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Introduction

@ Deep Neural Networks work well in image classification.
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Introduction

@ Deep Neural Networks work well in image classification.
@ Learn with examples and non-examples.

@ Verification tasks of finding adversarial examples or preventing them.

Tonicha Crook (Swansea University) CA Perspective on ML November 2021 2/13



Outline

© Background

© Computable Analysis
9 Adversarial Examples
@ Verifying Classifiers

© Learners and their Robustness

Tonicha Crook (Swansea University) CA Perspective on ML November 2021 3/13



Background

@ Machine Learning is used in various domians
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@ Machine Learning is used in various domians

@ How much trust can we put into the responses of Machine Learning
Models?

@ Most verification techniques are hard to apply
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Computable Analysis

@ Most Machine Learning notions are based on real numbers
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Computable Analysis

@ Most Machine Learning notions are based on real numbers

@ Computable Analysis is developed as the theory of functions on the
real numbers and other sets from analysis, which can be computed by
machines.

@ What properties of the domain are actually needed to obtain the
fundamental results?

@ What kind of verification questions are answerable about Machine
Learning models?
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Adversarial Examples

Adversarial Examples

An adversarial example is the result of a small change or perturbation to
the original input that results in a change of classification made by the
DNN. l.e. given the classifier f and an input x, an adversarial example is
f(x) # f(x+r) for ||r]| < eand e > 0.
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Adversarial Examples

@ sign(Ve 0.29)  (on(v,5(6, 2,y))
“panda” “nematode” “gibbon”
57.7% confidence 8.2% confidence 99.3 % confidence

Figure: Adverserial Example - PyTorch

1
Adversarial Example Generation. Available at https://pytorch.org/tutorials/beginner/fgsm_tutorial.html
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Classifiers

Properties of a classifier

Simple examples of properties that such a classifier f might exhibit,
include:

e Can f output a specific colour for points stemming from a given
region?

@ Is f constant on a given region?

@ Are there two ‘close’ points that f maps to distinct colours?
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Basic Verification Questions

Computable Verification Questions

The following verification questions are computable:

@ Is there any point that a given function maps to a particular class?
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Computable Verification Questions

The following verification questions are computable:

@ Is there any point that a given function maps to a particular class?
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Basic Verification Questions

Computable Verification Questions

The following verification questions are computable:

@ Is there any point that a given function maps to a particular class?

@ Are all inputs mapped to a particular class?
© Do all things map to a specific answer, n, or does something map to a
different colour to n?
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Basic Verification Questions

Computable Verification Questions

The following verification questions are computable:
@ Is there any point that a given function maps to a particular class?

@ Are all inputs mapped to a particular class?

© Do all things map to a specific answer, n, or does something map to a
different colour to n?

© Does everything map to the same answer or is there clear variation?

v
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Choosing the Distance Parameter

Locally Constant

LocallyConstant is a map which has a point, a radius of a ball around the
point and a function.
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Locally Constant and Adversarial Examples

@ Are their adversarial examples in the vicinity of the point?
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Choosing the Distance Parameter

Locally Constant

LocallyConstant is a map which has a point, a radius of a ball around the
point and a function.

Locally Constant and Adversarial Examples
@ Are their adversarial examples in the vicinity of the point?

@ How small the do the perturbations need to be to count as adversarial
examples?

@ How much would we need to disturb a given point in order to get an
adversarial example?

Optimal Radius

OptimalRadius is a map which shows the optimal radius needed for the
closed ball in order for the point to become an adversarial example.
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Learners and their Robustness

A learner is a map from finite sequences of labelled points to classifiers. \
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Learners and their Robustness

A learner is a map from finite sequences of labelled points to classifiers.

Robust Points
How robust is a classifier under small additions to the training data?
A basic version of this is a map which can give one of three responses, 1, 0

Oor no answer.
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Conclusions

@ Removing conditions usually leads to non-computability.
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Conclusions

@ Removing conditions usually leads to non-computability.
@ The efficiency of the algorithms will be crucial for practical relevance.

@ What if we changed the questions we asked?
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Thank You for Listening

[3 Tonicha Crook, Jay Morgan, Arno Pauly & Markus Roggenbach:
A Computability Perspective on (Verified) Machine Learning.
arXiv:2102.06585
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