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LQFT correlation functions
Imaginary-time correlation functions inform us of the spectrum of the theory

3

[Detmold, INT-14-57W]

E.g. for the nucleon in lattice QCD

⟨𝒜(t)𝒜†(0)⟩ = ∑
n

Zne−Ent ⟶ Z0 e−E0ttΔE ≫ 1

Operators designed to create/
annihilate state(s) of interest

Ground state energy (e.g. 
particle mass)

Matrix elements, form factors, etc. accessible 
via additional operator insertions.



Noise problems in correlation functions
 
 

Must find plateau* 

- Small : Excited-state contamination


- Large : Signal-to-noise ratio 
vanishes exponentially!

t

t

4

Wagman, Lattice 2018

* Or regime dominated by only a few states

meff(t) = − ∂t log ⟨𝒜(t)𝒜†(0)⟩
= − ∂t log[∑

n

Zne−Ent] ⟶ E0
tΔE ≫ 1



Noise problem = sign problem
Intuitively a noise problem implies … 
 
 
 

… which is a sign problem! (if the magnitude is well concentrated) 
 
 
 
 

5

Err ∼ ⟨ |C(t) |2 ⟩
The RMS magnitude …

|⟨C(t)⟩ |
… is exponentially larger than 

the expectation value.

≫

RMS magnitudeExpectation 
value

C(t) ≡ 𝒜(t)𝒜†(0)
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Noise problem = sign problem

6

Distribution of complex 
phases ~uniform at large 

baryon correlator separations.

[Wagman & Savage, PRD96 (2017) 114508]

Full Magnitude Phase 

[Wagman 1711.00062]

vs.

Noise in nucleon 
effective mass carried 

by complex phase



Path integral deformations
Lattice integrands are often holomorphic, allowing the integration contour to be 
deformed without bias.

7 [Image credit: Neill Warrington]
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...

ℳ

ℳ̃
Many works applying this to oscillatory path 
integrals originating from complex  
(e.g. non-zero density, real time)

S(ϕ)

⟨𝒪⟩ =
1
Z ∫ℳ

e−S(ϕ)𝒪(ϕ) =
1
Z ∫ℳ̃

e−S(ϕ̃)𝒪(ϕ̃)

Connection to

Lefschetz thimbles,

Complex Langevin



Can we leverage contour 
deformations to shrink  

while preserving ? 
Var[𝒪]

⟨𝒪⟩



Case study: Gaussian StN problem
Toy example: Simple observable in a Gaussian “theory” 
 
 

Monte Carlo approach: Sample , measure p(x) = e−x2/2/Z eikx

9

Signal: ⟨eikx⟩ = e−k2/2

Variance: ⟨ |eikx |2 ⟩ = 1

StN and sign problem!

⟨eikx⟩ =
1
Z ∫

∞

−∞
dx[eikx]e−x2/2

°4 °2 0 2 4

x
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100 ≠
eikx

Æ
MC

Real part of 
Integrand (k = 5)



Case study: Gaussian StN problem

10

 
Deformation approach: 
 

⟨eikx⟩ =
1
Z ∫ℝ

dx [eikx]e− 1
2 x2

=
1
Z ∫ℝ+ik′ 

dx̃ [eikx̃]e− 1
2 x̃2

=
1
Z ∫

∞

−∞
dx′ [eikx′ −kk′ ]e− 1

2 x′ 
2−ix′ k′ + 1

2 k′ 
2

= ⟨eix′ (k−k′ )e
1
2 k′ 

2−kk′ ⟩

1. Analytically 
continue & 

deform contour

2. Give 
coordinates to 
new contour

3. New observable 
w.r.t original MC 

weights

°3 °2 °1 0 1 2 3

x0

R

R + ik0

x = x0

ex = x0 + ik0

Result: ⟨eikx⟩ = ⟨eix′ (k−k′ )e
1
2 k′ 

2−kk′ ⟩



Case study: Gaussian StN problem

11

Less severe sign problem: Deformed 
observable  has smaller 
magnitude for . 

Exactness preserved: Anti-correlated 
phase fluctuations from the deformed 
action . 
 

[eikx′ −kk′ ]
kk′ > 0

e− 1
2 x′ 

2−ix′ k′ + 1
2 k′ 

2

0.0

0.5

1.0

R
at

io
to

ex
ac

t k0 = 1 k0 = 2 k0 = 3 k0 = 4 k0 = 5

≠
e3ix

Æ
R≠

e3ix
Æ

R+ik0

Result: ⟨eikx⟩ = ⟨eix′ (k−k′ )e
1
2 k′ 

2−kk′ ⟩

(k′ = 0)
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😃
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Integral deformations for noisy observables

• Deformed path integral defines a modified observable: 
 
 

• Identical Monte Carlo expectation values , different variance:⟨ ⋅ ⟩

12

𝒬(ϕ) ≡ det J(ϕ)e−[S(ϕ̃(ϕ))−S(ϕ)]𝒪(ϕ̃(ϕ))

⟨𝒬(ϕ)⟩ = ⟨𝒪(ϕ)⟩
Var[𝒬(ϕ)] ≠ Var[𝒪(ϕ)]

Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514

Variance may be reduced by a 
good choice of deformation



Parameterize  then minimize variance.

- Caveat: Complex analyticity


- Caveat:  variables 

Insight: gradients of variance w.r.t.  can be 
defined using original Monte Carlo ensemble.


f(ϕ; ω)

SU(N)

ω

13

Learning the integration contour

[Image credit: 1805.04829]

The choice of  defines , , and the variance.f : ϕ ↦ ϕ̃ ℳ̃ 𝒬(ϕ)

Detmold, GK, Wagman, Warrington  PRD102 (2020) 014514, 
Detmold, GK, Lamm, Wagman, Warrington  PRD103 (2021) 094517

∇ ⃗ω Var[Re 𝒬] = ⟨∇ ⃗ω (Re 𝒬)2⟩ = 2⟨Re 𝒬 Re ∇ ⃗ω 𝒬⟩

= 2 ⟨(Re 𝒬)Re 𝒬 [−∇ ⃗ω Seff +
∇ ⃗ω 𝒪(Ũ)

𝒪(Ũ) ] ⟩
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Analytic continuation & holomorphy
Write Boltzmann weight  and observable  in terms of real field variables… 

- For , we use angular parameters , 
 and  

 
 
 
 

e−S 𝒪

SU(N) Ω ≡ (ϕ1, …, θ1, …)
ϕi ∈ [0,2π] θi ∈ [0,π/2]

14

Bronzan PRD38 (1988) 1994

where , .si ≡ sin(θi) ci ≡ cos(θi)

SU(3) parameterization

… then analytically continue.


- Complexified angular params extends 



- Adjoints should be rewritten 

SU(N) → SL(N, ℂ)

U† → U−1

 angles(N2 − 1)



Deforming angular variables
 
 
Angular parameterization of 

 has two types of angles:


- Azimuthal angles 


- Zenith angles  

In each case, must deal 
appropriately with endpoints.

SU(N)
ϕj ∈ [0,2π]

θi ∈ [0,π/2]

15

✓i

invalid e✓i

valid e✓i

�i

valid e�i

valid e�i

identified

Zenith angles Azimuthal angles
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Deformation
Vertical deformations 


 
 
Fourier series definition of , using a subset of all possible terms 
 
 
 

Triangular Jacobian:  only allowed to depend on . Jacobian 
determinant calculable in .

Ω̃x = Ωx + if(Ω)

f(Ω)

f(Ω) y ≤ x
O(V)

This is key for scalability!

fθa =
Λ

∑
m=1

κxy;a
m sin(2mθa

y ){1 +
Λ

∑
n=1

[
3

∑
r ≠ a
r = 1

λxy;ar
mn sin(2nθr

y) +
5

∑
s=1

ηxy;as
mn sin(nϕs

y + χ xy;as
mn )]},

fϕa =
Λ

∑
m=1

κxy;a
m sin(mϕa

y + ζxy;a
m ){1 +

Λ

∑
n=1

[
3

∑
r=1

λxy;ar
mn sin(2nθr

y) +
5

∑
s ≠ a
s = 1

ηxy;as
mn sin(nϕs

y + χ xy;as
mn )]} .

ϕ̃a
x = ϕa

x + iκx;ϕa

0 + i∑
y≤x

fϕa(Ωy; κxy, λxy, χxy, ζxy),

θ̃a
x = θa

x + i∑
y≤x

fθa(Ωy; κxy, λxy, χxy) .

Original 
real part

Parameterized 
imaginary shift



Deformations crush 1+1D noise problems
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SU(2) gauge theory SU(3) gauge theory

`

W`(x) ! ≠(x)W`(x)≠†(x)

Open loop

`

tr W`(x) ! tr W`(x)

µ

∫

Closed loop

Area 
A

Original 𝒪
Deformed 𝒬

Original 𝒪
Deformed 𝒬

Wilson loops of area A

Detmold, GK, Lamm, Wagman, Warrington  PRD103 (2021) 094517



No scaling with Fourier cutoff
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Restricted “constant shift” deformations
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1+1D SU(3) Wilson loops- Deform only periodic angular 
variables 


- 


- Field-independent, but spacetime 
dependent   learnable 
parameters

ϕi ∈ [0,2π]

ϕ̃i = ϕi + iλ

⟹ O(V)

Original 𝒪
Deformed 𝒬



Direct vs. U-net parameterization
Direct parameterization with  learnable parameters leads to overtraining 
in typical problems!


O(V)

20

1. Transfer learning

0 500 1000 1500 2000

Training iteration

10°4

10°2

100

L

A = 4

A = 8

A = 12

A = 16

A = 20

A = 24

A = 28

A = 32

Va
ria

nc
e

2. Indirect U-net parameterization

Detmold, GK, Lin, Shanahan, Wagman  (2023) 2309.00600, NeurIPS ML4PS (2023)

Wilson loop and 
gauge fixing scheme Learned shifts



U-nets allow training for 2+1D problems

21

Variance improvement 
on 2+1D SU(2) Wilson loops

Wilson loop and 
gauge fixing scheme

Learned 
shifts



Gauge fixing skeletons in the closet
In 1+1D, could change basis to plaquettes plus gauge dofs:


This is not uniquely possible in 2+1D and higher!


- Either work with subset of plaquettes with a complicated change-of-basis


- Or, simpler, perform maximal-tree gauge fixing and use remaining links as dofs


Have explored both options — No significant benefit to former, more flexibility 
provided by the latter. Which maximal tree is a hyperparameter to optimize.

22

{Uμ(x)} ↔ {Up(x), Ω(x)}

Detmold, GK, Lin, Shanahan, Wagman  (2024) In progress



Maximal tree gauges
Defined by a subset of lattice links containing no closed loops to be fixed to 


Interplay between Wilson loop geometry and maximal tree choice

I

23

GOOD GOOD GOOD BADOK

Worse performance as 
opening is moved lower

No variance 
improvements

Exponential variance improvement 
with Wilson loop area



Could we “learn” the maximal tree?
We define a parameterized gauge fixing functional


- Fix gauge by minimizing over gauge orbit


- Includes Coulomb, Landau, and all maximal tree gauges


- Can be optimized using adjoint state method

24

See poster at Lattice ’24!

E ∝ − ∑
x,μ

Tr(pμ(x)Ug
μ(x))

General gauge-fixing functional
 (Landau gauge)pμ(x) = 1

 (Coulomb gauge)pi(x) = 1

 (Max. trees)pμ(x) = kμ(x) ∈ {0,1}

Yin Lin



Summary
Using complex analysis we can …


- Deform observables , where 
  but  . 

- Minimize variance numerically (using 
existing MC samples). 

- Achieve far more precise measurements in 
proof-of-principle applications to lattice field 
theories.


 
Look out for a paper on 3d and 4d SU(N) results soon! Come chat at the poster session!

𝒪 → 𝒬
⟨𝒪⟩ = ⟨𝒬⟩ Var[𝒪] ≠ Var[𝒬]

25

I.e., no systematic error!
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  but  . 

- Minimize variance numerically (using 
existing MC samples). 

- Achieve far more precise measurements in 
proof-of-principle applications to lattice field 
theories.


 
Look out for a paper on 3d and 4d SU(N) results soon! Come chat at the poster session!

𝒪 → 𝒬
⟨𝒪⟩ = ⟨𝒬⟩ Var[𝒪] ≠ Var[𝒬]

25

I.e., no systematic error!

Thanks! 
Questions?



Backup slides
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Why select ?W11
𝒜

Any observable with equivalent expectation value can be taken as the 
base observable for deformation … 
 
 

… however, some choices are better than others!

27

Re[z]

°2
0

2
Im[z]

°2
0

2

0

5

10

|eiz|

Re[z]

°2
0

2
Im[z]

°2
0

2

0

5

10

|e°iz|

Re[z]

°2
0

2
Im[z]

°2
0

2

0

5

10

| cos z|

∫
2π

0

dz
2π

eiz eβ cos z = ∫
2π

0

dz
2π

e−iz eβ cos z = ∫
2π

0

dz
2π

cos z eβ cos z = I1(β)

✅
✅ ❌

1D example:
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SU(N) lattice spacing effects
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Similar variance reduction effects across all 3 lattice spacings:

Variance reduction factor

SU(2) SU(3)



Use phase-magnitude decomposition for variables 
 
 
 
 
 
 
 
Interested in correlation functions

Holomorphic:

Complex scalar theory



Intuition: phase differences appear in action similarly to phases of Schwinger, 
use shifts into imaginary direction 
 
 
 
 

Extra terms inspired by small phase fluctuation expansion.

Deformation for scalar theory
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Using polar dofs in the path integral 
 

and the holomorphic action 
 
 
 

Results: 0+1D  correlatorsϕ4

S[R, θ] = − 2∑
t

R(t) R(t + 1) cos[θ(t + 1) − θ(t)]

+∑
t

V(R(t))

V(R) ≡ (2 + m2) R2 + λR4

ϕ(t) = R(t)eiθ(t)
Effective mass

StN
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Large t: StN decays exponentially 

Small t: Excited state effects 

To extract physical information, 
fit excited state model

Non-lattice applications: GFMC/AFDMC
[Gandolfi, et al. 2001.01374]
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GFMC results

33

0.00 0.02 0.04 0.06 0.08 0.10

ø [MeV°1]

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.25

E
rr

[O
ri

gi
n
al

]/
E

rr
[D

ef
or

m
]

Trained

Ramp

0.00 0.02 0.04 0.06 0.08 0.10

ø [MeV°1]

°4

°2

0

2

4

6

hH
i

Original

Trained

Ramp

0.00 0.02 0.04 0.06 0.08 0.10

ø [MeV°1]

°0.3

°0.2

°0.1

0.0

0.1

0.2

0.3

∑
¡ 0

Trained

Ramp

Learned imaginary shift 
vs Euclidean time

Measured deuteron 
binding energy Improvement ratio

No spectacular results for , but …⟨H⟩

[GK, Lovato, Rocco, Wagman 2304.03229]
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GFMC results

34

… deuteron Euclidean density response  significantly improved.ρ( ⃗q)
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