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Introduction to Multillevel Sampling

o State Space Decomposition:
o Let X denote the state space, which can be decomposed into multiple
levels or scales:

L
X = U Xy
k=1
where L is the number of scales, and X, represents the state space at the

k-th scale.
@ Multilevel Representation:
e Each state x € X can be represented hierarchically:

X = (Xlax27"'7XL)
where x;, € Xj. e.g. (x1) is coarse lattice and (x,) is the fine lattice.
o Probability Distribution:
o Assume the target distribution P(x) can be factorized hierarchically:
L
P(x) = P(x1) [ PGk | x1:6-1)
k=2
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Multilevel Monte Carlo Sampling

o Concept:
o Divide the problem into multiple hierarchical levels or scales.
e Sample at each level, using results from the previous level.
o Steps:
@ Coarse-Grained Level:

o Sample the coarsest lattice from the lowest dimensional distribution.
o Interactions depend on the marginalization process.

© Intermediate Levels:

o Refine sampling by focusing on higher scales, informed by coarse samples.
@ Incorporate intermediate details and interactions.

© Fine-Grained Level:
o Complete the sampling process by adding fine details.
@ Accurately capture target interactions at a detailed level.
o Benefits:

e Reduces computational burden by focusing on relevant scales.
o Enhances convergence and accuracy of Monte Carlo simulations.
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Monte Carlo multilevel approach: [K. Jansen,2020]

The target density: ¢(p|kf) = w o= [pr:a, 0 V2a, 0. 2d]
Multilevel proposal:

q(i kg, kiske) = q(orler, e kp)a(wilee ki)q(@e; ke)

Figure: Taken from [K. Jansen,2020][1]
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Traditional multilevel approach

o Sample the coarse variables (. from the distribution

P ~ q(pelke)
using Monte Carlo method from a distribution defined by the
Renormalised Hamiltonian at 2a.

e Sample the intermediate ¢; from ¢; ~ q(p;|k;, ¢.) from a renormilized
Hamiltonian at v/2a and and fine variables ¢ ~ q(¢y|ky, @i, pc) from
the target Hamiltonian using Heatbath method.

@ One we have ¢ = [p¢, @i, ¢c], do a Metropolish-Hasting:

p(e") a(e'™h)

(1) q(e?) )

Where, the new proposal at time t, ¢* = [0}, ¢}, ¢l

a= min(l,
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Multilevel: Traditional Approach for Ising Model

Low acceptance

The overlap between the target and the proposal distribution is very low and we get a
very low acceptance rate in the MH step [Schmidt, 1983], [Faraz, 1985].

Poor proposals

The RG approach is not exact and hence the action derived at different levels is not
the true action or the action of the true marginal distribution.

Observations:

@ Parameterize proposal distribution ¢(; ky, k;, k.): Optimizing parameters
(ki, k) does not provide a significant impact on acceptance rate.

@ The maximum acceptance rate from the proposal is less than 10% for 32 x 32.

@ The assumption of the same order of interactions at other scales is not true
anymore.
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Variational Autoregressive Networks (VAN)

Variational Autoregressive Networks (VAN) model the joint probability of a
lattice configuration ¢ using a product of conditional probabilities:

N
g0() = [ [ aolpileer, -+ 0i1)
i=1
Ising spins:
o (Sils<i) = 8i0s; 11+ (1 — 8;)0s; —1
where,
8; = 0(ge(s<i))

with gy autoregressive netwok such as the Pixel CNN.
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Autoregressive-based Multilevel: [K. Jansen,2020]

One block Multilevel proposal:
a(0;0) = a(esler, e; 0p)a(pilee; 0:)a(pe; )

Coarse Level: The coarse level distribution is modeled by a Variational
Autoregressive Network (VAN).

e ~ q(pc; 0c)

Interaction range

At the coarse level interactions range is not known, so a model cable of generating
long range interactions is suitable.

Training a VAN

The coarse distribution is quite low dimension; 2 x 2;4 x 4. Thus training is efficient
and faster.
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Autoregressive-based model:

Intermediate Level: The intermediate distribution is learned
represented by a conditional auto-regressive model.

i ~ q(pi; Pe, 05)

The interactions range is decide to be next nearest neighbour on the current sites.
This is fixed by choosing suitable kernel.
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Autoregressive-based model

Fine Level: The fine distribution sampled via Heatbath given the
coarse and intermediate spins: ¢; ~ q(¢¢; i, Pc)

Since the target distribution is local, hence given [¢;, .|, the Heatbath
sampling is more efficient to sample ¢ ¢ instead of the conditional
auto-regressive model.
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Multilevel Blocks

One Block
N x N — 2N x 2N
One block distribution: q(p;0) = q(wr|ws, @e; 07)a(@ilee: 0i)a(pe; Oc)

N XN —=2"N x 2"N

2n—1

q(;0) = q(pfle1ea,.. . pan—1;05) H q(pileoepr,....pi-1;0i)q(¢o; 00)
=1

Components

I) The coarse distribution is sampled via VAN II) All intermediate are
sampled conditional VAN and III) The final level by Heatbath.
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Objective Function

Training can be proceeded by minimizing the Kullback-Leibler (KL)
divergence as:

Dxwi(ge | p) = ) qo()In %(9) =B(F, — F)
atar 9= Swioa (55 =,

This is equivalent as minimizing the variational free energy:

Fy=> ao(e) [BH(@ +In qe(@)] (1)
7

We don’t train this multilevel model directly at fine level model. We start
from the coarse level and move block-wise to the fine level.
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Block wise Training procedure

Example: L, =2 x 2 — 64 x 64. We have to train 6 multilevel blocks.

e L, =2x2—=>4x4:
The first the coarse level is trained independently using VAN. Then train
C-VAN for intermediates (blue) and complete intermediates (red).

R —
coarse lattice
T

4 %UNUN

o L. =4 x4 — 8 x 8 While training the 2nd block we transfer the
weights from the last block. This gives a good starting point for the
training.

...continues until the last last block.
In the last block the fine distribution does not need initialization.
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Training ESS Curve

We train the model using both the standard method and block-wise weight
transfer, ensuring the same computational time for each.

Training ESS curve

10 Straight: trained for t=t_max
— Layer transfer: trained t=t max

0 5000 10000 15000 20000 25000 30000 35000 40000
epochs for Yello curve

We find that the block transfer method significantly reduces training time and
converges faster.
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Hierarchical Autoregressive Network (HAN)

HAN: (P. Bialasl, 2022)

000000080000000 #000800080000000 0
00000000000000000 €000000000000000 ® °
0000000000000000 00000000000

80000000
9000000080000000
#000000080000000 00080006000 6000800000008000
900000008 ;00000 00080008000
0000000 00080008000 $080808080808080
o (] 000000
6000000080000000 00090008000 8080808060008000
#000000080000000 ; 78000
#000000080000000 090008000 #000006000000060
900000008000000 0 [ e
#000000080000000 00000008000 (600K
#000000080000000 00010008000
9000000000000000 0ogeooce0ce 0

Figure 1: Example of hierarchical partitioning for L = 16. On the first level, the red boundary B(®) highlighted on
the left panel of the figure is generated with one neural network . At the second level of hierarchy, one neural
network of smaller size A} is used to consecutively fix four sets of boundaries shown in blue. The example of B is
highlighted in the middle panel. The surrounding spins 9B()® are shown in orange. At the third level of hierarchy,
one neural network of even smaller size AV is used to consecutively fix sixteen sets of boundary spins marked in
green. The example of B(2)15 is highlighted in green on the right panel. The remaining empty spins corresponding
to I¥ = B®* k= 1,...,64 have all the neighbours fixed and therefore can be generated from a local Boltzmann
distribution with the heatbath algorithm.

Figure: The Hierarchical Autoregressive Network (HAN) Approach.
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ESS: HAN vs Multilevel

The Importance weight: w = p(¢)/qo(¢);

ESS Comparison

_ 1exp(=BH()) e, T turlere
Estimator: w = 2 ) N ltilevel
Z eX /BH SOZ)) 0.6
N q9 ﬁ 0.4
ESS— — 1
Eq[’wQ(gp)] 0.0 ! . , ! ! . -
(Hackett, 2021; Vaitl, 2022) oo e

The ESS for HAN is significantly lower compared to the multilevel method
for 64 x 64 and 128 x 128.
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.
ESS (log-scale) : HAN vs Multilevel

ESS Comparison
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For the 128 x 128 grid, the ESS for HAN is three orders of magnitude lower
than that of the multilevel method

Ankur Singha (ML group, BIFOLD TU Berlin) ML meets LFT, Swansea University



S
Free Energy: HAN vs Multilevel

The Free Energy:
1

B

Free Energy Comparison
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ESS and Free Energy vs Sample size

Free energy vs Ensemble size ESS vs Ensemble size
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o The bias in Free Energy cannot be reduced even with up to half a million
samples.

o The ESS initially starts at similar values for both methods but decreases
for HAN as the sample size increases.
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Investigating the HAN bias: Forward ESS

We investigated the bias and low ESS for HAN by examining the ESS of both
Forward and Reverse estimators. ESS = W (Hackett, 2021; Vaitl, 2022)

HAN: Forward and Reverse ESS

Multilevel: Forward and Reverse ESS

- 1007 = == - T Reverse Ess
- I rorward ESS

Ess

1074 E Forward €SS
I ReverseEss T
20 40 60 80 100 120

The Forward ESS is zero for 128 x 128, indicating that the model samples do not
adequately represent the target distribution. This suggests a likelihood of effective

mode dropping in the model.
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Compatibility of F/R Free Energy: HAN vs Multilevel

. 1 N . 1 -
Fry = _EIOg(Zp)§FRv = —B IOg(Zq)

HAN: Forward and Reverse Free Energy 1e-5 Multilevel: Forward and Reverse Free Energy
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The Forward and Reverse Free Energy are consistent for the multilevel
approach, but this is not the case for HAN.
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Mode dropping estimator

: : e 11 exp (=BH(¢i))N
We define a mode dropping estimator: w = Z (% i ) ) Oicoli, 2023)
Mode droping estimator

T HAN
144 I multilevel
12
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From the mode dropping estimator it is clear that the HAN model smaller
effective support than the target.

= = = = Tyt

ur Singha (ML group, BIFOLD TU Berlin) ML meets LFT, Swansea University



N
Other Observables: HAN vs Multilevel
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Autocorrelation Comparison

Integrated autocorrelation time on magnetization
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The integrated autocorrelation time for multilevel is much lower then HAN
specially for larger lattices.
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Summary and Conclusion

@ We build a multilevel sampling method for Ising model following the traditional
approach incorporating autoregressive models.

@ We use a training strategy inspired by RG where fine level distributions are
initialised with coarser level trained models.

@ We find that the baseline method HAN model’s ESS declines as the lattice size
increases.

@ The autocorrelation for multilevel is roughly 200 times smaller than HAN.

@ VAN struggles to scale up, whereas HAN, although efficient in training, suffers
from decreased overall performance. Multilevel sampling addresses and
overcomes these issues.
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Thank You!
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