Progress in Normalizing Flows for 4d Gauge Theories

Ryan Abbott

MIT

July 25, 2024

Collaborators

UNIVERSITÄT BERN

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

D. Boyda

R. Abbott

S. Racanière

D. Rezende

A. Razavi

A. Botev

A. Matthews

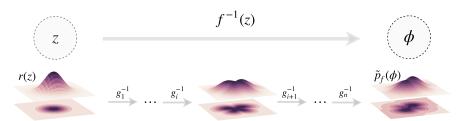
D. Hackett

ALBERT EINSTEIN CENTER FOR FUNDAMENTAL PHYSICS

DeepMind

M. Albergo

Normalizing flows



[Albergo et al., 1904.12072]

• Learned change of variables f maps density r(z)

$$q(\phi) = |\det J_f(f(\phi))|r(f(\phi))$$

- $r(z), f^{-1}(z), |\det J_f(z)|$ tractable $\implies q(\phi)$ tractable
- Given (known) target $p(\phi)$, train f so $q \approx p$
 - Can apply corrections for exact/unbiased sampling

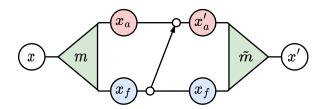
Normalizing flows & QCD

- Modern effort began w/ scalar fields [Albergo et al., 1904.12072]
- Required significant effort to get to QCD
 - Working with U(1) & SU(3), gauge symmetry, pseudofermions, ...
- Have tools for QCD [Abbott et al., 2208.03832]
- Outline today
 - More recent work on improving models
 - Scaling & Aurora (supercomputer)
 - Novel applications past accelerated sampling (Fernando)

Model improvements

Model improvements

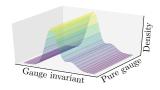
- Two main architectures: spectral & residual
 - See [Abbott et al, 2305.02402]
 - Both based on active/frozen split
- Many improvements to both
 - Diagonal features, learned active loops, initialization, . . .
 - General theme: more gauge equivariant information
 - \bullet E.g. convolutions \rightarrow parallel transport

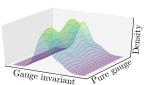


Gauge Symmetry and Sampling

_Gauge transformation

- Gauge symmetry $\implies p(\Omega \cdot U) = p(U)$
- Model gauge invariance: $q(\Omega \cdot U) = q(U)$
- Achieve with 2 conditions:
 - Prior gauge invariance: $r(\Omega \cdot U) = r(U)$
 - Gauge Equivariance: $f(\Omega \cdot U) = \Omega \cdot f(U)$





Spectral Flows

[Boyda et al., 2008.05456]

- ullet Transform "active loop" (e.g. untraced plaquette $P_{\mu
 u}$)
- Under gauge transformation $\Omega(x) \in SU(N)$

$$P_{\mu\nu}(x)$$

$$(\Omega \cdot P)_{\mu\nu}(x) = \Omega(x)P_{\mu\nu}(x)\Omega(x)^{\dagger}$$

ullet Given $h: \mathsf{SU}(N) o \mathsf{SU}(N)$, transform U_μ so $P_{\mu
u} \mapsto h(P_{\mu
u})$

$$f(U_{\mu}) = h(P_{\mu\nu})P^{\dagger}_{\mu\nu}U_{\mu}$$

• Gauge equivariance \iff conjugation equivariance:

$$h(\Omega P \Omega^{\dagger}) = \Omega h(P) \Omega^{\dagger}$$

Spectral Flows

Goal:
$$h(\Omega X \Omega^{\dagger}) = \Omega h(X) \Omega^{\dagger}$$

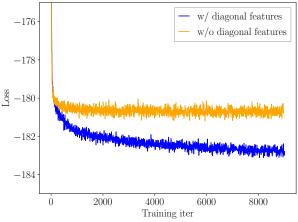
- Used for transforming active loop (plaquette, 2×1 loop, etc.)
- Conjugation invariant data ⇔ eigenvalues
- Diagonalize $P \in SU(N)$ via eigenbasis V:

$$P = V egin{pmatrix} e^{i heta_1} & & & & \ & \ddots & & \ & & e^{i heta_N} \end{pmatrix} V^\dagger \mapsto V egin{pmatrix} e^{i heta_1'} & & & & \ & \ddots & & \ & & e^{i heta_N'} \end{pmatrix} V^\dagger$$

- Define $h : SU(N) \to SU(N)$ by action on $\{\theta_1, \dots, \theta_N\}$
 - Need to be careful about order ⇒ choose canonical order
 - Note: θ_k not independent, $\prod_k e^{i\theta_k} = \det X = 1 \Rightarrow$ remove θ_N

Diagonal Features

- ullet Eigenvectors V contain gauge-invariant information
 - E.g. $\operatorname{diag}(V^{\dagger}WV)$, W = (frozen) Wilson loop
 - Use same canonical order as for eigenvalues

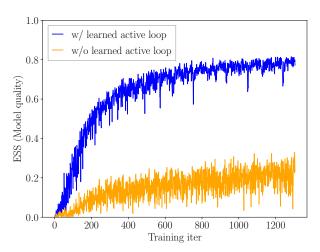


Learned active loops

- Usually use fixed active loop in each layer
 - E.g. plaquette, 2×1 loop
- Idea: use learned linear combination of possible loops
 - Constructed out of parallel transport + sitewise linear combinations
 - Similar to gauge-equivariant networks [Favoni et al., 2012.12901]
 - Project to SU(N) w/ polar projection $\mathcal{P}(M) = M(M^{\dagger}M)^{-1/2}$

Results

• Small test on 4^4 lattice, $\beta = 2$, 4d SU(3)



Scaling & Aurora

Comments on Scaling

- Reference: [Abbott et al., 2211.07541]
- Scaling depends strongly every aspect of the model
 - E.g. use of flow, architecture choices, training choices
 - Makes extrapolating beyond any particular choice difficult

Use of Flow

- Direct Sampling (Independence Metropolis)
- HMC on trivialized distribution [Lüscher 0907.5491]
- Generalize proposal distribution [Foreman et al., 2112.01582]
- Subdomain updates [Finkenrath, 2201.02216]
- Stochastic Normalizing Flows [Wu et al. 2002.0670]
- CRAFT [Matthews et al. 2201.13117]

Comments on Scaling

- Reference: [Abbott et al., 2211.07541]
- Scaling depends strongly every aspect of the model
 - E.g. use of flow, architecture choices, training choices
 - Makes extrapolating beyond any particular choice difficult

Architecture Choices

- Choice of coupling layers (spectral, residual, continuous)
- Choice of Neural networks (CNN, fully-connected, gauge-equivariant)
 - Gauge-equivariant networks [Favoni et al., 2012.12901]
- Choice of invariant context passed to networks
- Size of model (# layers, NN sizes)

Comments on Scaling

- Reference: [Abbott et al., 2211.07541]
- Scaling depends strongly every aspect of the model
 - E.g. use of flow, architecture choices, training choices
 - Makes extrapolating beyond any particular choice difficult

Training Choices

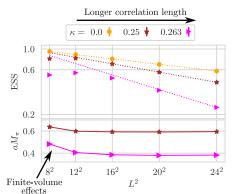
- Optimizer (Adam, SGD, higher-order optimizers)
- Choice of Loss (reverse/forward KL, MSE, ...)
- Computation of gradients (path gradients/control variates)
- Hyperparameter choices (batch size, learning rate)
 - Hyperparameter scheduling
- Volume chosen for training

Exponential Volume Scaling

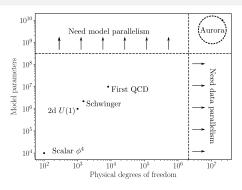
• For $L/\xi \gg 1$, $\xi =$ correlation length, volume transfer

$$ESS(V) = ESS(V_0)^{V/V_0}$$

- ullet Prevents direct sampling in thermodynamic limit $L/\xi o \infty$
 - ullet Does not apply to continuum limit $L/\xi\sim m_\pi L$ fixed, $\xi/a o\infty$
 - Typically $4 \lesssim m_\pi L \lesssim 10 \implies$ no in principle issue



Scaling On Aurora



- Aurora is an exascale machine at Argonne
- Significant software effort
 - Porting/checking code on Intel GPUs √
 - Distributing model + fields over multiple GPUs √
 - Note: training is very memory intensive
 - Model scaling to O(10,000) GPUs ongoing

Scaling on Aurora (continued)

- ullet Significantly larger models, $\sim 10^9 10^{10}$ parameters
 - Current models $\sim 10^6 \text{--}10^7$ parameters
- Target: dynamical QCD, moderate size lattices
- Note: scaling ML models is highly nonintuitive, context-dependent
 - See [Abbott et al., 2211.07541] for a full discussion

GPT-1 (117 million parameters) Lattice QCD is on and in the bag's not mine, "ben said. he was lying on the couch, ...

GPT 3.5 (\sim 175 billion parameters) Lattice QCD is a numerical approach used in theoretical physics to study the strong interaction between quarks and gluons, which are the fundamental constituents of protons, neutrons, and other hadrons.

Conclusions

- Many improvements for 4d SU(3) flows
 - E.g. diagonal features, learned active loops
- Upcoming/ongoing scaling on Aurora

Massachusetts Institute of Technology

Conclusions

- Many improvements for 4d SU(3) flows
 - E.g. diagonal features, learned active loops
- Upcoming/ongoing scaling on Aurora
- Thanks! Questions?

Massachusetts Institute of Technology

Backup

Unbiased sampling

ullet Independence Metropolis: accept $\phi o \phi' \sim q(\phi')$ with probability

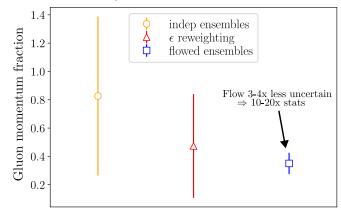
$$P_{\mathsf{accept}}(\phi o \phi') = \min\left(1, rac{p(\phi')}{p(\phi)} rac{q(\phi)}{q(\phi')}
ight)$$

- Hybrid methods
 - Alternate HMC/flow updates
 - HMC on trivialized distribution [Lüscher 0907.5491]
 - Subdomain updates [Finkenrath, 2201.02216]
 - CRAFT/Annealed Importance Sampling [Matthews et al. 2201.13117]
 - ...

Novel applications of flows

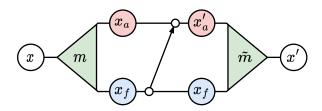
[Abbott et al., 2401.10874]

- If $f \approx$ identity (can force), then f(U) and U are correlated
 - \implies correlated differences, improved uncertainties
 - E.g. Feyman-Hellman, continuum limit
- Feynman-Hellman example:



SU(N)-Equivariant Flows

- Two types here
 - Spectral flows transform untraced plaquettes
 - Reference: [Boyda et al., 2008.05456]
 - Residual flows parametrized Wilson flow/stout smearing step
 - Reference: [Abbott et al., 2304.XXXXX] (to appear)
- Both based on active/frozen split



Residual Flows

- Inspired by Lüscher's trivializing map [Lüscher 0907.5491]
- Transform active links via
 Lie-algebra-valued derivative

$$U_{\mu}(x) \mapsto e^{i\epsilon \partial_{x,\mu} \phi(U)} U_{\mu}(x)$$

- Gauge-invariant "potential" $\phi(U)$
 - ullet Example: $\phi(U) \propto S_{\mathsf{Wilson}}(U) \implies \mathsf{Wilson} \ \mathsf{flow/stout} \ \mathsf{smearing}$
 - More complex:

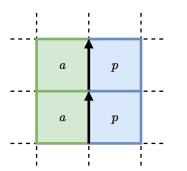
$$\phi(U) = \sum_{x} \sum_{\mu \neq \nu} c_{\mu\nu}(x; U_{\mathsf{frozen}}) \mathrm{Re} \, \mathsf{Tr}(P_{\mu\nu})$$

• Small but finite ϵ for invertibility ($\epsilon \lesssim 1/8$)

Spectral vs Residual Flows

Spectral flows

- Transform plaquettes
- Limited by passive plaquettes



Residual flows

- Update links
- Denser active mask
- Limited by step size
- Harder to invert
 - Require fixed-point iteration

Continuous Flows

[Bacchio et al. 2212.08469]

- Continuous time
- Unmasked
- Requires ODE integration

Fermions

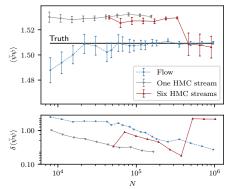
Fermion target:

$$p(U) \propto e^{-S_G[U]} \det M[U]$$

Methods:

- Compute det *M* directly
 - Simple, but not scalable
- Estimate det M
 - E.g. pseudofermions

Schwinger model at criticality



[Albergo et al. 2202.11712]

Autoregressive Pseudofermion modeling

Target Distributions:

• Marginal:

$$p_m(U) = e^{-S_G(U)} \det M[U]$$

Conditional:

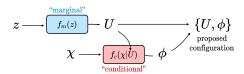
$$p_c(\phi \mid U) \propto \frac{1}{\det M[U]} e^{-\phi^{\dagger} M^{-1} \phi}$$

Joint:

$$p_{\text{joint}}(U, \phi) = p_{\text{c}}(\phi \mid U)p_{m}(U)$$

= $e^{-S_{G}(U) - \phi^{\dagger} M^{-1}\phi}$

Models:



Prior:

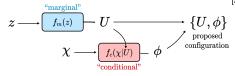
- ullet Gauge $z\sim$ Haar, heatbath, ...
- Pseudofermion $\chi \sim e^{-\chi^{\dagger}\chi}$

[Albergo et al., 2106.05934] [Abbott et al., 2207.0945]



Conditional Model (2 Flavor Theory)

[Albergo et al., 2106.05934] [Abbott et al., arxiv:2207.0945]



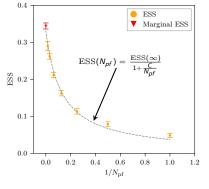
- Prior $\chi \sim e^{-\chi^{\dagger}\chi}$
- Target $\phi \sim \frac{1}{\det(DD^{\dagger})} e^{-\phi^{\dagger}(DD^{\dagger})^{-1}\phi}$
- Optimal model: $\phi = f_c(\chi \mid U) = D[U]\chi$
 - But $\det J = \det DD^{\dagger}$ not tractable
- Estimate optimal model with tractable (gauge-equivariant) layers

$$\phi_{a}(x) \mapsto A[U](x)\phi_{a}(x) + B[U](x,y)\phi_{f}(y)$$
$$\phi_{f}(x) \mapsto \phi_{f}(x)$$

• A[U], B[U]: (learned) linear operators

Improving Pseudofermion Models

- More pseudofermion draws
 - Improve for fixed model

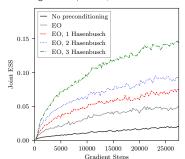


(ESS \sim acceptance rate)

- Even/Odd preconditioning
- Hasenbusch factorization

$$\det(M) = \frac{\det(M)}{\det(M+\mu)}\det(M+\mu)$$

Schwinger Model eta= 2.0, $\kappa=$ 0.265 L= 8



Training Marginal Models

Stochastic derivative estimate:

$$\begin{split} \nabla \log \det M &= \operatorname{Tr} \nabla \log M \\ &= \operatorname{Tr} \left[M^{-1} \nabla M \right] \\ &= \mathbb{E}_{\chi \sim e^{-\chi^{\dagger} \chi}} \left[\chi^{\dagger} M^{-1} \nabla M \chi \right] \end{split}$$

- Requires 1 inversion/sample $\chi^{\dagger} M^{-1}$
- Does not give access to density

Unbiased sampling

• Define reweighting factors $w(\phi)$:

$$w(\phi) = \frac{p(\phi)}{q(\phi)}$$

Reweighting/Importance Sampling:

$$\int \mathrm{d}\phi \, p(\phi) \mathcal{O}(\phi) = \int \mathrm{d}\phi \, w(\phi) \tilde{p}_f(\phi) \mathcal{O}(\phi) \approx \frac{1}{N} \sum_{\phi \sim q(\phi)} w(\phi) \mathcal{O}(\phi)$$

• Metropolis Hastings: accept $\phi \to \phi'$ with probability

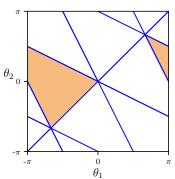
$$\min\left(1, \frac{w(\phi')}{w(\phi)}\right)$$

Spectral Flows (continued)

Goal: Permutation equivariant flow

- Perform *maximal torus flow* on $\{\theta_i\}$
- Choose (arbitrary) canonical cell
- Use order of eigenvalues
 - ullet Canonicalization \sim sorting
- In canonical cell: use standard methods
 - e.g. rational quadratic spline

SU(3) example:



Parallel Transport Convolution Networks

Normal Convolution:

$$\phi(x)\mapsto \sum_{\delta}c_{\delta}\phi(x+\delta)$$

Parallel transport convolution:

$$PTCL[\phi](x) = \sum_{s} c_{\delta}W(x, x + \delta)\phi(x + \delta)$$

$$\phi_{a}(x) \mapsto A[U](x)\phi_{a}(x) + B[U](x,y)\phi_{f}(y)$$
$$\phi_{f}(x) \mapsto \phi_{f}(x)$$

$$B[U](x, y)\phi_f(y) = PTCL[PTCL[...PTCL[\phi]]]$$

Wilson line

Example: Scalar Field Theory

- Fields $\phi(x) \in \mathbb{R}$, target $p(\phi) \propto e^{-S(\phi)}$
- Split $z \to z_a, z_f$ active/frozen
 - Typically: even/odd checkerboard

$$\phi_f = z_f$$

$$\phi_a = e^{s(z_f)} \odot z_a + t(z_f)$$
Arbitrary
functions

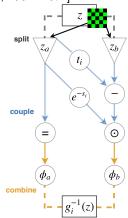
Inverse:

$$z_f = \phi_f$$

$$z_a = e^{-s(\phi_f)} \odot (\phi_a - t(\phi_f))$$

- Tractable Jacobian: det $J = \prod_i e^{s(\phi_f)_i}$
- Compose alternating transforms $(\phi_a, \phi_f) \leftrightarrow (\phi_f, \phi_a)$

[Dinh et al, 1605.08803] [Albergo et al., 1904.12072]



Reverse KL Training

- Model density $q(\phi)$, target $p(\phi) = \frac{1}{7}e^{-S(\phi)}$
- Reverse Kullback Leibler (KL) loss £:

$$\mathcal{L} = D_{\mathcal{KL}}(q||p)$$

$$= \int \mathrm{d}\phi \, q(\phi) \log \frac{q(\phi)}{p(\phi)}$$

$$= \mathbb{E}_{\phi \sim q} \left[\log q(\phi) + S(\phi) \right] + \log Z$$

$$Constant$$

$$(\Rightarrow \mathsf{can ignore})$$

Key facts