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Motivation

o   further understanding learning: weight matrix dynamics

o   make connection with random matrix theory (RMT)

o   identify universal behaviour during and after training

o   describe universal dependence on and fundamental limitations for finite learning rate 

     and batch size in terms of RMT 
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Outline

o   some general comments on stochastic weight matrix updates

o   connection to Dyson Brownian motion and stochastic Coulomb gas

o   universal properties of stationary distribution

o   application in Restricted Boltzmann Machine (RBM)

o   summary and outlook
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Stochastic weight matrix dynamics

o   consider some          weight matrix

o   update (e.g. stochastic gradient descent):        with 

o   obtained from loss function  , learning rate

o   is estimated using a batch      with batch size       : 

o   fluctuations controlled by finite batch size (CLT):
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Stochastic weight matrix dynamics

o   stochastic update       becomes 

o   or in terms of the gradient of the loss function: 
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From rectangular to symmetric matrices

o         is                matrix: singular value decomposition:

o   singular values:    [take  without loss of generality] 

o   introduce symmetric semi-positive combination:

o   and focus on the singular/eigenvalues (invariant under left/right rotations on      ):

o   stochastic dynamics: 
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Initialisation: Marchenko-Pastur distribution

o   if initial weight matrix             then      follows Marchenko-Pastur distribution

✓  how to choose      : distribution should depend on    only, safe to take large .          limit

✓  spectrum is bounded for all     (relevant for RBMs below): 
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Stochastic matrix dynamics: Dyson Brownian 
motion and the stochastic Coulomb gas

o   framework to consider stochastic matrix dynamics for symmetric matrix 

o   Dyson Brownian motion (in continuous time for now, see below):

o   eigenvalues then evolve according to

         where
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Dyson Brownian motion, stochastic Coulomb gas

o   eigenvalues dynamics:

o   can be derived using 2nd order perturbation theory 

o   Coulomb term: eigenvalue repulsion [Wigner, Dyson 1959-1962, for nuclear spectra] 

o   Fokker-Planck equation (FPE) for distribution of eigenvalues:  
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Dyson Brownian motion, stochastic Coulomb gas

o   FPE:

o   stationary distribution:

o   with partition function: 

o   and provided drift can be derived from a potential

o   known as Coulomb gas, describes universal features of random matrices
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Back to weight matrix dynamics 

o   stochastic dynamics

o   what can be carried over from Dyson’s matrix dynamics? implications? universality?

o   eigenvalue equation:

o   make explicit learning rate and batch size dependence
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Back to weight matrix dynamics 

o   eigenvalue dynamics:

o   insert learning rate and batch size dependence:

o   no usual scaling of drift and noise with learning rate (Ito calculus:     ,       ): 

     no obvious continuous time limit (SDE)

o   known issue: from SGD to SDE [see e.g. Yaida, ArXiv:1810.00004] but is in fact blessing 

     (see below)
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Stationary distribution

o   distribution for fixed   : 

o   make explicit dependence on learning rate and batch size

o   if drift vanishes at                , expand potential

o   exponential is Gaussian with variance
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universal scaling with 
learning rate and batch size

model-dependent
factor



Linear scaling relation

o  dependence on      in training has been observed before, empirically

✓  P. Goyal, P. Dollár, R.B. Girshick, P. Noordhuis, L. Wesolowski, A. Kyrola et al., 

 Accurate, Large Minibatch SGD: Training ImageNet in 1 Hour [1706.02677]

✓  S.L. Smith and Q.V. Le, 

 A Bayesian Perspective on Generalization and Stochastic Gradient Descent [1710.06451]

✓  S.L. Smith, P. Kindermans and Q.V. Le, 

 Don’t Decay the Learning Rate, Increase the Batch Size [1711.00489]

o  finds a natural place in the framework of Dyson Brownian motion and Coulomb gas
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Applications and implications 

o   so far, the derivation is general: prediction of eigenvalue distribution after learning 

o   apply to actual ML models to observe universal features and support derivation

▪   teacher-student model

▪   Gaussian Restricted Boltzmann Machine
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building on previous analysis of RBM:
Chanju Park, Biagio Lucini, GA, Phys. Rev. D 109 (2024) 034521 [2309.15002 [hep-lat]]
current paper: Chanju Park, Biagio Lucini, GA, 2407.16427 [cond-mat.dis-nn] 

https://arxiv.org/abs/2309.15002
https://arxiv.org/abs/2407.16427


Restricted Boltzmann Machine: generative network

o   energy-based method

o   probability distribution

o   binary or continuous d.o.f.
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Scalar field RBM

o   distribution:

o              w.       weight matrix

o   induced distribution on visible layer

o    kernel

o    eigenvalues
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Scalar field RBM

o   weight matrix is updated using persistent contrastive divergence (PCD)

o   maximise likelihood/minimise KL divergence

o   target distribution has eigenvalues       , eigenvalues of         denoted as 

o   drift in instantaneous eigen-basis (see our previous paper):

o   fixed point of drift:   , spectrum learnt correctly    
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Scalar field RBM

o   implement for simple target distribution: scalar field in LFT in 1 dimension

o   spectrum is free dispersion relation:

o   each mode is doubly degenerate, except lowest and highest one

o   example for 10 modes

o   degenerate modes split for clarity  
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RBM evolution

weight matrix updates using 

persistent contrastive divergence 

with mini-batches

no sharp lines:

distributions around 

target spectrum
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RBM evolution and RMT universality

o   weight matrix updates using persistent contrastive divergence with mini-batches

o   no sharp lines, distributions around target spectrum

o   test predictions from RMT:

▪   induced Coulomb term and eigenvalue 

     repulsion (universal)

▪   potential from drift (non-universal)
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Universal RMT predictions

o   consider two degenerate modes only: Coulomb gas description

o   eigenvalues cannot both be equal to      due to Coulomb repulsion

o   two ways to detect this: Wigner surmise and Wigner semi-circle

o   Wigner surmise: distribution for level spacing

o   mean level spacing   
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Wigner surmise

o   distribution     for level spacing

o   mean level spacing   

o   Wigner surmise for           :    universal curve

▪   many RBM training runs, stochasticity due to mini-batches, collect histograms of

▪   vary learning rate and batch size [no ordering of eigenvalues by hand, induces bias!]   
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Wigner surmise: 4 degenerate pairs
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data collapse

universality



Wigner surmise: vary learning rate and batch size

o   prediction:

o   linear dependence on

o   mean level spacing 

o   fit function includes 

     non-universal parameters as well 25



Wigner semi-circle

o   spectral density:

o   for two modes:

o   broadened and flattened Gaussian

o   fit    parameter and position for each doubly degenerate mode  
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Wigner semi-circle

o   fit to semi-circle for two different      values with fixed learning rate and batch size

o   Binder cumulant                for semi-circle (vanishes for Gaussian)
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Wigner semi-circle and surmise
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semi-circle 
dependence on learning rate/batch size

consistency between surmise 
and semi-circle fits



Wigner surmise and semi-circle

✓  parameter      scales as:   

✓  stochasticity leads to universal features in trained models

✓  derived that learning rate and finite batch size appear as ratio

✓  previously observed as empirical linear scaling rule 

      Goyal et al, 1706.02677, S.L. Smith & Q.V. Le, 1710.06451, S.L. Smith, P. Kindermans & Q.V. Le, 1711.00489
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Eigenvalue repulsion
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• Coulomb interaction between all 
     eigenvalues

• learned eigenvalue/target

• repulsion for nonzero 
     learning rate/batch size

• no “perfect learning” unless 
     stochasticity vanishes

• overfitting, generalisation, …



Non-universal dynamics

o   distribution

o   RBM specific drift     determines potential

o   consider this for one mode only (drop the index)

o   stationary distribution
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Time-dependent dynamics

o   assume continuous time limit exists

o   analyse FPE for one mode:

o   solve using standard stochastic quantisation/FP methods:

o   evolution:

o   Fokker-Planck Hamiltonian:
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Quantum-mechanical bound state problem

o    eigenvalue problem:

o   explicit form:

      double well potential on interval  

33



Quantum-mechanical bound state problem

o      ground state exactly known:

o   width of solution depends on strength of the noise      : better description of target

34



Full time-dependent dynamics: learning

o   combine Coulomb repulsion and drift

o   from Marchenko-Pastur distribution

      to stochastic target distribution

o   10 modes, 4 doubly degenerate ones

o   dynamics of        described by FPE

o   effective description of learning dynamics in terms of eigenvalues
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Summary

o   stochastic weight matrix dynamics has universal features described by RMT

o   manifests in eigenvalue repulsion, quantified by Wigner surmise and semi-circle

o   fundamental limitation of learning for finite learning rate and batch size

o   stochasticity controlled by learning rate/batch size:  reduce ratio to improve

      agreement with target distribution, but stochasticity allows for generalisation
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Outlook

o   no obvious continuous time limit, i.e. learning rate → 0 does not yield SDE

o   advantageous since it gives handle on controlling stochasticity 

➢  alternative routes to continuous time

➢  extending analysis to neural networks, transformers, adaptive stepsize, etc

➢  next talk: Matteo on neural networks
37
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