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Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4 )
Wilson loop trace

Wilson action S = − β
N ∑

x
Re [W(x)]

Want to sample U-configurations 
∼ e−S[U]



Transforming probability densities

Change of variables

distribution space

sample space

f
x y

p(y) = p (f −1(y)) ⋅ det ∂f
∂x

−1

Source point

Change of density



Learning   f
Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map  . f

To compute model probability: 

•    must be bijective. 

•  Computing the det-Jacobian must be tractable.

f
p(y) = p (f −1(y)) ⋅ det ∂f

∂x

−1



Continuous normalizing flows

• ODE always invertible, architecture of  unconstrained! 

• ODE for  given by divergence: 

gθ

p(ϕt)

Sample ϕ0 ∼ 𝒩
Solve  

d
dt

ϕ = gθ(ϕ, t)
Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ



And the need for equivariant flows

Symmetries

etc.fθ(g ⋅ ϕ) = g ⋅ fθ(ϕ)

If action is invariant under transformation S(ϕ) = S(g ⋅ ϕ)

then , should be proposed equally likely.p(ϕ) = p(g ⋅ ϕ)



Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop 
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops 
 are invariant.W = tr P12

Gradients of invariants 
e.g.  are equivariant V = ∇UW
V ↦ Ω(x)VΩ(x)†

are equivariant  .P12 ↦ Ω(x)P12Ω(x)†

How objects transform
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How to define gauge equivariant flows

Discrete normalizing flows

Map  to update edge in  conditioned 
on unmodified invariant quantities. 

Get an equivariant flow, if map transform under conjugation:

Pμν ↦ P′ μν = f(Pμν) Pμν

f(ΩPΩ†) = Ωf(P)Ω†
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Continuous flows for 
gauge theories



A brief reminder
Lie groups

V ∈ TUG

We can parametrize the vector space 
at  via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting  to 
vector space at 

A
U

Lie algebra is spanned by generators  
In components, 

Ta

V = AaTaU



To define our flow, the network should output an algebra element:

d
dt

U = Aa(U) TaU

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at  is: .Aa U V = (TaAa)U

Path derivative  .∂af(U) = d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU



Gradient flows

Continuous flows for SU(N)

Define  as the gradient of some potential,  
given as sums  and products of Wilson loops.

Aa = ∂aS

Can extend/do better by learning 
coefficients by gradient descent



Can we define a more 
general ML architecture?



Idea for construction

Network

∂a
Ue

W(k) Sk
e(W(1), W(2), …)

“Basis” vectors: 
Built to be gauge 
equivariant

Aa
e (U) =

Superposition function: 
Built out of invariant 
quantities

∑
k

⋅

• Spatial symmetries, need to be built into . 

• Divergence must not be too expensive.

S

Equivariant 
vector field



Idea for construction

Network

∂a
Ue

W(k) Sk
e(W(1), W(2), …)Aa

e (U) = ∑
k

⋅

Sk
e = Ck,l

e,x NNl
x({W(m)

x })

W(k)
x

Local “stack” of 
Wilson loops

Arbitrary (non-
linear) “local” 
neural network

(Equivariant) 
Convolution



Work in progress

Spatial symmetries

∂a
Ue

W(k) Sk
e(W(1), W(2), …)Aa

e (U) = ∑
k

⋅

Rotation/flip symmetries impose 
restriction on convolutional kernel, 
non-linear network, and Wilson loop inputs.

Rotation

∂(x,up)W(k)

∂(x,right)W(k)



To track density change

Divergence computation

Aa
e = ∑

k
∂a

eW(k) ⋅ Sk
e({W})

∂a
eAa

e = ∑
k

∂a
e∂a

eW(k) ⋅ Sk
e({W}) + ∂a

eW(k) ⋅ ∂a
eSk

e({W})

∂a
eSk

e = ∑
l,x

Ck,l
e,x D(NNl

x)({∂a
eW(m)

x })

• Computational cost scales in how “local” stack is (not lattice size). 

• Can be computed efficiently via JAX’s forward differentiation.



So far, so good…

Success for SU(2)

Promising results after ~O(1h) training on a single GPU.

Reference results 
From [2008.05456, Boyda et al]

> 10% point 
improvement



Technical challenges

• Implement integration schemes for SU(N) & real d.o.f. 
simultaneously. 

• Computation of the laplacian (JAX’s JVP/VJP magic helps). 

• Book-keeping of loops and gradients. 

• Implemented general adjoint sensitivity method.

For everything!



Technical challenges

Continuous flow 
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state:  .a(t) = ψ*T,t dLz(T)

In words: maps  to .δz(t) δL

da(t)
dt

= − a(t) ∂fθ(z, t)
∂z

dL
dθ

= − ∫
0

T
a(t) ∂f(z, t)

∂θ
dt

“Compute gradients by back-
integrating”

Adjoint sensitivity method



And open questions

Takeaways

• Success for SU(2). Still working on architecture (and optimization). 

• Overcame technical hurdles, implementing everything in JAX. 

• Network can be modified without manual intervention. 

• How does it compare to dedicated libraries? 

• What are the training times of other methods? 

• Many things to explore for network architectures. 
(e.g.: should be a strict superset of Lüscher’s flow, could init there)


