STOCHASTIC NORMALIZING FLOWS FOR NEW THEORIES AND OBSERVABLES

ELIA CELLINI

Based on:

M. Caselle, E.C., A. Nada, M. Panero

- JHEP 07 (2022) 015, arxiv:2201.08862
- M. Caselle, E.C., A. Nada
- JHEP 02 (2024) 048, arxiv:2307.01107
- arxiv:2408.XXXX

A. Bulgarelli, E.C., K. Jansen, S. Kühn, A. Nada, S. Nakajima, K.A. Nicoli, M. Panero

Arxiv:24XX.XXXX

24/07/24**ML meets LFT** Swansea

OUTLINE **1. NON-EQUILIBRIUM MCMC** 2. NORMALIZING FLOWS **3. STOCHASTIC NORMALIZING FLOWS 4. EFFECTIVE STRING THEORY 5. ENTANGLEMENT ENTROPY**

ML meets LFT

NON-EQUILIBRIUM MCMC

Elia Cellini UNITO/INFN

ML meets LFT

JARZYNSKI'S EQUALITY

General equality that relates **non-equilibrium experiments** and **equilibrium quantities**:

[Jarzynski; cond-mat/9610209]

 $\langle e$

We can prove (and exploit) this equality using as "physical" system a Markov Chain Monte Carlo (MCMC) algorithm!

Elia Cellini UNITO/INFN

ML meets LFT

NON-EQUILIBRIU

$$q_0 \simeq e^{-S_0} \xrightarrow{P_1} e^{-S_0} e^{-S_0} \xrightarrow{P_1} e^{-S_0}$$

$$\phi_0 \xrightarrow{P_1} \phi_1 \xrightarrow{P_2} e^{-S_0} e^$$

- **Thermalized** q₀ "**prior**" 1.
- 2. $P_i \propto \exp(-S_i)$ change along the processes and satisfy detailed balance.
- 3. $p = \exp(-S_N)/Z_N \rightarrow$ "target" distribution

<u>Remark</u>: no thermalization during the processes.

ML meets LFT

NON-EQUILIBRIUM MCMC

Forward probability density:

$$q_0(\phi_0) \prod_{n=0}^{N-1} P[\phi_i \to \phi_i]$$

<u>Reverse</u> probability density:

$$p(\phi_N) \prod_{n=0}^{N-1} P[\phi_{i+1} \rightarrow n=0]$$

$_{i+1}] = q_0(\phi_0)P_f[\phi_0, \dots, \phi_N]$

$\phi_i] = p(\phi_N) P_r[\phi_N, \dots, \phi_0]$

ML meets LFT

DISSIPATED WORK

Observe that:

$$\ln \frac{q_0(\phi_0) P_f[\phi_0, \dots, \phi_N]}{p(\phi_N) P_r[\phi_N, \dots, \phi_0]} = S_N(\phi_N) - S_0$$

(dimensionless) Work W

Where:

$$Q = \ln \frac{P_r[\phi_N, \dots, \phi_0]}{P_f[\phi_0, \dots, \phi_N]} = \sum_{n=0}^{N-1} \ln \frac{q_{n+1}}{q_n}$$

Detailed Balance

Elia Cellini UNITO/INFN

$(\phi_0) - Q - \Delta F = W(\phi_0, \dots, \phi_N) - \Delta F = W_d$

 $\frac{A_{n+1}(\phi_{n+1})}{A_{n+1}(\phi_n)} = \sum_{n=0}^{N-1} \left(S_{n+1}(\phi_{n+1}) - S_{n+1}(\phi_n) \right)$

CROOKS FLUCTUATION THEOREM

Thus:

 $\frac{q_0(\phi_0)P_f[\phi_0, \dots, \phi_N]}{p(\phi_N)P_r[\phi_N, \dots, \phi_0]} = \frac{\mathscr{P}_f(W_d)}{\mathscr{P}_r(-W_d)} = e^{W_d}$

Observe also:

$$1 = \int \prod_{i=0}^{N} d\phi_i q_0(\phi_0) P_f[\phi_0, \dots, \phi_N] \left(\frac{p(\phi_N) P_r[\phi_N, \dots, \phi_0]}{q_0(\phi_0) P_f[\phi_0, \dots, \phi_N]} \right) = \langle e^{-W_d} \rangle_f$$

Crooks Theorem

[Crooks; cond-mat/9901352]

Jarzynski's equality

[Jarzynski; cond-mat/9610209]

Non-Equilibrium Ensemble

Elia Cellini UNITO/INFN

JARZYNSKI'S EQUALITY $1 = \langle e^{-W_d} \rangle_f$

$\langle e^{-W} \rangle_f = e^{-\Delta F} \quad \Rightarrow \quad \langle \mathcal{O} \rangle_{\phi \sim p} = \langle \mathcal{O} e^{-W_d} \rangle_f$

Equilibrium Quantity

ML meets LFT

Jarzynksi's equality has been exploited to obtain state-of-the-arts results in LFT:

- Interface free energy. [Caselle+; 1604.05544]
- *SU*(3) e.o.s. [Caselle+; 1801.03110]
- Running coupling [Francesconi+; 2003.13734]
- Entanglement entropy [Bulgarelli and Panero; 2304.03311, 2404.01987]
- Topological freezing [Bonanno+; 2402.06561]

Equivalent to: **Annealed Importance Sampling**

[Neal; physics/9803008]

NE-MCMC FOR LFT

See talk by: Alessandro Nada

NUMERICAL PROBLEM

The identities derived before are exact, however, the **exponential average**:

can be highly inefficient when W_d is large and the statistic is finite. In order to fight this problem, we want W_d to be "small" **Solution 1)** Infinite MCMC steps \rightarrow quasi-static transformations \rightarrow "small" W_d **Solution 2)** use Machine Learning to minimize W_d

 $\langle e^{-W_d} \rangle_f$

ML meets LFT

NORMALIZING FLOWS

Elia Cellini UNITO/INFN

ML meets LFT

NORMALIZING FLOWS

A Normalizing Flow (<u>NF</u>) g_{θ} is a **parametric**, **invertible** and **differentiable** function: [Rezende+; 1505.05770]

$$g_{\theta}: q_0 \to q_{\theta} \simeq p \qquad \phi = g_{\theta}(z)$$

 $q_{\theta}(\phi) = q_0(g^{-1}(\phi)) |\det J_g|^{-1}$ (Z)

NFS: LEARNING BOLTZMANN DISTRIBUTIONS

NFs can be trained to $q_{\theta} \simeq p(\phi)$ with $p(\phi) = \exp(-S[\phi])/Z$ by minimizing the reverse <u>Kullback-Leibler</u> divergence:

[Albergo+; 1904.12072][Noé+; 1812.01729]

 $D_{KL}(q_{\theta} | | p) = \int d\phi q_{\theta}(\phi) \log \frac{q_{\theta}(\phi)}{p(\phi)} \ge 0.$

NFS: SAMPLING BOLTZMANN DISTRIBUTIONS

Sampling:

[Nicoli+; 1910.13496, 2007.07115]

 $\langle \mathcal{O} \rangle_{\phi \sim p} = \frac{1}{Z} \langle \mathcal{O} \tilde{w} \rangle_{\phi \sim q_{\theta}} \qquad Z = \langle \tilde{w} \rangle_{\phi \sim q_{\theta}}$

Alternative/equivalent to Jarzynksi's equality!

See talks by:

- Simran Singh
- Ryan Abbott
- Fernando Romero Lopez
- Mathis Gerdes

Elia Cellini UNITO/INFN

<u>Partition</u> functions and observables can be computed using a re-weighting procedure also called **Importance**

 $\tilde{w} = \frac{e^{-S[\phi]}}{q_{\theta}(\phi)}$

STOCHASTIC NORMALIZING FLOWS

STOCHASTIC NORMALIZING FLOWS

Stochastic Normalizing Flows (SNFs) combine NE-MCMC update and NF layers:

Where g_{θ}^{i} are NF layers and P_{i} are MCMC update

[Wu+; 2002.06707], [Caselle, E.C., Nada, Panero; 2201.08862]

 $\phi_0 \longrightarrow g^1_{\theta}(\phi_0) \xrightarrow{P_1} \phi_1 \longrightarrow g^2_{\theta}(\phi_1) \xrightarrow{P_2} \dots \xrightarrow{P_N} \phi_N = \phi$

STOCHASTIC NORMALIZING FLOWS

Forward and **Reverse** transition probabilities of NF layers can be written as:

$$P[\phi_n \to \phi_{n+1}] = \delta(\phi_{n+1} - g_{\theta}^n(\phi_n))$$

And satisfies:

$$q_n(\phi_n) P[\phi_n \to \phi_{n+1}]$$

$$\ln(P[\phi_{n+1} \to \phi_n]/P[\phi_n \to \phi_{n+1}])$$

[Wu+; 2002.06707],[Caselle, E.C., Nada, Panero; 2201.08862]

$$P[\phi_{n+1} \to \phi_n] = \delta(\phi_n - (g_\theta^n)^{-1}(\phi_{n+1})) = \delta(\phi_n - (g_\theta^n)^{-1}(\phi_{n+1})) = \delta(\phi_n - (g_\theta^n)) = \delta($$

 $= q_{n+1}(\phi_{n+1})P[\phi_{n+1} \to \phi_n]$

 $= \ln(q_n(\phi_n)/q_{n+1}(\phi_{n+1}))) = \ln|\det J_{g^n}(\phi_n)|$

SNFS: DISSIPATED WORK

We have now:

Where:

$$Q_{\theta} = \sum_{n=0}^{N-1} \left(S_{n+1}(\phi_{n+1}) - S_{n+1}(\phi_n) + \ln |\det J_{g_{\theta}^n}| \right)$$

$W_d^{\theta} = W_{\theta}(\phi_0, ..., \phi_N) - \Delta F = S_N(\phi_N) - S_0(\phi_0) - Q_{\theta} - \Delta F$

ML meets LFT

SNFS: TRAINING

We can now train a SNF by minimizing:

 $\mathscr{L}(\theta) = \langle W_d^{\theta} \rangle_f = D_{KL}(q_0 P_f | | pP_r) \ge 0$

Measure how reversible the process is.

$\langle W^{\theta} \rangle_f \ge \Delta F$ Second Law!

ML meets LFT

EFFECTIVE STRING THEORY

Elia Cellini UNITO/INFN

EFFECTIVE STRING THEORY

<u>Correlators of Polyakov</u> loops modelled in terms of string partition functions:

 $\langle P(0)P^{\dagger}(R)\rangle \sim$

The main choice for S_{EST} is the **<u>Nambu-Goto</u>** (NG) action:

 $S_{NG}[\phi]$

<u>Anomalous</u> at quantum level \rightarrow <u>effective</u>, large-distance description of Yang-Mills theories (low-energy</u> <u>universality theorem)</u>.

Works only up to order $1/R^5 \rightarrow$ first order approximation of a more general theory \rightarrow **Beyond Nambu-Goto** (BNG) [Aharony and Komargodski; 1302.6257], [Brandt and Meineri; 1603.06969], [Caselle; 2104.10486]

$$\int DX e^{-S_{EST}[X]} \equiv Z_{EST}$$

$$= \sigma \int d\xi^2 \sqrt{g}$$

NAMBU-GOTO STRING

Main method: **zeta-function regularization**

Main observables:

- **<u>Partition function</u>** \rightarrow directly associated with the <u>interquark potential</u>. Well known at all the order.
- **Correlation functions** (e.g. width σw^2) \rightarrow measure of the density of the chromoelectric flux tube

Analytical limits:

- Correlation functions
- <u>Higher order corrections (Beyond NG)</u>

nterquark potential. Well known at all the order. The of the density of the chromoelectric flux tube

LATTICE NAMBU-GOTO STRING $S_{NG}(\phi) = \sigma \sum_{x \in \Lambda} \left[\sqrt{1 + (\partial_{\mu} \phi(x))^2 / \sigma} - 1 \right]$ ML meets LFT Elia Cellini UNITO/INFN 24/07/24

- d = 2 + 1 target Yang-Mills
- σ string tension
- Λ : square lattice of size $L \times R$, a = 1

•
$$\phi(x) = \phi(\tau, \epsilon) \in \mathbb{R}$$

•
$$\phi(\tau + L, \epsilon) = \phi(\tau, \epsilon)$$

•
$$\phi(\tau,0) = \phi(\tau,R) = 0$$

•
$$\sigma w^2 = \langle \phi(\tau, R/2)^2 \rangle_{\tau}$$

[Caselle, <u>EC</u>, Nada; 2307.01107]

LACKS OF NUMERICAL METHODS

Numerical problems:

- Strong <u>non-linearity</u> \rightarrow <u>critical</u> theory (<u>Critical Slowing Down</u>)
- Estimation of **partition functions**

A PROOF-OF-PRINCIPLE

Using Continuous Normalizing Flows (CNFs), we proved that flow-based sampling can be successful applied to the NG EST. However, CNFs suffer from poor scaling in σ

 $-\log Z = -\frac{\pi L}{24 R} + \cdots$

Large σ region ($\sigma \geq 40$), Fitted coefficient: -0.1309(2), target: -0.1308996...

[Caselle, E.C., Nada; 2307.01107]

 $\sum_{II}^{(0)}$

 $A_{LT}^{(0)}R$

 $a_{LT}^{\left(0
ight)}(R)$ -

NG: PHYSICS-INFORMED SNF

In the $\sigma \rightarrow \infty$ region:

 $S_{NG}(\phi) \sim S_{FR}(\phi) + \dots$

Prior:

MCMC update *i*:

$$q_0(\phi_0) = \frac{1}{Z} e^{-S_{FB}(\phi_0)}$$

Design inspired by the $T\overline{T}$ integrable irrelevant perturbation.

[Cavaglià+; 1608.05534], [Smirnov and Zamolodchikov; 1608.05499], [Caselle, E.C., Nada; 2309.14983]

Elia Cellini UNITO/INFN

 $S_{FB}(\phi) = \frac{1}{2} \sum \left(\partial_{\mu} \phi(x) \right)^2$

 $S_i(\phi) = S_{NG}(\phi_i, \sigma_i);$ $\sigma_i > \sigma_{i+1}$

ML meets LFT

NG FREE ENERGY $R \gg L$

 $-\log Z = \sigma R$

Elia Cellini UNITO/INFN

$$2L\sqrt{1-\frac{\pi}{3\sigma L^2}}+\cdots$$

NG WIDTH $R \gg L$

$\sigma = 1/10$ Conjecture:

Fitted: -1.09(8), target: -1.047...

[Caselle, <u>EC</u>, Nada; 2309.14983][Caselle;1004.3875]

BEYOND NG: WIDTH $S_{EST}(\phi) = S_{NG}(\phi) + \kappa_2 \mathscr{K}^2(\phi)$ $\mathscr{K}^{2}(\phi) = \sum \mathscr{L}^{2}(\phi(\tau,\epsilon)) = \sum (\partial_{\tau}\partial_{\tau}\phi(\tau,\epsilon))^{2} + (\partial_{\epsilon}\partial_{\epsilon}\phi(\tau,\epsilon))^{2} + 2(\partial_{\tau}\partial_{\epsilon}\phi(\tau,\epsilon))^{2}$ $(\tau,\epsilon)\in\Lambda$ $(\tau,\epsilon) \in \Lambda$

 $\sigma = 100$

Elia Cellini UNITO/INFN

ML meets LFT

BEYOND NG: WIDTH $S_{EST}(\phi) = S_{NG}(\phi) + \kappa_4 \mathscr{K}^4(\phi)$ $\mathcal{K}^4(\phi) = \sum \left(\mathcal{L}^2(\phi(x)) \right)^2$ $x \in \Lambda$

ENTANGLEMENT ENTROPY

ENTANGLEMENT ENTROPY

entropic c-functions using the replica trick:

$$S_n = \frac{1}{1-n} \log \frac{Z_n}{Z^n}$$

$$C_n = \frac{l^{D-1}}{|\partial A|} \frac{\partial S_n}{\partial l} = \frac{l^{D-1}}{|\partial A|} \frac{1}{n-1} \log \frac{Z_n(l)}{Z_n(l+1)}$$

[Calabrese and Cardy; hep-th/0405152], [A. Bulgarelli and M. Panero; 2304.03311, 2404.01987]

Elia Cellini UNITO/INFN

A way to study the **<u>entanglement in quantum field theory</u>** is by studying the **<u>Rényi entropy</u>** and the

ML meets LFT

ENTROPIC C-FUNCTION

The entropic c-functions can be computed on the lattice using the Jazynski's equality:

<u>Protocol</u>: $Z_n(l) \rightarrow Z_n(l+1)$

[A. Bulgarelli and M. Panero; 2304.03311, 2404.01987]

Elia Cellini UNITO/INFN

Related work:

[Białas et al.; 2406.06193]

See talk by: Tomasz Stebel

DEFECT COUPLING LAYERS

The coupling layers (CLs) act locally only on a portion of the defect

Frozen Replica

Active Replica

- Environment (always frozen)
- Frozen (input to CL)
- Active (transformed by CL)

Patch used: 4×5 $(2 \times 3 \text{ for pure CNN NF})$

Related work: [Abbott et al.; 2404.11674]

SOME TECHNICAL DETAILS

We studied the entropic c-functions C_2 in the ϕ^4 scalar field theory with action:

$$S = -2k \sum_{\langle ij \rangle} \phi_i \phi_j + (1 - 2\lambda) \sum_i \phi_i^2 + \lambda \sum_i \phi_i^4$$

We generally worked at <u>criticality</u>: $\kappa = 0.2758297$, $\lambda = 0.03$ [Bosetti et al.; 1506.08587]

temperature)

<u>We trained the CLs only for L = 16 and l = 1, we then evaluate the model for different L and l</u> without any retraining!

In this presentation, we show results only for the D = 1 + 1 case with $V = T \times L = 8L \times L$ (zero

ESS VS CUT LENGTH

Elia Cellini UNITO/INFN

ESS VS VOLUME

$l = 4, \ \kappa = 0.2758297, \ T = 8L$ Θ Θ * * ⊖ ★ **⊖** ★ stochastic Φ SNF FCNN SNF CNN 4 NF FCNN (\mathbf{I}) Ŧ NF CNN 40 5060 L

ML meets LFT

Elia Cellini UNITO/INFN

SCALING TIMES

ML meets LFT

D = 2 + 1

OUTLOOK

- We outlined SNFs pointing out the connections with non-equilibrium thermodynamics 1. see talk by A. Nada on SNFs for SU(3)
- SNFs can be successful applied to study EST:
 - Beyond Nambu-Goto
 - EST with "fermions" 2.
 - Four dimensions and axions 3.
 - Others integrable models 4.
- SNFs can improve the study of entanglement entropy on the lattice
 - More complex theories
 - 2. Others defects (open boundary conditions, ...)

ML meets LFT

THANK YOU FOR YOUR ATTENTION!

Elia Cellini UNITO/INFN

SNFS: RELATED WORKS

- Annealed Importance Sampling: Equivalent to Jarzynski's equality. Used in the original SNF paper [Neal; physics/9803008]
- Sequential Monte Carlo: Generalization of AIS. [Dai+; 2007.11936]
- SNF idea reworked in CRAFT [Matthews+; 2201.13117]
- 2011 [Vaikuntanathan and Jazynski; 1101.2612]
- FAB: combination of NFs and AIS. [Midgley+; 2208.01893]
- Exact work for discretized Langevin dynamics. [Sivak+; 1107.2967]

An hybrid (deterministic/stochastic) approach with no neural networks has been proposed also by Jarzynksi in

IS THE NG FLUX TUBE SHAPE GAUSSIAN? U = 0 $U \neq 0$ 0.4

Elia Cellini UNITO/INFN

ML meets LFT

BEYOND NG: GAUSSIANITY

Elia Cellini UNITO/INFN

 $S_{NG} + \kappa_2 \mathcal{K}^2$

 $S_{NG} + \kappa_4 \mathscr{K}^4$

