas HAN, although efficient in training, suffers
from decreased overall performance. Multilevel sampling addresses and
overcomes these issues.
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Thank You!
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