Entanglement entropy with generative neural networks

Tomasz Stebel

Institute of Theoretical Physics,Jagiellonian University, Kraków

NATIONAL SCIENCE CENTRE

Project is supported by National Science Centre, grant no. 2021/43/D/ST2/03375.

with Piotr Białas, Piotr Korcyl and Dawid Zapolski

Based on: CPC 281 (2022) 108502 and 2406.06193

> ML meets LFT, 26.07.2024

Plan

- \blacktriangleright ▶ 1d quantum Ising model
- \blacktriangleright Entanglement entropy
- \blacktriangleright Variatonal Autoregressive networks
- \blacktriangleright Hierarchical autoregressive networks (HAN)
- \blacktriangleright ▶ HAN for entanglement in Ising model
- \blacktriangleright Numerical results

$1+1D$ quantum Ising model

Spin chain with periodic boundary conditions $(1+1D)$:

$$
\hat{H} = -J\sum_{\langle i,j\rangle} \hat{\sigma}_i^z \hat{\sigma}_j^z - h\sum_i \hat{\sigma}_i^x,
$$

where $\widehat{\sigma}^x$ $h\text{-}$ external magnetic field $^{\scriptscriptstyle \chi}$, $\widehat{\sigma}^{\scriptscriptstyle Z}$ are Pauli matrices;

Entanglement entropy

Density matrix of the system:

$$
\rho_{ij} = \frac{\langle i|e^{-\beta H}|j\rangle}{\sum_{i}\langle i|e^{-\beta H}|i\rangle}
$$

Normalization

We divide the system into 2 subsystems A and B.

 $\rho_A = \text{Tr}_B \, \rho$ Reduced density matrix of subsystem A:

von Neumann entanglement entropy:

$$
S(A)=-\operatorname{Tr}\rho_A\log\rho_A
$$

Rényi entropy of order n:

$$
S_n(A) = \frac{1}{1-n} \log \operatorname{Tr} \rho_A^n
$$

In this talk we focus on $n = 2$

 Z

Path integral formalism

To calculate $S_n(A) = \frac{1}{1-n} \log Tr \rho_A^n$ one can use the path integral formalism:

1+1D quantum Ising model with transverse field

$$
\hat{H} = -J \sum_{\langle i,j \rangle} \hat{\sigma}_i^z \hat{\sigma}_j^z - h \sum_i \hat{\sigma}_i^x,
$$

2D classical Ising model (without external field)

$$
E(\mathbf{s}) = -\beta \sum_{\langle i,j \rangle} s_i s_j
$$

5

 $s_i = \pm 1$

 T ("time")

For simplicity we assume that couplings between spins are the same in space and time direction (specific choice of *,* $*h*$ *and time discretization).*

Conformal symmetry \rightarrow some results are available $\beta=\beta_c=$ 1 2 $\frac{1}{2}$ log($1+\sqrt{2})$

Replica trick

P. Calabrese and J. Cardy, Journal of Physics A: Mathematicaland Theoretical, vol. 42, p. 504005, dec 2009.

To calculate Rényi entanglement entropy partition function is not enough.

Replica trick

B $T = kL$

P. Calabrese and J. Cardy, Journal of Physics A: Mathematicaland Theoretical, vol. 42, p. 504005, dec 2009.

Partition function of the n-replica system:

$$
Z_n(A) = \sum_{\mathbf{s}_{(n)}} e^{-E_{(n)}(\mathbf{s}_{(n)})}
$$

Rényi entropy of order n:

$$
S_n(A) = \frac{1}{1-n} \log \frac{Z_n(A)}{Z^n}
$$

"Standard" partition function (1 replica)

Generative neural networks are capable to calculate partition functions...

...by learning Boltzman probability distribution $p(s)$.

Replica trick

P. Calabrese and J. Cardy, Journal of Physics A: Mathematicaland Theoretical, vol. 42, p. 504005, dec 2009.

Renyi entropy (RE):

$$
S_n(A) = \frac{1}{1-n} \log \frac{Z_n(A)}{Z^n}
$$

When $T \to \infty$ (time direction) the RE will
measure the entanglement of the measure the entanglement of the ground state.

In the simulations we take:

 $T = kL,$ where $k \in \mathbb{Z}$, $k \gg 1$

Variatonal Autoregressive networks (VAN)

 $q_{\theta}(s) = q_{\theta}(s_1) q_{\theta}(s_2|s_1) q_{\theta}(s_3|s_2, s_1) ... q_{\theta}(s_N|s_{N-1}, ..., s_1)$

Input: spin configuration (value of each spin) $(\pm 1,... \pm 1)$

> Autoregressivenetworks:

Output: conditional probabilities

Half of the connections removed.

Białas, Korcyl, Stebel, Comput.Phys.Commun. 281 (2022) 108502**Hierarchical autoregressive** networks S_1 S_2 S_3 It is there a better way to numerate the spins? ${\color{red}S_{16}}$

 We can use a property of Nearest Neighbour interactions:

Probability of green interior depends only onorange boundary (Hammersley-Clifford theorem)

Hierarchical autoregressive networks (HAN)

Loss function and training

Training = adjust network weights θ such that $q_{\theta}(\bm{s})$ is as close to $p(\boldsymbol{s}) = Z^{-1} e^{-\beta E(\boldsymbol{s})}$ as possible.

Kullback–Leibler (KL) divergence

$$
D_{\text{KL}}(q_{\theta} \parallel p) = \sum_{s} q_{\theta}(s) \ln \left(\frac{q_{\theta}(s)}{p(s)} \right)
$$

can measure a difference between two distributions.

$$
D_{\text{KL}}(q_{\theta} \parallel p) = \sum_{s} q_{\theta}(s) \ln \left(\frac{q_{\theta}(s)}{p(s)} \right) = \beta (F_q - F),
$$

where

$$
F_q = \frac{1}{\beta} \sum_{s} q_\theta(s) \left[\beta E(s) + \ln q_\theta(s) \right]
$$
 Variational
free energy

Albergo, Kanwar, Shanahan, Phys.Rev.D 100 (2019) 3, 03451;Imperfection of train, Phys. Rev. E, vol. 101, p. 023304,

- \blacktriangleright NN cannot learn $p(s)$ perfectly. We can however correct it. There are two ways to do this:
	- 1) Neural Markov Chain Monte Carlo (NMCMC)

2) Neural Importance Sampling (NIS):

Reweighting observables

$$
\langle \mathcal{O}(s) \rangle_p \approx \sum_i w_i \mathcal{O}(s_i)
$$

where
$$
w_i = \frac{\hat{w}_i}{\sum_i \hat{w}_i}
$$
 for $\hat{w}_i = \frac{e^{-\beta H(s_i)}}{q(s_i)}$

Here I focus on 2) as it gives unbiased estimator of the partition function:

$$
Z \approx \frac{1}{N} \sum_{i=1}^{N} \hat{w}(\mathbf{s}_i) \equiv \hat{Z}_N, \qquad \mathbf{s}_i \sim q_\theta
$$

Coming back to entanglement...

Rényi entropy of order n:

$$
S_n(A) = \frac{1}{1-n} \log \frac{Z_n(A)}{Z^n}
$$

Partition function of the n-replica system:

$$
Z_n(A) = \sum_{\mathbf{s}_{(n)}} e^{-E_{(n)}(\mathbf{s}_{(n)})}
$$

<u>We use NIS to calculate $Z_{\mathbf{2}}$ </u> $Z_2(A) \equiv Z_2(l)$

For this purpose, we need to train network to probability distribution given by "2-replica system energy" $E_{\rm 2}(s)$

$$
p_2(s_{2-replica}) = e^{-\beta E_2(s_{2-replica})}/Z_2
$$

Generating 2-replica system

Numbers/marks denotes spins

Repeated number means that the spin is a copy

Marks denotes the hierarchy level.

Energy of 2-replica system

To calculate energy of this system $E_{\rm 2}$ we need to avoid double counting.

The red dashed lines denote interactions which are removed comparing to standard periodic boundary conditions.

Entropic C-function

We consider derivative of $S_2(l)$ w.r.t. system size (with proper normalization). normalization) :

$$
C_n(l) = \left[\frac{L}{\pi} \sin\left(\frac{\pi l}{L}\right)\right]^{D-1} \frac{1}{|\partial A|} \frac{1}{1-n} \times \frac{1}{\pi} \sin\left(\frac{L}{\pi}\right) \times \lim_{\epsilon \to 0} \frac{1}{\epsilon} \log \frac{Z_n(l)}{Z_n(l+\epsilon)}.
$$

Known as entropic C-function.

It is UV finite in Quantum Field Theory (contrary to entanglement entropy).

Practical reason: there are more results for C_2 than for $\mathit{S}_2.$

After discretization:

$$
C_n(l) \approx \frac{L}{2\pi} \sin\left(\frac{\pi l}{L}\right) \frac{1}{1-n} \log\frac{Z_n(l-\frac{1}{2})}{Z_n(l+\frac{1}{2})},
$$

Numerical results

Dependence on T

 $T = kL,$ where $k \in \mathbb{Z}$, $k \gg 1$

We start with small system of 8 spins: $L=8$.

One can get exact results for such small size using transfer matrix method.

$L = 32$ system (32 quantum spins)

For k=8 and L=32 our 2-repica system has $2^{14} = 16384$ classical spins.

The training of such systems is challenging and the resulting statistical errors for C_2 are large:

Fitting k -dependence and extrapolation $k \to \infty$

We use properties for $k \rightarrow \infty$:

1)
$$
C_2(x) = -C_2(1-x)
$$

2) subleading corrections for x and $1 - x$ have the same dependence on k .

Model for fit:

$L = 32$ system: $k = 8$ vs extrapolation

22

Comparison with theoretical calculations (and the other method)

23

Comparison with theoretical calculations (and the other method)

by fitting above formula to \mathcal{C}_2 obtained using Jarzynski theorem.

See talk by Elia

Our result agrees with Bulgarelli&Panero.

Summary

- Autoregressive networks can be used to calculate partition functions.
- Using replica trick one can express the Renyi entanglement entropy in terms of portion function of quote m is the under m in terms of partition function of system with specific boundary conditions.
- We calculated $n = 2$ entanglement entropy for 1d quantum Ising model, with 32 spins.
- Can this method be competitive to other methods (tensor networks, Jarzynski equation, etc...)?
- ▶ Better NN architectures? (see talk by Ankur)

MARTIN CONTROLLER

 Can calculate entanglement in Lattice Field theories with this method?

Thank you $\frac{25}{25}$