

w.i.p. with Pim de Haan, Roberto Bondesan & Miranda Cheng

Continuous flows for SU(2)

Exploring general flow architectures for pure Yang-Mills

Mathis Gerdes — <u>m.gerdes@uva.nl</u> | Swansea ML meets LFT 2024

Lattice gauge theory

Wilson action

Change of variables

Transforming probability densities

Normalizing flows

Learning f

 \mathcal{N}

We want to **learn** a trivializing map f.

To compute model probability:

- f must be bijective.
- Computing the det-Jacobian must be tractable.

$$p(y) = p\left(f^{-1}(y)\right) \cdot \left|\det\frac{\partial f}{\partial x}\right|^{-1}$$

Continuous normalizing flows

Sample
$$\phi^0 \sim \mathcal{N}$$

Final proposal $\phi^{t=1}$

Solve
$$\frac{d}{dt}\phi = g_{\theta}(\phi, t)$$

- ODE always invertible, architecture of $g_{ heta}$ unconstrained!
- ODE for $p(\phi^t)$ given by divergence:

$$\frac{d}{dt}\log p(\phi) = -\nabla \cdot \dot{\phi}$$

Symmetries And the need for equivariant flows

If action is invariant under transformation $S(\phi) = S(g \cdot \phi)$

then $p(\phi) = p(g \cdot \phi)$, should be proposed equally likely.

$$f_{\theta}(g \cdot \phi) = g \cdot f_{\theta}(\phi)$$

Gauge symmetry

How objects transform

$$U_{\mu}(x) \mapsto \Omega(x) U_{\mu}(x) \Omega(x+\hat{\mu})^{\dagger}$$

$$\begin{split} & \underline{\text{Wilson loop}} \\ & P_{12} = U_1(x)U_2(x+\hat{1})U_1(x+\hat{2})^{\dagger}U_2(x)^{\dagger} \\ & \text{are equivariant } P_{12} \mapsto \Omega(x)P_{12}\Omega(x)^{\dagger}. \end{split}$$

<u>Trace of Wilson loops</u> $W = \operatorname{tr} P_{12}$ are **invariant**.

<u>Gradients of invariants</u> e.g. $V = \nabla_U W$ are **equivariant** $V \mapsto \Omega(x) V \Omega(x)^{\dagger}$

Discrete normalizing flows How to define gauge equivariant flows

Map $P_{\mu\nu} \mapsto P'_{\mu\nu} = f(P_{\mu\nu})$ to update edge in $P_{\mu\nu}$ conditioned on unmodified invariant quantities.

Get an equivariant flow, if map transform under conjugation: $f(\Omega P \Omega^{\dagger}) = \Omega f(P) \Omega^{\dagger}$

v:2008.05456

Sampling using SU(N) gauge equivariant flows

Denis Boyda,^{1,*} Gurtej Kanwar,^{1,†} Sébastien Racanière,^{2,‡} Danilo Jimenez Rezende,^{2,§} Michael S. Albergo,³ Kyle Cranmer,³ Daniel C. Hackett,¹ and Phiala E. Shanahan¹

arxiv:2305.02402

Normalizing flows for lattice gauge theory in arbitrary space-time dimension

Ryan Abbott,^{1,2} Michael S. Albergo,³ Aleksandar Botev,⁴ Denis Boyda,^{1,2} Kyle Cranmer,⁵ Daniel C. Hackett,^{1,2} Gurtej Kanwar,^{6,1,2} Alexander G.D.G. Matthews,⁴ Sébastien Racanière,⁴ Ali Razavi,⁴ Danilo J. Rezende,⁴ Fernando Romero-López,^{1,2} Phiala E. Shanahan,^{1,2} and Julian M. Urban¹,

Continuous flows for gauge theories

Lie groups A brief reminder

We can parametrize the vector space at U via the Lie algebra:

$$V \in T_U G \qquad A := V U^{\dagger} \in \mathfrak{g} = T_e G$$

$$V = AU$$

Transporting A to vector space at U

Lie algebra is spanned by generators T^a In components, $V = A^a T^a U$

Continuous flows for SU(N) Defining an ODE

In coordinates A^a , general vector at U is: $V = (T^a A^a)U$.

Path derivative
$$\partial^a f(U) = \frac{d}{ds} \bigg|_{s=0} f(e^{sT^a}U) = Df(T^aU).$$

Then, the gradient is $\nabla f(U) = \partial^a f(U) T^a U$.

To define our flow, the network should output an algebra element:

$$\frac{d}{dt}U = A^a(U)T^aU$$

Continuous flows for SU(N) Gradient flows

Define $A^a = \partial^a S$ as the gradient of some potential, given as sums and products of Wilson loops.

Learning Trivializing Gradient Flows for Lattice Gauge Theories

Simone Bacchio,¹ Pan Kessel,^{2,3} Stefan Schaefer,⁴ and Lorenz Vaitl²

Can we define a more general ML architecture?

Network Idea for construction

<u>Equivariant</u> vector field "Basis" vectors: Built to be gauge <u>equivariant</u> Superposition function: Built out of <u>invariant</u> quantities

$$A_{e}^{a}(U) = \sum_{k} \partial_{U_{e}}^{a} W^{(k)} \cdot S_{e}^{k}(W^{(1)}, W^{(2)}, ...)$$

- Spatial symmetries, need to be built into S.
- Divergence must not be too expensive.

Network

Idea for construction

$$A_{e}^{a}(U) = \sum_{k} \partial_{U_{e}}^{a} W^{(k)} \cdot S_{e}^{k}(W^{(1)}, W^{(2)}, ...)$$

$$S_e^k = C_{e,x}^{k,l} NN_x^l(\{W_x^{(m)}\})$$

Arbitrary (nonlinear) "local" ------neural network

(Equivariant) Convolution

Local "stack" of Wilson loops

Spatial symmetries

Work in progress

Rotation

Rotation/flip symmetries impose restriction on convolutional kernel, non-linear network, and Wilson loop inputs.

Divergence computation To track density change

$$A_e^a = \sum_k \partial_e^a W^{(k)} \cdot S_e^k(\{W\})$$

$$\partial_e^a A_e^a = \sum_k \partial_e^a \partial_e^a W^{(k)} \cdot S_e^k(\{W\}) + \partial_e^a W^{(k)} \cdot \partial_e^a S_e^k(\{W\})$$
$$\partial_e^a S_e^k = \sum_{l,x} C_{e,x}^{k,l} D(\mathbf{NN}_x^l)(\{\partial_e^a W_x^{(m)}\})$$

- Computational cost scales in how "local" stack is (not lattice size).
- Can be computed efficiently via JAX's forward differentiation.

Success for SU(2)

So far, so good...

Promising results after ~O(1h) training on a single GPU.

Technical challenges

- Implement integration schemes for SU(N) & real d.o.f. simultaneously.
- Computation of the laplacian (JAX's JVP/VJP magic helps).
- Book-keeping of loops and gradients.
- Implemented general adjoint sensitivity method.

We have a loss function $L: M \to \mathbb{R}$, so $dL_z \in T_z^*M$

Adjoint state:
$$a(t) = \psi^*_{T,t} dL_{z(T)}$$
 .

In words: maps $\delta z(t)$ to δL .

"Compute gradients by backintegrating"

$$\frac{da(t)}{dt} = -a(t)\frac{\partial f_{\theta}(z,t)}{\partial z} \qquad \qquad \frac{dL}{d\theta} = -\int_{T}^{0} a(t)\frac{\partial f(z,t)}{\partial \theta} dt$$

Takeaways

And open questions

- Success for SU(2). Still working on architecture (and optimization).
- Overcame technical hurdles, implementing everything in JAX.
 - Network can be modified without manual intervention.
 - How does it compare to dedicated libraries?
 - What are the training times of other methods?
- Many things to explore for network architectures. (e.g.: should be a strict superset of Lüscher's flow, could init there)