
Mathis Gerdes — m.gerdes@uva.nl | Swansea ML meets LFT 2024

Exploring general flow architectures for pure Yang-Mills

Continuous flows for SU(2)

w.i.p. with Pim de Haan,
Roberto Bondesan &

Miranda Cheng

mailto:m.gerdes@uva.nl

Wilson action

Lattice gauge theory

W = tr(U1U2U†
3 U†

4)
Wilson loop trace

Wilson action S = − β
N ∑

x
Re [W(x)]

Want to sample U-configurations
∼ e−S[U]

Transforming probability densities

Change of variables

distribution space

sample space

f
x y

p(y) = p (f −1(y)) ⋅ det ∂f
∂x

−1

Source point

Change of density

Learning f
Normalizing flows

bijection f

𝒩 e−S[ϕ]

“Normalizing flow”

trivial theory interacting theory

We want to learn a trivializing map . f

To compute model probability:

• must be bijective.

• Computing the det-Jacobian must be tractable.

f
p(y) = p (f −1(y)) ⋅ det ∂f

∂x

−1

Continuous normalizing flows

• ODE always invertible, architecture of unconstrained!

• ODE for given by divergence:

gθ

p(ϕt)

Sample ϕ0 ∼ 𝒩
Solve

d
dt

ϕ = gθ(ϕ, t)
Final proposal ϕt=1

d
dt

log p(ϕ) = − ∇ ⋅ ·ϕ

And the need for equivariant flows

Symmetries

etc.fθ(g ⋅ ϕ) = g ⋅ fθ(ϕ)

If action is invariant under transformation S(ϕ) = S(g ⋅ ϕ)

then , should be proposed equally likely.p(ϕ) = p(g ⋅ ϕ)

Gauge symmetry

Uμ(x) ↦ Ω(x) Uμ(x) Ω(x + ̂μ)† Wilson loop
 P12 = U1(x)U2(x + 1̂)U1(x + 2̂)†U2(x)†

Trace of Wilson loops
 are invariant.W = tr P12

Gradients of invariants
e.g. are equivariant V = ∇UW
V ↦ Ω(x)VΩ(x)†

are equivariant .P12 ↦ Ω(x)P12Ω(x)†

How objects transform

ar
xi

v:
20

08
.0

54
56

How to define gauge equivariant flows

Discrete normalizing flows

Map to update edge in conditioned
on unmodified invariant quantities.

Get an equivariant flow, if map transform under conjugation:

Pμν ↦ P′ μν = f(Pμν) Pμν

f(ΩPΩ†) = Ωf(P)Ω†

ar
xi

v:
23

05
.0

24
02

Continuous flows for
gauge theories

A brief reminder
Lie groups

V ∈ TUG

We can parametrize the vector space
at via the Lie algebra:U

A := VU† ∈ 𝔤 = TeG

V = AU

Transporting to
vector space at

A
U

Lie algebra is spanned by generators
In components,

Ta

V = AaTaU

To define our flow, the network should output an algebra element:

d
dt

U = Aa(U) TaU

Defining an ODE

Continuous flows for SU(N)

In coordinates , general vector at is: .Aa U V = (TaAa)U

Path derivative .∂af(U) = d
ds s=0

f(esTaU) = Df(TaU)

Then, the gradient is .∇f(U) = ∂af(U) TaU

Gradient flows

Continuous flows for SU(N)

Define as the gradient of some potential,
given as sums and products of Wilson loops.

Aa = ∂aS

Can extend/do better by learning
coefficients by gradient descent

Can we define a more
general ML architecture?

Idea for construction

Network

∂a
Ue

W(k) Sk
e(W(1), W(2), …)

“Basis” vectors:
Built to be gauge
equivariant

Aa
e (U) =

Superposition function:
Built out of invariant
quantities

∑
k

⋅

• Spatial symmetries, need to be built into .

• Divergence must not be too expensive.

S

Equivariant
vector field

Idea for construction

Network

∂a
Ue

W(k) Sk
e(W(1), W(2), …)Aa

e (U) = ∑
k

⋅

Sk
e = Ck,l

e,x NNl
x({W(m)

x })

W(k)
x

Local “stack” of
Wilson loops

Arbitrary (non-
linear) “local”
neural network

(Equivariant)
Convolution

Work in progress

Spatial symmetries

∂a
Ue

W(k) Sk
e(W(1), W(2), …)Aa

e (U) = ∑
k

⋅

Rotation/flip symmetries impose
restriction on convolutional kernel,
non-linear network, and Wilson loop inputs.

Rotation

∂(x,up)W(k)

∂(x,right)W(k)

To track density change

Divergence computation

Aa
e = ∑

k
∂a

eW(k) ⋅ Sk
e({W})

∂a
eAa

e = ∑
k

∂a
e∂a

eW(k) ⋅ Sk
e({W}) + ∂a

eW(k) ⋅ ∂a
eSk

e({W})

∂a
eSk

e = ∑
l,x

Ck,l
e,x D(NNl

x)({∂a
eW(m)

x })

• Computational cost scales in how “local” stack is (not lattice size).

• Can be computed efficiently via JAX’s forward differentiation.

So far, so good…

Success for SU(2)

Promising results after ~O(1h) training on a single GPU.

Reference results
From [2008.05456, Boyda et al]

> 10% point
improvement

Technical challenges

• Implement integration schemes for SU(N) & real d.o.f.
simultaneously.

• Computation of the laplacian (JAX’s JVP/VJP magic helps).

• Book-keeping of loops and gradients.

• Implemented general adjoint sensitivity method.

For everything!

Technical challenges

Continuous flow
ODE ·z = fθ(z, t)

We have a loss function , so L : M → ℝ dLz ∈ T*z M

Adjoint state: .a(t) = ψ*T,t dLz(T)

In words: maps to .δz(t) δL

da(t)
dt

= − a(t) ∂fθ(z, t)
∂z

dL
dθ

= − ∫
0

T
a(t) ∂f(z, t)

∂θ
dt

“Compute gradients by back-
integrating”

Adjoint sensitivity method

And open questions

Takeaways

• Success for SU(2). Still working on architecture (and optimization).

• Overcame technical hurdles, implementing everything in JAX.

• Network can be modified without manual intervention.

• How does it compare to dedicated libraries?

• What are the training times of other methods?

• Many things to explore for network architectures.
(e.g.: should be a strict superset of Lüscher’s flow, could init there)

