
Testing machine learning against finite size
scaling using MAFs

Simran Singh
University of Bielefeld

work done as part of A01 project in CRC Tr-211
between Bielefeld (F. Karsch, C. Schmidt & S.
Singh) and Frankfurt (O. Phillipsen, R. Kaiser,

J.P. Klinger)

ML meets LFT @ Swansea University
July 24-26, 2024

I. Motivation - Nature of the chiral transition

II. Nf = 5 project using MAFs and HISQ (old)

III. MADE and MAF

IV. (new) Nf = 5 using Stout smeared data

V. Results on density estimation

VI. Future directions

Outline

2

 and the chiral transitionNf

• Nature of the QCD chiral phase transition is (strictly speaking) inconclusive

• Cannot simulate on lattice - can only extrapolate from finite mass
simulations

• Proposal for studying the critical surface that separates first-order regions from
crossover as function of degenerate quarks by [F. Cuteri et.al., JHEP 11 (2021)]

• Using the argument that the surface terminates in a tri-critical line, conclusions for
the order of the chiral transition can be drawn.

mf = 0

Nf

[F. Cuteri et.al.,
JHEP 11 (2021)]

3

(a) First-order scenario for Nf “ 2, mu,d “ 0. (b) Second-order scenario for Nf “ 2, mu,d “ 0.

Figure 1. Possible scenarios for the order of the thermal QCD transition as a function of the
quark masses. Every point of the plot represents a phase boundary, with an implicitly associated
(pseudo-)critical temperature Tcpmu,d, msq.

2 The chiral phase transition in the continuum and on the lattice

2.1 The Columbia plot

To motivate our analysis by the general picture, we briefly summarise current knowledge
about the chiral phase transition. The thermal QCD transition with physical quark masses
has been known for some time to be an analytic crossover [1]. Away from the physical point,
the nature of the Nf “ 2`1 QCD thermal transition as a function of quark masses is usually
summarised in a so-called Columbia plot [3], figure 1.1 In the quenched limit QCD reduces
to SUp3q Yang-Mills theory in the presence of static quarks, and shows a first-order phase
transition in the continuum limit [4], associated with the spontaneous breaking of the Z3
centre symmetry. Finite quark masses break this symmetry explicitly and weaken the first-
order phase transition, until it disappears along a critical line in the 3D Z2 universality
class. This region can be simulated directly [5, 6], and the currently finest lattices predict
the critical pseudoscalar mass for Nf “ 2 to be about mP S „ 4 GeV [6].

In the chiral limit, the situation is more complicated, because it cannot be simulated.
For a long time expectations have been based on an analysis using the epsilon expansion
about ‘ “ 1 applied to a linear sigma model in three dimensions [7]. It predicts the chiral
transition to be first-order for Nf • 3, whereas the case of Nf “ 2 is found to crucially
depend on the fate of the anomalous Up1qA symmetry: If the latter remains broken at
Tc, the chiral transition should be second order in the Op4q-universality class, whereas its
e�ective restoration would enlarge the chiral symmetry and push the transition to first-
order. For non-zero quark masses, chiral symmetry is explicitly broken. A first-order chiral

1
Here and in the following, “phase boundary” refers to a (pseudo-)critical combination of parameters

irrespective of the nature of the transition, which can be first-order, second-order or crossover.

– 3 –

?

Figure 4. Columbia plot for mass-degenerate
quarks. Every point represents a phase bound-
ary and has an implicitly associated Tcpm, Nfq.

 1 st order triple

Figure 5. Schematic representation of a pos-
sible scenario for the T ´ m ´ Nf phase diagram
with di�erent numbers of light mass-degenerate
flavours.

varying (imaginary) chemical potential [17] is consistent, based on tricritical scaling, with
results at Nf P r2.1, 2.2s [18]. In that case the quark mass is again the symmetry breaking
scaling field, but with Nf Ñ pµ{T q2 in eq. (2.4). In the present work, we systematically
extend our study from ref. 18 to larger numbers of flavours and finer lattices.

The chiral phase transition of QCD with many flavours is also of interest in the context
of physics beyond the Standard Model. There the main focus is on the “conformal window”
N

˚
f † Nf † N

a.f.
f , which denotes a range of theories with an infrared fixed point at a finite

value of the gauge coupling. For Nf ° N
a.f.
f asymptotic freedom is lost, while N

˚
f is the

critical number of flavours marking the endpoint of the existence of a chiral condensate,
and hence of chiral phase transitions, as indicated schematically in the possible phase
diagram figure 5. A precise non-perturbative determination of this point is di�cult for
various technical reasons, but is expected in the range 9 À N

˚
f À 12. For an overview of

the related strong interaction dynamics and its lattice investigations, see refs. 29–31.
For our present purpose, we stay at Nf † N

˚
f . Note that the decrease of the critical

temperature in figure 5 is predicted by functional renormalisation group methods [32, 33]
and lattice simulations [34], which in the chiral limit implies N

˚
f to represent a quantum

phase transition at T “ 0. An interesting feature of the critical temperature TcpNfq is its
approximately linear behaviour observed in refs. 32, 33. It can be explained by express-
ing dimensionful quantities in terms of �QCDpNfq, whose perturbative expression can be
expanded in Nf,

TcpNfq “
˜

Tc

�QCD

¸
pNfq ¨

”
�QCDp0q ` �p1q

Á Nf ` O
`
pÁNfq2˘ı

. (2.5)

The perturbative second factor is indeed approximately linear due to the smallness of
Á « 0.11, and appears to dominate the remaining Nf-dependence of the dimensionless

– 7 –

Z2 boundary for Nf=5 HISQ

• The analysis of the above kind requires LOTS of lattice simulations - for EACH
 , varying lattice volumes and spacings need to be studied

• In [M. Neumann et.al., PoS LATTICE2022 (2023)], the authors proposed using
Machine Learning techniques for learning probability densities
conditioned on

• Learning such a density correctly allows interpolation in the dimensions of the
conditional inputs - avoiding some expensive lattice simulations

Nf

p (ψ̄ ψ, S)
Nσ , ml , β

A ML approach to many flavor QCD M. Neumann

#f 0.001 0.002 0.003 0.0035 0.004 0.0045 0.005
16 17201 18887 11526 0 18866 0 0
24 5294 83177 149885 25028 30571 19332 19352

#f 0.006 0.008 0.010 0.012 0.014 0.016
16 61382 61220 61456 61456 61256 61256
24 42762 82061 65140 13380 36574 36499

Table 1: Total number of RHMC measurements for each volume and mass, summed over all available V
values, corresponding to approximately 300,000 GPUh on a NVIDIA V100.

coe�cients in front of the regularization terms have been chosen as ;1 = ;2 = 0.0001. The training
took approximately 4h on a NVIDIA V100 GPU. Evaluating the model was done for all integer
#f 2 [16, 24], V 2 [4.5, 5.4] in steps of 0.001 and <; 2 [0.001, 0.006] in steps of 0.001 and for
the larger masses <; 2 [0.008, 0.016] in steps of 0.002. Inference took approximately 30sec per
1,000,000 measurements at each parameter combination. This allows us to fit our entire data set
(as shown in Table 1) with a single function ?(k̄k, (| #f ,<;, V), in contrast to the V-reweighting,
where we would need to do independent reweighting for each mass and volume.

In Figure 3 (right), the ML-reweighted data are shown. While the interpolation appears to be
slightly under fitting for <; = 0.002, in the grand picture we achieve a good fit. Compared to the
V-reweighting, it is intuitive that we get a better fit, since now the data points support each other also
in <; and #f-direction and not only in V. Of course we could have fitted only a 1D distribution to
the chiral condensate. However, we included the action as well to stabilize the fit and enable easy
comparison with the V-reweighting approach.

Figure 4: Density plot in the k̄k-(plane for 1,000,000 evaluations of the model. Shown are results for a
small (left) and large (right) quark mass, corresponding to the first order and crossover regions, respectively.

5

A ML approach to many flavor QCD M. Neumann

1. Introduction

Almost 40 years ago Pisarski and Wilczek argued, that the chiral phase transition for vanishing
masses and three or more flavors (# 5) should be of first order [1]. To this day, the search for the
orderness of the transition has been quite inconclusive. No evidence for a first order transition in
three flavor QCD has been found so far in lattice QCD calculations [2]. A recent work on this by
Cuteri et al. finds that in the continuum limit there is no first order transition for light quark masses
(<;) for all # 5  6 [3], although first order transitions can be found at non-zero <; on lattices with
finite lattice spacing.

0.000

0.005

0.010

0.015

0.020

3 4 5 6

Nf

ml

first order

crossover

measured

mc

Nf,c

Figure 1: A sketch of a possible Columbia plot for
mass-degenerate quarks in the # 5 -<; plane, assuming
a critical number of flavors # 5 ,2 between 3 and 4.
Every point represents a phase boundary. The vertical
line marks the measurements done in this work.

In Fig. 1 we show a sketch of the phase
diagram in the # 5 -<; plane for the situation
corresponding to lattices of fixed temporal ex-
tent #g . We expect to find a region of first order
phase transitions, which is shown in the lower
right corner. In this work, we try to find a quark
mass value in this region, and while keeping
5 fixed increase the mass to find the / (2) line
marking the border to the crossover region.

2. Lattice setup and observables

The first order signal of the chiral phase
transition becomes stronger with decreasing
quark mass, on larger volumes and for larger
number of flavors. Unfortunately, all of these
adjustments also increase the computational
cost of numerical simulations using the Ratio-
nal Hybrid Monte Carlo (RHMC) algorithm. We thus have to be quite careful with our choice of
parameters.

Our calculations have been performed in five-flavor QCD (# 5 = 5) using the HISQ action with
quark masses in the range 0.001  <;  0.016 and gauge couplings V = 4.5 � 5.4. We used 4-
dimensional lattices,+ = #3

f#g , with temporal extent #g = 6 and spatial volumes #3
f = 163�243.

The partition function for these systems is given by

/ (# 5 , V,<;) =
π

D*` (det " [*`,<;])# 5 /44�S[*`] , (1)

where " is the staggered fermion matrix and ([*`] denotes the gauge action given in terms of
gauge field variables *`. The number of flavors, # 5 , can easily be generalized to a continuous
number, losing properties of a local quantum field theory in the process [4]. The chiral condensate,
which is the only observable we are going to discuss here, is defined as

hk̄ki = 1

4#3
f#g

⌦
tr "�1↵ , (2)

2

M. Neumann et.al., PoS LATTICE2022 (2023) 4

Z2 boundary for Nf=5 HISQ

• First step (Will discuss) : Density estimation followed by , , extrapolation
using Masked Autoregressive flows

β ml Nσ

M. Neumann et.al., PoS LATTICE2022 (2023) Neumann M (2023) PhD Thesis Universität Bielefeld

A ML approach to many flavor QCD M. Neumann

of measurements, performed at a large number of V-values, since $ (() is obtained via the 2D-
histogram of the action and the observable we want to reweight. Moreover, the action histograms
obtained at the di�erent V< need to have a su�ciently large overlap.

The method can be extended to reweight a probability distribution of any observable by
reweighting each bin of the discretized distribution individually. This approach is thus limited to
data sets discretized in a set of bins and only interpolates in V-direction.

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4.6 4.65 4.7 4.75 4.8 4.85

Nf = 5
V = 243⇥6

ml = 0.002
0.003
0.004
0.005
0.006
0.008�

< ̄ >

0.1

0.15

0.2

0.25

0.3

0.35

0.4

4.6 4.65 4.7 4.75 4.8 4.85

Nf = 5
V = 243⇥6

ml = 0.002
0.003
0.004
0.005
0.006
0.008�

< ̄ >

Figure 3: Comparison of V-reweighting (left) and ML-reweighting (right). Data points show results obtained
from RHMC calculations in 5-flavor QCD, while the curves are obtained from the V- and ML-reweighting,
respectively.

In Figure 3 (left) V-reweighted data for the chiral condensate are shown. The reweighting is
done for the entire set of histograms at each mass, but only the expectation values are shown, to
obtain a compact plot. While this yields reasonable results for the lowest masses, for larger <;,
especially <; = 0.006, the V-reweighting obviously is over-fitting.

4. ML model

Normalizing flows are state-of-the-art tools for modeling probability distributions in physical
systems. We use a MAF (Masked Autoregressive Flow) [6] model with eight MADE (Masked
Autoencoder for Distribution Estimation) [7] blocks. MADE networks have been especially de-
signed to factorize a joint probability distribution into a product of conditional probabilities. Using
less than eight MADE blocks caused problems with fitting the double peaks, however, for fits in
the crossover region a fewer number of MADE should be su�cient. Compared to the classical
reweighting, this method has the advantage of allowing to interpolate in any parameter. In partic-
ular, there is no need for overlapping distributions of the action density and the method is able to
process continuous data. However, in order to visualize the learned probability distribution, we
need to draw a large number of samples from our model to fill a two dimensional histogram.

In the end, the model learns to transform a 2D-Gaussian distribution to “measurements” of
(k̄k, (), conditioned on the continuous parameters (#f ,<;, V). To avoid overfitting, we have
introduced penalty terms in the loss function, based on the L1- and L2-norms of the parameters
of the network, known as regularization. The regularization is applied on a per-layer basis and the

4

 - reweightingβ ML -
interpolation

β

• Second step (Won’t discuss) : Classification of densities projected as “images” via
vision transformers to nail down for ml,c Nf = 5

A ML approach to many flavor QCD M. Neumann

They signal the occurrence of a first order phase transition, with the right hand peak corresponding
to the end of the symmetry broken phase, the left hand peak corresponding to the symmetry restored
phase and the region between the peaks being the mixed phase. The corresponding phase

Figure 7: Phase diagram of 5-flavor QCD on lattices with fixed temporal
extent, #g = 6 in the <;-V plane.

diagram in the <;-V plane
is shown in Figure 7. It
suggests that the first or-
der region ends in a sec-
ond order end point at about
<2

; ' 0.0045. Clearly, as
the gap between the peaks
at low and high V becomes
smaller larger lattices will
be needed to resolve these
two peaks and establish a
gap between them. In the
next section we will discuss
a ML based approach to lo-
cate this end point.

6. EOS-meter

Petersen et al. have introduced the idea of using an ML image recognition approach to classify
phase transitions [8]. They used a convolutional neural network (CNN) model to classify data sets
obtained in heavy-ion collision. The resulting density plots they called an Equation-of-State-meter.
Recently, the transformer model [9], a model solely based on attention mechanisms, has been
shown to outperform recurrent or convolutional neural networks in translation tasks. Transformers
are expected to generalize well to other tasks, including image recognition applications. Since no
CNNs are used, information on pixel positions must be added artificially via a so-called positional
encoding. Here we have used a vision transformer based approach on density plots as shown in
Figure 8. We have labeled the histograms of the smallest masses, where a clear gap was visible as
“first order” while the histograms of the largest masses were labeled as “crossover”.

�c � 0.2 �c �c + 0.2
0

0.1

0.2

0.3

0.4

0.5

 ̄

0

5

10

15

20
p(̄ | N� = 24,ml = 0.001,�)

�c � 0.2 �c �c + 0.2
0

0.1

0.2

0.3

0.4

0.5

 ̄

0

5

10

15

20
p(̄ | N� = 24,ml = 0.008,�)

Figure 8: Probability density plots used to train the EOS-meter. Each column of pixels corresponds to 1000
evaluations of the model. V2 (<;) does not need to be known exactly, as long as V2 is within the plot range.

7

5

Density estimation using MADE

MADE: Masked Autoencoder for Distribution Estimation

Autoencoder Masks MADEx

W1

W2

V

MW1

MW2

MV=

=

=

p(x2) p(x3|x2)p(x1|x2, x3)

3 1 2

2 1 2 2

1 2 2 1

3 1 2

x1 x2 x3

bx1 bx2 bx3

x1 x2 x3

Figure 1. Left: Conventional three hidden layer autoencoder.
Input in the bottom is passed through fully connected layers and
point-wise nonlinearities. In the final top layer, a reconstruction
specified as a probability distribution over inputs is produced.
As this distribution depends on the input itself, a standard au-
toencoder cannot predict or sample new data. Right: MADE.
The network has the same structure as the autoencoder, but a set
of connections is removed such that each input unit is only pre-
dicted from the previous ones, using multiplicative binary masks
(MW1

, MW2
, MV). In this example, the ordering of the input

is changed from 1,2,3 to 3,1,2. This change is explained in sec-
tion 4.2, but is not necessary for understanding the basic principle.
The numbers in the hidden units indicate the maximum number
of inputs on which the k

th unit of layer l depends. The masks are
constructed based on these numbers (see Equations 12 and 13).
These masks ensure that MADE satisfies the autoregressive prop-
erty, allowing it to form a probabilistic model, in this example
p(x) = p(x2) p(x3|x2) p(x1|x2, x3). Connections in light gray
correspond to paths that depend only on 1 input, while the dark
gray connections depend on 2 inputs.

connected to at most m2(k0) inputs, i.e. the first layer units
such that m1(k)  m

2(k0).

One can generalize this rule to any layer l, as follows:

M
Wl

k0,k = 1ml(k0)�ml�1(k) =

⇢
1 if ml(k0) � m

l�1(k)
0 otherwise.

(12)
Also, taking l = 0 to mean the input layer and defining
m

0(d) = d (which is intuitive, since the d
th input unit in-

deed takes its values from the d first inputs), this definition
also applies for the first hidden layer weights. As for the
output mask, we simply need to adapt its definition by using
the connectivity constraints of the last hidden layer mL(k)
instead of the first:

M
V
d,k = 1d>mL(k) =

⇢
1 if d > m

L(k)
0 otherwise. (13)

Like for the single hidden layer case, the values for ml(k)
for each hidden layer l 2 {1, . . . , L} are sampled uniformly.
To avoid unconnected units, the value for ml(k) is sampled

to be greater than or equal to the minimum connectivity at
the previous layer, i.e. mink0 m

l�1(k0).

4.2. Order-agnostic training

So far, we’ve assumed that the conditionals modelled by
MADE were consistent with the natural ordering of the
dimensions of x. However, we might be interested in mod-
elling the conditionals associated with an arbitrary ordering
of the input’s dimensions.

Specifically, Uria et al. (2014) have shown that training
an autoregressive model on all orderings can be beneficial.
We refer to this approach as order-agnostic training. It can
be achieved by sampling an ordering before each stochas-
tic/minibatch gradient update of the model. There are two
advantages of this approach. Firstly, missing values in par-
tially observed input vectors can be imputed efficiently: we
invoke an ordering where observed dimensions are all be-
fore unobserved ones, making inference straightforward.
Secondly, an ensemble of autoregressive models can be con-
structed on the fly, by exploiting the fact that the conditionals
for two different orderings are not guaranteed to be exactly
consistent (and thus technically correspond to slightly dif-
ferent models). An ensemble is then easily obtained by
sampling a set of orderings, computing the probability of x
under each ordering and averaging.

Conveniently, in MADE, the ordering is simply represented
by the vector m0 = [m0(1), . . . ,m0(D)]. Specifically,
m

0(d) corresponds to the position of the original dth dimen-
sion of x in the product of conditionals. Thus, a random
ordering can be obtained by randomly permuting the or-
dered vector [1, . . . , D]. From these values of each m0, the
first hidden layer mask matrix can then be created. During
order-agnostic training, randomly permuting the last value
of m0 again is sufficient to obtain a new random ordering.

4.3. Connectivity-agnostic training

One advantage of order-agnostic training is that it effectively
allows us to train as many models as there are orderings,
using a common set of parameters. This can be exploited
by creating ensembles of models at test time.

In MADE, in addition to choosing an ordering, we also have
to choose each hidden unit’s connectivity constraint ml(k).
Thus, we could imaging training MADE to also be agnostic
of the connectivity pattern generated by these constraints. To
achieve this, instead of sampling the values of ml(k) for all
units and layers once and for all before training, we actually
resample them for each training example or minibatch. This
is still practical, since the operation of creating the masks is
easy to parallelize. Denoting ml = [ml(1), . . . ,ml(Kl)],
and assuming an element-wise and parallel implementation
of the operation 1a�b for vectors, such that 1a�b is a matrix

MADE: Masked Autoencoder for Distribution Estimation

Mathieu Germain MATHIEU.GERMAIN2@USHERBROOKE.CA

Université de Sherbrooke, Canada

Karol Gregor KAROL.GREGOR@GMAIL.COM

Google DeepMind

Iain Murray I.MURRAY@ED.AC.UK

University of Edinburgh, United Kingdom

Hugo Larochelle HUGO.LAROCHELLE@USHERBROOKE.CA

Université de Sherbrooke, Canada

Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the

MADE: Masked Autoencoder for Distribution Estimation

Mathieu Germain MATHIEU.GERMAIN2@USHERBROOKE.CA

Université de Sherbrooke, Canada

Karol Gregor KAROL.GREGOR@GMAIL.COM

Google DeepMind

Iain Murray I.MURRAY@ED.AC.UK

University of Edinburgh, United Kingdom

Hugo Larochelle HUGO.LAROCHELLE@USHERBROOKE.CA

Université de Sherbrooke, Canada

Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the

MADE: Masked Autoencoder for Distribution Estimation

Mathieu Germain MATHIEU.GERMAIN2@USHERBROOKE.CA

Université de Sherbrooke, Canada

Karol Gregor KAROL.GREGOR@GMAIL.COM

Google DeepMind

Iain Murray I.MURRAY@ED.AC.UK

University of Edinburgh, United Kingdom

Hugo Larochelle HUGO.LAROCHELLE@USHERBROOKE.CA

Université de Sherbrooke, Canada

Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the

MADE: Masked Autoencoder for Distribution Estimation

Mathieu Germain MATHIEU.GERMAIN2@USHERBROOKE.CA

Université de Sherbrooke, Canada

Karol Gregor KAROL.GREGOR@GMAIL.COM

Google DeepMind

Iain Murray I.MURRAY@ED.AC.UK

University of Edinburgh, United Kingdom

Hugo Larochelle HUGO.LAROCHELLE@USHERBROOKE.CA

Université de Sherbrooke, Canada

Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the

MADE: Masked Autoencoder for Distribution Estimation

Mathieu Germain MATHIEU.GERMAIN2@USHERBROOKE.CA

Université de Sherbrooke, Canada

Karol Gregor KAROL.GREGOR@GMAIL.COM

Google DeepMind

Iain Murray I.MURRAY@ED.AC.UK

University of Edinburgh, United Kingdom

Hugo Larochelle HUGO.LAROCHELLE@USHERBROOKE.CA

Université de Sherbrooke, Canada

Abstract
There has been a lot of recent interest in designing
neural network models to estimate a distribution
from a set of examples. We introduce a simple
modification for autoencoder neural networks that
yields powerful generative models. Our method
masks the autoencoder’s parameters to respect
autoregressive constraints: each input is recon-
structed only from previous inputs in a given or-
dering. Constrained this way, the autoencoder
outputs can be interpreted as a set of conditional
probabilities, and their product, the full joint prob-
ability. We can also train a single network that
can decompose the joint probability in multiple
different orderings. Our simple framework can be
applied to multiple architectures, including deep
ones. Vectorized implementations, such as on
GPUs, are simple and fast. Experiments demon-
strate that this approach is competitive with state-
of-the-art tractable distribution estimators. At test
time, the method is significantly faster and scales
better than other autoregressive estimators.

1. Introduction
Distribution estimation is the task of estimating a joint distri-
bution p(x) from a set of examples {x(t)}Tt=1, which is by
definition a general problem. Many tasks in machine learn-
ing can be formulated as learning only specific properties of
a joint distribution. Thus a good distribution estimator can
be used in many scenarios, including classification (Schmah

Proceedings of the 32nd International Conference on Machine
Learning, Lille, France, 2015. JMLR: W&CP volume 37. Copy-
right 2015 by the author(s).

et al., 2009), denoising or missing input imputation (Poon
& Domingos, 2011; Dinh et al., 2014), data (e.g. speech)
synthesis (Uria et al., 2015) and many others. The very
nature of distribution estimation also makes it a particular
challenge for machine learning. In essence, the curse of
dimensionality has a distinct impact because, as the number
of dimensions of the input space of x grows, the volume of
space in which the model must provide a good answer for
p(x) exponentially increases.

Fortunately, recent research has made substantial progress
on this task. Specifically, learning algorithms for a vari-
ety of neural network models have been proposed (Bengio
& Bengio, 2000; Larochelle & Murray, 2011; Gregor &
LeCun, 2011; Uria et al., 2013; 2014; Kingma & Welling,
2014; Rezende et al., 2014; Bengio et al., 2014; Gregor
et al., 2014; Goodfellow et al., 2014; Dinh et al., 2014).
These algorithms are showing great potential in scaling to
high-dimensional distribution estimation problems. In this
work, we focus our attention on autoregressive models (Sec-
tion 3). Computing p(x) exactly for a test example x is
tractable with these models. However, the computational
cost of this operation is still larger than typical neural net-
work predictions for a D-dimensional input. For previous
deep autoregressive models, evaluating p(x) costs O(D)
times more than a simple neural network point predictor.

This paper’s contribution is to describe and explore a simple
way of adapting autoencoder neural networks that makes
them competitive tractable distribution estimators that are
faster than existing alternatives. We show how to mask the
weighted connections of a standard autoencoder to convert it
into a distribution estimator. The key is to use masks that are
designed in such a way that the output is autoregressive for a
given ordering of the inputs, i.e. that each input dimension is
reconstructed solely from the dimensions preceding it in the

PoS of International Conference
on Machine Learning, France, 2015

32nd

• Goal : Learn a probability density from examples of data

• How : Interpret the outputs of an autoencoder as valid probabilities

• Each output as conditional probability and product as joint probability

• Introduce masks on hidden layer units to impose autoregressive property

(⃗x , ⃗y) → p (⃗x | ⃗y)

6

MADE: Masked Autoencoder for Distribution Estimation

ordering. The resulting Masked Autoencoder Distribution
Estimator (MADE) preserves the efficiency of a single pass
through a regular autoencoder. Implementation on a GPU is
straightforward, making the method scalable.

The single hidden layer version of MADE corresponds to the
previously proposed autoregressive neural network of Ben-
gio & Bengio (2000). Here, we go further by exploring
deep variants of the model. We also explore training MADE
to work simultaneously with multiple orderings of the in-
put observations and hidden layer connectivity structures.
We test these extensions across a range of binary datasets
with hundreds of dimensions, and compare its statistical
performance and scaling to comparable methods.

2. Autoencoders
A brief description of the basic autoencoder, on which this
work builds upon, is required to clearly grasp what follows.
In this paper, we assume that we are given a training set of
examples {x(t)}Tt=1. We concentrate on the case of binary
observations, where for every D-dimensional input x, each
input dimension xd belongs in {0, 1}. The motivation is
to learn hidden representations of the inputs that reveal the
statistical structure of the distribution that generated them.

An autoencoder attempts to learn a feed-forward, hidden
representation h(x) of its input x such that, from it, we can
obtain a reconstruction bx which is as close as possible to x.
Specifically, we have

h(x) = g(b+Wx) (1)
bx = sigm(c+Vh(x)) , (2)

where W and V are matrices, b and c are vectors, g is a non-
linear activation function and sigm(a) = 1/(1 + exp(�a)).
Thus, W represents the connections from the input to the
hidden layer, and V represents the connections from the
hidden to the output layer.

To train the autoencoder, we must first specify a training
loss function. For binary observations, a natural choice is
the cross-entropy loss:

`(x) =
DX

d=1

�xd log bxd � (1�xd) log(1�bxd) . (3)

By treating bxd as the model’s probability that xd is 1, the
cross-entropy can be understood as taking the form of a
negative log-likelihood function. Training the autoencoder
corresponds to optimizing the parameters {W,V,b, c} to
reduce the average loss on the training examples, usually
with (mini-batch) stochastic gradient descent.

One advantage of the autoencoder paradigm is its flexibility.
In particular, it is straightforward to obtain a deep autoen-
coder by inserting more hidden layers between the input

and output layers. Its main disadvantage is that the repre-
sentation it learns can be trivial. For instance, if the hidden
layer is at least as large as the input, hidden units can each
learn to “copy” a single input dimension, so as to recon-
struct all inputs perfectly at the output layer. One obvious
consequence of this observation is that the loss function
of Equation 3 isn’t in fact a proper log-likelihood func-
tion. Indeed, since perfect reconstruction could be achieved,
the implied data ‘distribution’ q(x)=

Q
d bx

xd
d (1�bxd)1�xd

could be learned to be 1 for any x and thus not be properly
normalized (

P
x q(x) 6=1).

3. Distribution Estimation as Autoregression
An interesting question is what property we could impose
on the autoencoder, such that its output can be used to obtain
valid probabilities. Specifically, we’d like to be able to write
p(x) in such a way that it could be computed based on the
output of a properly corrected autoencoder.

First, we can use the fact that, for any distribution, the prob-
ability product rule implies that we can always decompose
it into the product of its nested conditionals

p(x) =
DY

d=1

p(xd |x<d), (4)

where x<d = [x1, . . . , xd�1]>.

By defining p(xd = 1 |x<d) = x̂d, and thus p(xd =
0 |x<d) = 1�x̂d, the loss of Equation 3 becomes a valid
negative log-likelihood:

� log p(x) =
DX

d=1

� log p(xd |x<d)

=
DX

d=1

�xd log p(xd=1 |x<d)

� (1�xd) log p(xd=0 |x<d)

= `(x) .

(5)

This connection provides a way to define autoencoders
that can be used for distribution estimation. Each output
bxd = p(xd |x<d) must be a function taking as input x<d

only and outputting the probability of observing value xd

at the d
th dimension. In particular, the autoencoder forms

a proper distribution if each output unit x̂d only depends
on the previous input units x<d, and not the other units
x�d = [xd, . . . , xD]>.

We refer to this property as the autoregressive property,
because computing the negative log-likelihood (5) is equiv-
alent to sequentially predicting (regressing) each dimension
of input x.

MADE: Masked Autoencoder for Distribution Estimation

4. Masked Autoencoders
The question now is how to modify the autoencoder so as
to satisfy the autoregressive property. Since output x̂d must
depend only on the preceding inputs x<d, it means that
there must be no computational path between output unit
x̂d and any of the input units xd, . . . , xD. In other words,
for each of these paths, at least one connection (in matrix
W or V) must be 0.

A convenient way of zeroing connections is to elementwise-
multiply each matrix by a binary mask matrix, whose entries
that are set to 0 correspond to the connections we wish to
remove. For a single hidden layer autoencoder, we write

h(x) = g(b+ (W �MW)x) (6)
x̂ = sigm(c+ (V �MV)h(x)) (7)

where MW and MV are the masks for W and V respec-
tively. It is thus left to the masks MW and MV to satisfy
the autoregressive property.

To impose the autoregressive property we first assign each
unit in the hidden layer an integer m between 1 and D�1
inclusively. The k

th hidden unit’s number m(k) gives the
maximum number of input units to which it can be con-
nected. We disallow m(k)=D since this hidden unit would
depend on all inputs and could not be used in modelling
any of the conditionals p(xd |x<d). Similarly, we exclude
m(k)=0, as it would create constant hidden units.

The constraints on the maximum number of inputs to each
hidden unit are encoded in the matrix masking the connec-
tions between the input and hidden units:

M
W
k,d = 1m(k)�d =

⇢
1 if m(k) � d

0 otherwise, (8)

for d2 {1, . . . , D} and k 2 {1, . . . ,K}. Overall, we need
to encode the constraint that the d

th output unit is only
connected to x<d (and thus not to x�d). Therefore the
output weights can only connect the d

th output to hidden
units with m(k)<d, i.e. units that are connected to at most
d�1 input units. These constraints are encoded in the output
mask matrix:

M
V
d,k = 1d>m(k) =

⇢
1 if d > m(k)
0 otherwise, (9)

again for d 2 {1, . . . , D} and k 2 {1, . . . ,K}. Notice that,
from this rule, no hidden units will be connected to the first
output unit x̂1, as desired.

From these mask constructions, we can easily demonstrate
that the corresponding masked autoencoder satisfies the au-
toregressive property. First, we note that, since the masks
MV and MW represent the network’s connectivity, their
matrix product MV,W = MVMW represents the connec-
tivity between the input and the output layer. Specifically,

M
V,W
d0,d is the number of network paths between output unit

x̂d0 and input unit xd. Thus, to demonstrate the autoregres-
sive property, we need to show that MV,W is strictly lower
diagonal, i.e. MV,W

d0,d is 0 if d0  d. By definition of the
matrix product, we have:

M
V,W
d0,d =

KX

k=1

M
V
d0,kM

W
k,d =

KX

k=1

1d0>m(k)1m(k)�d. (10)

If d0  d, then there are no values for m(k) such that it is
both strictly less than d

0 and greater or equal to d. Thus
M

V,W
d0,d is indeed 0.

Constructing the masks MV and MW only requires an as-
signment of the m(k) values to each hidden unit. One could
imagine trying to assign an (approximately) equal number
of units to each legal value of m(k). In our experiments, we
instead set m(k) by sampling from a uniform discrete dis-
tribution defined on integers from 1 to D�1, independently
for each of the K hidden units.

Previous work on autoregressive neural networks have also
found it advantageous to use direct connections between the
input and output layers (Bengio & Bengio, 2000). In this
context, the reconstruction becomes:

x̂ = sigm(c+ (V �MV)h(x) + (A�MA)x) , (11)

where A is the parameter connection matrix and MA is its
mask matrix. To satisfy the autoregressive property, MA

simply needs to be a strictly lower diagonal matrix, filled
otherwise with ones. We used such direct connections in
our experiments as well.

4.1. Deep MADE

One advantage of the masked autoencoder framework de-
scribed in the previous section is that it naturally generalizes
to deep architectures. Indeed, as we’ll see, by assigning a
maximum number of connected inputs to all units across
the deep network, masks can be similarly constructed so as
to satisfy the autoregressive property.

For networks with L>1 hidden layers, we use superscripts
to index the layers. The first hidden layer matrix (previously
W) will be denoted W1, the second hidden layer matrix will
be W2, and so on. The number of hidden units (previously
K) in each hidden layer will be similarly indexed as K

l,
where l is the hidden layer index. We will also generalize
the notation for the maximum number of connected inputs
of the k

th unit in the l
th layer to m

l(k).

We’ve already discussed how to define the first layer’s mask
matrix such that it ensures that its kth unit is connected to
at most m(k) (now m

1(k)) inputs. To impose the same
property on the second hidden layer, we must simply make
sure that each unit k0 is only connected to first layer units

Masking
OD\HU� RI� UHGXFHG� GLPHQVLRQV�� 7KH� WDVN� RI� WKH� QHWZRUN� LV� WR
UHFRQVWUXFW�WKH�LQSXW�[�DW�WKH�RXWSXW�[ƌ�XVLQJ�WKH�PDSSLQJV�K� �J�[�
�HQFRGHU��DQG�[ƌ� �I�K���GHFRGHU���ZKLFK�DW� ILUVW�PD\�VHHP�QRW�YHU\
XVHIXO�� +RZHYHU�� WR� SUHYHQW� WKH� QHWZRUN� IURP� MXVW� UHSOLFDWLQJ� WKH
LQSXW� E\� OHDUQLQJ� WKH� LGHQWLW\� IXQFWLRQ�� WKH� LQSXW� LV� SDVVHG� E\� WKH
HQFRGHU� WKURXJK� D� OD\HU� RI� UHVWULFWHG� GLPHQVLRQV� EHIRUH� EHLQJ
UHFRQVWUXFWHG� E\� WKH� GHFRGHU�� 7KH� DXWRHQFRGHU� LV� WKHQ� WUDLQHG� WR
PLQLPL]H�WKH�UHFRQVWUXFWLRQ�HUURU�XVLQJ�D�VXLWDEOH�ORVV�IXQFWLRQ

)LJ�� ������ 6FKHPDWLF� EDVLF� DXWRHQFRGHU�� 7KH� FRPSUHVVHG
UHSUHVHQWDWLRQ�K� LV� DOVR� FDOOHG� ODWHQW� YDULDEOHV�� ODWHQW� YHFWRU�� ODWHQW
VSDFH��RU�FRGH�

ZKLFK�PD\�EH�D�VLPSOH�PHDQ�VTXDUHG�HUURU��������IRU�1�GLPHQVLRQDO
UHDO�YDOXHG�LQSXW�

Masked Autoregressive Flows

6.4. Machine-learning-reweighting

MAF parameter value
kernel regulizer L1L2

L1 0.0001
L2 0.0001

loss function - log prob
number of MADE blocks 8

number of samples 1000000
number of epochs 500
number of inputs 2 (S, Â̄Â)

number of conditional inputs 3 (—, ml, N‡)
batch size 1024

amount of training data 1.583.962 x (S, Â̄Â)
optimizer Adam

Table 6.4: ML-reweighting model architecture based on Masked Autoregressive Flow code example
“Conditional Invertible Neural Network for Parameter Estimation” [65].

min max
Â̄Â 0.0 0.5
S 0.55 0.65
— 4.5 5.4
ml 0.001 0.016
N‡ 16 24

Table 6.5: ML-reweighting normalizations. All values have been linearly mapped to fulfil min æ
≠1 and max æ 1. Note that not all values lie in [min, max], since this is not required by a MAF,
but a necessary optimization.

As a proof-of-concept, we take the data for our highest statistics parameter set. The
time history for Â̄Â was shown in Figure 6.2. We compare its (Â̄Â, S)-histogram to the
histogrammized output of our ML model at the same parameter and arrive at Figure 6.7.
We can see that both data sets show artifacts: The original data does show irregularities or
a low resolution in the action, which presumably arise from the low acceptance rate. The
fitted data, on the other hand, has a bridge connecting the two phases. This connection
can be seen in the raw data, but is overpopulated in the ML fit. It is a know weakness of
the masked autoregressive flow, that disconnected regions are not fitted e�ciently, as can
be seen in the two moons example [68]. Obviously, this is not a problem in the crossover
region. This could be circumvented by using more MADE layers in the model, but this
leads to overfitting e�ects. Furthermore, Figure 6.7 emphasizes the advantage of the ML
model, which comes from not having to histogrammize the data, resulting in a much higher
resolution.

70

~ 3.400.000
2048

10K - 100K

7

• Autoregressive property from conditionals

• Each conditional as a single Gaussian :
with and

• Data generated via : with

• A flow is then constructed by MADE blocks in a chain

p(x1, x2 . . . xD) = p (xN |x1, . . . xN−1) p (xN−1 |x1, . . . xN−2) . . . p (x1)
p (xi | ⃗x1:i−1) = 𝒩 (xi |μi , (exp(αi))2)

μi = fμi (⃗x1:i−1) αi = fαi (⃗x1:i−1)
xi = ui exp(αi) + μi ui ∼ 𝒩 (0,1)

Masked Autoregressive Flow for Density Estimation

George Papamakarios
University of Edinburgh

g.papamakarios@ed.ac.uk

Theo Pavlakou
University of Edinburgh

theo.pavlakou@ed.ac.uk

Iain Murray
University of Edinburgh
i.murray@ed.ac.uk

Abstract

Autoregressive models are among the best performing neural density estimators.
We describe an approach for increasing the flexibility of an autoregressive model,
based on modelling the random numbers that the model uses internally when gen-
erating data. By constructing a stack of autoregressive models, each modelling the
random numbers of the next model in the stack, we obtain a type of normalizing
flow suitable for density estimation, which we call Masked Autoregressive Flow.
This type of flow is closely related to Inverse Autoregressive Flow and is a gen-
eralization of Real NVP. Masked Autoregressive Flow achieves state-of-the-art
performance in a range of general-purpose density estimation tasks.

1 Introduction

The joint density p(x) of a set of variables x is a central object of interest in machine learning. Being
able to access and manipulate p(x) enables a wide range of tasks to be performed, such as inference,
prediction, data completion and data generation. As such, the problem of estimating p(x) from a set
of examples {xn} is at the core of probabilistic unsupervised learning and generative modelling.

In recent years, using neural networks for density estimation has been particularly successful. Combin-
ing the flexibility and learning capacity of neural networks with prior knowledge about the structure
of data to be modelled has led to impressive results in modelling natural images [4, 30, 37, 38] and
audio data [34, 36]. State-of-the-art neural density estimators have also been used for likelihood-free
inference from simulated data [21, 23], variational inference [13, 24], and as surrogates for maximum
entropy models [19].

Neural density estimators differ from other approaches to generative modelling—such as variational
autoencoders [12, 25] and generative adversarial networks [7]—in that they readily provide exact
density evaluations. As such, they are more suitable in applications where the focus is on explicitly
evaluating densities, rather than generating synthetic data. For instance, density estimators can learn
suitable priors for data from large unlabelled datasets, for use in standard Bayesian inference [39].
In simulation-based likelihood-free inference, conditional density estimators can learn models for
the likelihood [5] or the posterior [23] from simulated data. Density estimators can learn effective
proposals for importance sampling [22] or sequential Monte Carlo [8, 21]; such proposals can be
used in probabilistic programming environments to speed up inference [15, 16]. Finally, conditional
density estimators can be used as flexible inference networks for amortized variational inference and
as part of variational autoencoders [12, 25].

A challenge in neural density estimation is to construct models that are flexible enough to represent
complex densities, but have tractable density functions and learning algorithms. There are mainly
two families of neural density estimators that are both flexible and tractable: autoregressive models
[35] and normalizing flows [24]. Autoregressive models decompose the joint density as a product of
conditionals, and model each conditional in turn. Normalizing flows transform a base density (e.g. a
standard Gaussian) into the target density by an invertible transformation with tractable Jacobian.

31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA.

Relevant parameters for this
analysis (see PhD thesis of M.
Neumann)

The goal : Test the procedure for different data

• Goal : To reproduce the Z2 critical boundary via ML for [F. Cuteri et.al., JHEP
11 (2021)]

• Un-improved staggered quarks with and

• Trained only on , total training data ~3.4 million values for

Nf = 5 , Nτ = 4 Nσ ∈ {8, 12, 16}
ml ∈ {0.075, 0.080, 0.085, 0.090}

Nσ ∈ {8, 16}
(ψ̄ ψ, S)

8

Results : for ⟨ψ̄ψ⟩ Nσ = 8

• Training done by removing all data

• Quantity obtained :

• Results for 100K evaluations of the model

Nσ = 12

p (ψ̄ ψ, S |Nσ, ml, β)

MAF prediction for
the interpolation
on training set

β

9

Results for for ⟨ψ̄ψ⟩ Nσ = 16
MAF prediction for the interpolation
on training set

β

10

Results : ⟨ψ̄ψ⟩

MAF prediction for (genuine prediction !)Nσ = 12

0.090
11

Results : for χψ̄ψ 83 × 4

• With - we are free to compute higher moments !

• We see scaling of peak height, width, location from ML prediction

p (ψ̄ ψ, S Nσ, ml, β)

Interpolated mass
values

mass values in
original data

12

Results for for χψ̄ψ 163 , 123 × 4

13

With increasing lattice volume
we see shifting and narrowing of
peaks - indicating a phase
transition

With decreasing bare quark mass
we see shifting and narrowing of
peaks - indicating a phase
transition

Results for for some p (ψ̄ψ, S) Nσ, ml, β

From the data

MAF prediction

Another indication of learning the
correct density

14

MAF Inference vs standard finite size scaling from lattice
studies

not trained on

15

Ongoing steps

• Currently the model doesn’t (want to) train on the data

• Only running on TensorFlow for CPUs - required package not compatible
with current TF version & Model doesn’t compile on new TF version

• Expand the conditionals to and

• Explore in the direction of a statement made in [G. Papamakarios et. al.,
1705.07057]

“… accurate densities do not necessarily imply good performance in other tasks,
such as in data generation … Choice of method should be informed by whether
the application at hand calls for accurate densities, latent space inference or high
quality samples “

Nσ = 12

Nτ Nf

16

https://doi.org/10.48550/arXiv.1705.07057

A possible direction ?

17

• Learning probability densities for correlators typically needed in spectral
function reconstruction

• Can we make “continuous” in to get a better re-constructed
spectral function ?

GE T

are the largest at the lowest temperature, and become
smaller as the temperature increases.
Next, we perform the continuum and flow-time-to-zero

extrapolation of the chromoelectric correlator. First, we
interpolate the correlators obtained on 643 × Nτ lattices in τ
for various values of τF=τ2. From these interpolations we
determine the correlator on coarser lattices for values of τ
that are available for the finest 963 × Nτ lattices and then
perform continuum extrapolations for each τT and τF=τ2.
As is apparent from Fig. 1, the cutoff effects are small
except for small values of τT. We perform the continuum
extrapolation assuming that discretization errors go like
ðaTÞ2 ∼ 1=N2

τ , which turns out to be capable of describing
our data well; see Supplemental Material [14].
Finally, we perform the flow-time-to-zero extrapo-

lation of the chromoelectric correlators. In the region

a ≪
ffiffiffiffiffiffiffi
8τF

p
≪ τ we expect a linear τF dependence as

suggested by NLO perturbation theory [19]. And indeed,
for 0.25 <

ffiffiffiffiffiffiffi
8τF

p
=τ < 0.3 a linear dependence seems to

describe the data. Therefore, we use a linear extrapolation
in τF in this region to obtain the zero flow time limit, see
Supplemental Material [14]. The continuum and zero flow
time extrapolated results for the chromoelectric correlators
are shown in Fig. 2. The extrapolations do not change the
qualitative features of the correlation function but lead to a
significant increase of the statistical errors.
With the continuum and flow-time-extrapolated data for

the chromoelectric correlator we are in the position to
estimate the heavy quark diffusion coefficient κ. To do so
we need a parametrization of the spectral function that
enters Eq. (2). Any parametrization of the spectral function
should take into account its known behavior at small and
large ω. For small ω the spectral function is solely
determined by the heavy quark diffusion coefficient and
has the form [7]: ρEðω; TÞ ≃ ρIRðω; TÞ ¼ κω=ð2TÞwhile at
sufficiently large frequency the ω dependence of the
spectral function should be described by perturbation
theory due to asymptotic freedom in QCD. Moreover,
thermal corrections to the spectral function are very small
for ω ≫ T. Therefore, we assume that at large energies the
spectral function is given by the LO or NLO perturbative
T ¼ 0 result up to a constant: ρEðω ≫ TÞ ¼ ρUVðωÞ ¼
KρLO;NLOðωÞ. The factor K accounts for the fact that the
perturbative calculations may not be quantitatively reliable
due to missing contributions from higher orders.
Perturbative calculations at NLO [7,20], classical sim-

ulations in effective three-dimensional theory [21], and

FIG. 2. The continuum and zero flow time extrapolated results
for the chromoelectric correlator at different temperatures as a
function of τT. Also shown is the result for the highest temper-
ature at nonzero lattice spacing corresponding to Nτ ¼ 20 and
flow time

ffiffiffiffiffiffiffi
8τF

p
=τ ¼ 0.3. The dashed lines indicate fitted model

correlators for the “smax” model using the NLO ρUV.

FIG. 1. The chromoelectric correlator normalized by its weak-
coupling structure at tree level (Gnorm) as a function of τ calculated
on the 963 × Nτ lattices (open symbols) and 643 × 20 lattices
(filled symbols) at two different flow times in units of τ.

PHYSICAL REVIEW LETTERS 130, 231902 (2023)

231902-3

Here, Uðτ1; τ2Þ is the temporal Wilson line between
Euclidean time τ1 and τ2, and Eiðx; τÞ ¼ Uiðx; τÞU4ðxþ
î; τÞ −U4ðx; τÞUiðxþ 4̂Þ is the discretized chromoelectric
field [7]. GE receives only a finite renormalization at
nonzero lattice spacing [8]. In the continuum limit the
corresponding spectral function, ρEðω; TÞ, can be obtained
by inverting [7]:

GEðτ; TÞ ¼
Z

∞

0

dω
π

ρEðω; TÞ
cosh½ωτ − ω=ð2TÞÞ&

sinh½ω=ð2TÞ&
; ð2Þ

where

κðTÞ ¼ 2T lim
ω→0

½ρEðω; TÞ=ω&; ð3Þ

up to corrections proportional to T=M.
The leading order (LO) [7] and next-to-leading order

(NLO) [7] perturbative QCD estimates predict ρEðω; TÞ ∝
ω3, which should be valid for sufficiently large T and/or ω.
Therefore, GEðτ; TÞ is expected to receive significant
contributions also from the high-frequency regions.
Lattice QCD calculations.—We performed calculations

in 2þ 1 flavor QCD with a physical strange quark mass,
ms, and degenerate up, down quark masses ml ¼ ms=5
using the highly improved staggered quark (HISQ) action
[9] and tree-level improved Lüscher-Weisz gauge action
[10,11]. In the continuum limit our choice of ml corre-
sponds to mπ ≃ 320 MeV. The lattice spacing a and the
quark masses are fixed as in Refs. [12,13]. We carried out
calculations on 963 × Nτ lattices with 1=a ¼ 7.036 GeV
and Nτ ¼ 20, 24, 28, 32, and 36, that correspond to
temperatures T ¼ 352, 293, 251, 220, and 195 MeV,
respectively. To control discretization effects we also
performed calculations on 643 × Nτ lattices (Nτ ¼ 20,
22, and 24) at different lattice spacings, chosen such that
the above temperature values are reproduced. Further
details on the lattice setup are given in the Supplemental
Material [14].
Naive measurements of GEðτ; TÞ are highly susceptible

to high-frequency fluctuations in the gauge fields and
exhibit a poor signal-to-noise ratio. In quenched QCD,
the multilevel algorithm [43] has been applied to overcome
this problem. However, this algorithm is not applicable for
QCD with dynamical fermions. To overcome the noise
problem for our calculations with dynamical fermions we
use the Symanzik-improved [15] gradient flow [44]. In
quenched QCD it was demonstrated [16,17] that this
approach is as effective as the multi-level algorithm for
noise reduction, while also renormalizing GE nonpertur-
batively. By evolving the gauge fields in the fictitious flow
time, τF, as dictated by the force given by the gradient of the
gauge action, the gradient flow smears the gauge fields over
the radius

ffiffiffiffiffiffiffi
8τF

p
. Renormalization artifacts of the electric

field operators Ei due to finite lattice spacing a are highly

suppressed for
ffiffiffiffiffiffiffi
8τF

p
> a. However, the flow radius should

always be smaller than the relevant physical scales,
implying the constraint

ffiffiffiffiffiffiffi
8τF

p
< τ < 1=ð2TÞ.

For GE it was found that the more strict criterionffiffiffiffiffiffiffi
8τF

p
=τ < 1=3 should be respected [16,17,45].

Results.—Since ρE ∝ ω3 for large ω, GE is a steeply
falling function of τ. Therefore, it is convenient to normal-
ize it by the leading-order perturbative result [7], with the
Casimir factor, CF ¼ 4=3, and the coupling constant, g,
scaled out, that is, with Gnorm ≡GLO

E =ðg2CFÞ.
At small τ the lattice results will suffer from significant

discretization effects. Furthermore, the distortions of the
correlation functions due to gradient flow are the largest at
small τ. The cutoff effects as well as the distortions due to
gradient flow are also present in the free field theory. We
can use the free theory result to estimate and partly correct
for these effects. To reduce lattice cutoff effects as well as
distortions due to gradient flow we perform tree-level
improvement, meaning that we multiply the chromoelectric
correlator by the ratio of the free correlator obtained in the
continuum and the one calculated on the lattice (in
perturbation theory) with the given Nτ at nonzero flow
time: GEðτ; TÞ → GEðτ; TÞ × ½GnormðτTÞ=Gnorm

τF ðτT;NτÞ&.
The details of calculating Gnorm

τF ðτT;NτÞ can be found in
Supplemental Material [14].
The lattice chromo-electric correlators after tree-level

improvement and normalized by Gnorm for the 963 × Nτ

lattices are shown in Fig. 1. We show the results for two
different amounts of gradient flow, adjusted for each
separation τ by fixing

ffiffiffiffiffiffiffi
8τF

p
=τ. In addition, we show the

results from the coarsest lattices (643) as open symbols. We
see that gradient flow is effective in reducing UV noise
even for the largest lattice with Nτ ¼ 36. After tree-level
improvement, the difference of GE=Gnorm obtained on the
finest and the coarsest lattice is generally smaller than the
statistical errors of the data obtained on the finest lattice.
The flow time dependence is also quite small for τT > 0.25
if the ratio of the flow radius

ffiffiffiffiffiffiffi
8τF

p
to τ is between 0.25

and 0.3. For τT < 0.25 the amount of flow necessary to
suppress discretization artifacts already comes close to the
relevant physical scale of τ=3, leading to large distortions.
For this reason the corresponding data points need to be
omitted from the analysis.
Naively one expects that at high (but not extremely high)

temperatures GE=Gnorm should not be different from unity
since GLO

E ≈ g2CF is a good approximation for GE and
CFg2 ≃ 1. An interesting feature of the results shown in
Fig. 1 is that the ratioGE=Gnorm has a much larger deviation
from one than in the quenched case. In quenched QCD,
GE=Gnorm reaches a value of about 4 at most [18]. This is
due to the fact that the τ values in physical units (fm)
accessible in full QCD are larger and, as we will see later,
the value of κ in temperature units also turn out to be larger.
As in quenched QCD, deviations from unity of GE=Gnorm

PHYSICAL REVIEW LETTERS 130, 231902 (2023)

231902-2

L. Altenkort et. al.,

