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Normalizing Flows

Normalizing flows
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Learned change of variables f maps density r(z)

q(ϕ) = | det Jf (f (ϕ))|r(f (ϕ))

r(z), f −1(z), | det Jf (z)| tractable =⇒ q(ϕ) tractable

Given (known) target p(ϕ), train f so q ≈ p

Can apply corrections for exact/unbiased sampling
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[Albergo et al., 1904.12072]

https://arxiv.org/abs/1904.12072


Normalizing Flows

Normalizing flows & QCD

Modern effort began w/ scalar fields [Albergo et al., 1904.12072]

Required significant effort to get to QCD

Working with U(1) & SU(3), gauge symmetry, pseudofermions, . . .

Have tools for QCD [Abbott et al., 2208.03832]

Outline today

More recent work on improving models
Scaling & Aurora (supercomputer)
Novel applications past accelerated sampling (Fernando)
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https://arxiv.org/abs/1904.12072
https://arxiv.org/abs/2208.03832


Model improvements

Model improvements
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Model improvements

Model improvements

Two main architectures: spectral & residual

See [Abbott et al, 2305.02402]
Both based on active/frozen split

Many improvements to both

Diagonal features, learned active loops, initialization, . . .
General theme: more gauge equivariant information

E.g. convolutions → parallel transport
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https://arxiv.org/abs/2305.02402


Model improvements

Gauge Symmetry and Sampling

Gauge symmetry =⇒ p(Ω · U) = p(U)

Model gauge invariance: q(Ω · U) = q(U)

Achieve with 2 conditions:

Prior gauge invariance: r(Ω · U) = r(U)
Gauge Equivariance: f (Ω · U) = Ω · f (U)
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Gauge transformation



Model improvements

Spectral Flows

Transform “active loop” (e.g. untraced plaquette Pµν)

Under gauge transformation Ω(x) ∈ SU(N)

(Ω · P)µν(x) = Ω(x)Pµν(x)Ω(x)
† Pµν(x)

Given h : SU(N) → SU(N), transform Uµ so Pµν 7→ h(Pµν)

f (Uµ) = h(Pµν)P
†
µνUµ

Gauge equivariance ⇐⇒ conjugation equivariance:

h(ΩPΩ†) = Ωh(P)Ω†
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[Boyda et al., 2008.05456]

https://arxiv.org/abs/2008.05456


Model improvements

Spectral Flows

Goal: h(ΩXΩ†) = Ωh(X )Ω†

Used for transforming active loop (plaquette, 2× 1 loop, etc.)

Conjugation invariant data ⇔ eigenvalues

Diagonalize P ∈ SU(N) via eigenbasis V :

P = V

e iθ1

. . .

e iθN

V † 7→ V

e iθ
′
1

. . .

e iθ
′
N

V †

Define h : SU(N) → SU(N) by action on {θ1, . . . , θN}
Need to be careful about order ⇒ choose canonical order
Note: θk not independent,

∏
k e

iθk = detX = 1 ⇒ remove θN
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Model improvements

Diagonal Features

Eigenvectors V contain gauge-invariant information
E.g. diag(V †WV ), W = (frozen) Wilson loop
Use same canonical order as for eigenvalues
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Model improvements

Learned active loops

Usually use fixed active loop in each layer

E.g. plaquette, 2× 1 loop

Idea: use learned linear combination of possible loops

Constructed out of parallel transport + sitewise linear combinations
Similar to gauge-equivariant networks [Favoni et al., 2012.12901]
Project to SU(N) w/ polar projection P(M) = M(M†M)−1/2

Ryan Abbott (MIT) Progress in Normalizing Flows July 25, 2024 11 / 18

https://arxiv.org/abs/2012.12901


Model improvements

Results

Small test on 44 lattice, β = 2, 4d SU(3)
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Scaling & Aurora

Scaling & Aurora

Ryan Abbott (MIT) Progress in Normalizing Flows July 25, 2024 13 / 18



Scaling & Aurora

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Use of Flow

Direct Sampling (Independence Metropolis)

HMC on trivialized distribution [Lüscher 0907.5491]

Generalize proposal distribution [Foreman et al., 2112.01582]

Subdomain updates [Finkenrath, 2201.02216]

Stochastic Normalizing Flows [Wu et al. 2002.0670]

CRAFT [Matthews et al. 2201.13117]
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https://arxiv.org/abs/2211.07541
https://arxiv.org/abs/0907.5491
https://arxiv.org/abs/2112.01582
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2002.06707
https://arxiv.org/abs/2201.13117


Scaling & Aurora

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Architecture Choices

Choice of coupling layers (spectral, residual, continuous)

Choice of Neural networks (CNN, fully-connected, gauge-equivariant)

Gauge-equivariant networks [Favoni et al., 2012.12901]

Choice of invariant context passed to networks

Size of model (# layers, NN sizes)

Ryan Abbott (MIT) Progress in Normalizing Flows July 25, 2024 14 / 18
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Scaling & Aurora

Comments on Scaling

Reference: [Abbott et al., 2211.07541]

Scaling depends strongly every aspect of the model

E.g. use of flow, architecture choices, training choices
Makes extrapolating beyond any particular choice difficult

Training Choices

Optimizer (Adam, SGD, higher-order optimizers)

Choice of Loss (reverse/forward KL, MSE, ...)

Computation of gradients (path gradients/control variates)

Hyperparameter choices (batch size, learning rate)

Hyperparameter scheduling

Volume chosen for training
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https://arxiv.org/abs/2211.07541


Scaling & Aurora

Exponential Volume Scaling

For L/ξ ≫ 1, ξ = correlation length, volume transfer

ESS(V ) = ESS(V0)
V /V0

Prevents direct sampling in thermodynamic limit L/ξ → ∞
Does not apply to continuum limit L/ξ ∼ mπL fixed, ξ/a → ∞
Typically 4 ≲ mπL ≲ 10 =⇒ no in principle issue
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Scaling & Aurora

Scaling On Aurora

Aurora is an exascale machine at Argonne

Significant software effort

Porting/checking code on Intel GPUs ✓
Distributing model + fields over multiple GPUs ✓

Note: training is very memory intensive

Model scaling to O(10, 000) GPUs – ongoing
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Scaling & Aurora

Scaling on Aurora (continued)

Significantly larger models, ∼ 109–1010 parameters

Current models ∼ 106–107 parameters

Target: dynamical QCD, moderate size lattices

Note: scaling ML models is highly nonintuitive, context-dependent

See [Abbott et al., 2211.07541] for a full discussion

GPT-1 (117 million parameters)
Lattice QCD is on and in the bag’s
not mine, ”ben said. he was lying on
the couch, . . .

GPT 3.5 (∼ 175 billion parameters)
Lattice QCD is a numerical
approach used in theoretical physics
to study the strong interaction
between quarks and gluons, which
are the fundamental constituents of
protons, neutrons, and other hadrons.
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https://arxiv.org/abs/2211.07541


Scaling & Aurora

Conclusions

Many improvements for 4d SU(3) flows

E.g. diagonal features, learned active loops

Upcoming/ongoing scaling on Aurora

Thanks! Questions?
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Backup

Backup
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Backup

Unbiased sampling

Independence Metropolis: accept ϕ → ϕ′ ∼ q(ϕ′) with probability

Paccept(ϕ → ϕ′) = min

(
1,

p(ϕ′)
p(ϕ)

q(ϕ)

q(ϕ′)

)
Hybrid methods

Alternate HMC/flow updates
HMC on trivialized distribution [Lüscher 0907.5491]
Subdomain updates [Finkenrath, 2201.02216]
CRAFT/Annealed Importance Sampling [Matthews et al. 2201.13117]
. . .
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https://arxiv.org/abs/0907.5491
https://arxiv.org/abs/2201.02216
https://arxiv.org/abs/2201.13117


Backup

Novel applications of flows

If f ≈ identity (can force), then f (U) and U are correlated
=⇒ correlated differences, improved uncertainties
E.g. Feyman-Hellman, continuum limit

Feynman-Hellman example:
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[Abbott et al., 2401.10874]

https://arxiv.org/abs/2401.10874


Gauge-Equivariant Flows

SU(N)-Equivariant Flows

Two types here
Spectral flows - transform untraced plaquettes

Reference: [Boyda et al., 2008.05456]

Residual flows - parametrized Wilson flow/stout smearing step

Reference: [Abbott et al., 2304.XXXXX] (to appear)

Both based on active/frozen split
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Gauge-Equivariant Flows

Residual Flows

Inspired by Lüscher’s trivializing map [Lüscher 0907.5491]

Transform active links via

Uµ(x) 7→ e iϵ∂x,µϕ(U)Uµ(x)

Gauge-invariant “potential” ϕ(U)

Example: ϕ(U) ∝ SWilson(U) =⇒ Wilson flow/stout smearing
More complex:

ϕ(U) =
∑
x

∑
µ̸=ν

cµν(x ;Ufrozen)ReTr(Pµν)

Small but finite ϵ for invertibility (ϵ ≲ 1/8)
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Lie-algebra-valued derivative

https://arxiv.org/abs/0907.5491


Gauge-Equivariant Flows

Spectral vs Residual Flows

Spectral flows

Transform plaquettes

Limited by passive plaquettes

Residual flows

Update links

Denser active mask

Limited by step size

Harder to invert

Require fixed-point iteration

Continuous Flows
[Bacchio et al. 2212.08469]

Continuous time

Unmasked

Requires ODE integration
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https://arxiv.org/abs/2212.08469


Pseudofermion Models

Fermions

Fermion target:

p(U) ∝ e−SG [U] detM[U]

Methods:

Compute detM directly

Simple, but not scalable

Estimate detM

E.g. pseudofermions

Schwinger model at criticality
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Truth

[Albergo et al. 2202.11712]

https://arxiv.org/abs/2202.11712


Pseudofermion Models

Autoregressive Pseudofermion modeling

Target Distributions:

Marginal:

pm(U) = e−SG (U) detM[U]

Conditional:

pc(ϕ | U) ∝ 1

detM[U]
e−ϕ†M−1ϕ

Joint:

pjoint(U, ϕ) = pc(ϕ | U)pm(U)

= e−SG (U)−ϕ†M−1ϕ

Models:

Prior:

Gauge z ∼ Haar, heatbath, ...

Pseudofermion χ ∼ e−χ†χ
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[Albergo et al., 2106.05934]

[Abbott et al., 2207.0945]

https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2207.0945


Pseudofermion Models

Conditional Model (2 Flavor Theory)

Prior χ ∼ e−χ†χ

Target ϕ ∼ 1
det(DD†)

e−ϕ†(DD†)−1ϕ

Optimal model: ϕ = fc(χ | U) = D[U]χ
But det J = detDD† not tractable

Estimate optimal model with tractable (gauge-equivariant) layers

ϕa(x) 7→ A[U](x)ϕa(x) + B[U](x , y)ϕf (y)

ϕf (x) 7→ ϕf (x)

A[U],B[U]: (learned) linear operators
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[Albergo et al., 2106.05934]

[Abbott et al., arxiv:2207.0945]

https://arxiv.org/abs/2106.05934
https://arxiv.org/abs/2207.0945


Pseudofermion Models

Improving Pseudofermion Models

More pseudofermion draws

Improve for fixed model
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Pseudofermion Models

Training Marginal Models

Stochastic derivative estimate:

∇ log detM = Tr∇ logM

= Tr
[
M−1∇M

]
= E

χ∼e−χ†χ

[
χ†M−1∇Mχ

]
Requires 1 inversion/sample χ†M−1

Does not give access to density
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Pseudofermion Models

Unbiased sampling

Define reweighting factors w(ϕ):

w(ϕ) =
p(ϕ)

q(ϕ)

Reweighting/Importance Sampling:∫
dϕ p(ϕ)O(ϕ) =

∫
dϕw(ϕ)p̃f (ϕ)O(ϕ) ≈ 1

N

∑
ϕ∼q(ϕ)

w(ϕ)O(ϕ)

Metropolis Hastings: accept ϕ → ϕ′ with probability

min

(
1,

w(ϕ′)
w(ϕ)

)
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Pseudofermion Models

Spectral Flows (continued)

Goal: Permutation equivariant flow

Perform maximal torus flow on {θi}
Choose (arbitrary) canonical cell

Use order of eigenvalues

Canonicalization ∼ sorting

In canonical cell: use standard methods

e.g. rational quadratic spline

SU(3) example:

-π 0 π

θ1

-π

0

π

θ2
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Pseudofermion Models

Parallel Transport Convolution Networks

Normal Convolution:
ϕ(x) 7→

∑
δ

cδϕ(x + δ)

Parallel transport convolution:

PTCL[ϕ](x) =
∑
δ

cδW (x , x + δ)ϕ(x + δ)

ϕa(x) 7→ A[U](x)ϕa(x) + B[U](x , y)ϕf (y)

ϕf (x) 7→ ϕf (x)

B[U](x , y)ϕf (y) = PTCL[PTCL[. . .PTCL[ϕ]]]
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Pseudofermion Models

Example: Scalar Field Theory

Fields ϕ(x) ∈ R, target p(ϕ) ∝ e−S(ϕ)

Split z → za, zf active/frozen

Typically: even/odd checkerboard

ϕf = zf

ϕa = es(zf ) ⊙ za + t(zf )

Inverse:

zf = ϕf

za = e−s(ϕf ) ⊙ (ϕa − t(ϕf ))

Tractable Jacobian: det J =
∏

i e
s(ϕf )i

z

za

=

ϕa

zb

split

ti

e
−si −

⊙

ϕb

couple

combine

(z)g
−1

i

Compose alternating transforms (ϕa, ϕf ) ↔ (ϕf , ϕa)

Ryan Abbott (MIT) Progress in Normalizing Flows July 25, 2024 15 / 16

[Dinh et al, 1605.08803] [Albergo et

al., 1904.12072]

Arbitrary
functions

https://arxiv.org/abs/1605.08803
https://arxiv.org/abs/1904.12072


Pseudofermion Models

Reverse KL Training

Model density q(ϕ), target p(ϕ) = 1
Z e

−S(ϕ)

Reverse Kullback Leibler (KL) loss L:

L = DKL(q||p)

=

∫
dϕ q(ϕ) log

q(ϕ)

p(ϕ)

= Eϕ∼q [log q(ϕ) + S(ϕ)] + logZ
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Model samples

Constant
(⇒ can ignore)

Key facts

DKL(q||p) ≥ 0
DKL(q||p) = 0 ⇔ q = p
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