Observation of delayed black hole formation in GW170817

Reference Van Putten, M.H.P.M. & Della Valle, M., 2021, under review van Putten, M.H.P.M., Levinson, A., Frontera, Guidorzi, Amati, L. & Della Valle, M., 2019, EPJP, 134, 537

AI&ML for fundamental science Nov 15-17 2021

(c)2021 van Putten

A multilevel analysis by heterogeneous computing

- Maurice H.P.M. van Putten
- Department of Physics and Astronomy Sejong University Seoul, South Korea

Outline

- Gravitational collapse to NS or BH
- GW-calorimetry applied to GRB170817A
- Rejuvenation in collapse with angular momentum
- Parameter estimation and PFA's
- Summary and conclusions

Gravitational collapse

2020 Nobel Prize in Physics

Formation of "*Trapped surfaces*" from which no light shall escape: black holes of John Michel (1793) and Pierre Laplace (1795) introduce the correct radius of Schwarzschild black holes

Black hole formation is a robust prediction of general relativity

(c)2021 van Putten

Roger Penrose **Reinhard Genzel** Andrea Ghez

Supernova remnants

(c)2021 van Putten

 (J, μ) misaligned

Core-Collapse Supernovae

Diverse population: factories of neutron stars and stellar mass black holes

(c)2021 van Putten

Maurer, Mazzali, Deng et al. 2010 van Putten, Della Valle & Levinson, 2011

... stirred

"Ideally, vodka martinis should be stirred, not shaken"

Angular momentum-rich gravitational collapse to *rotating* black holes

(c)2021 van Putten

BMJ 2013;347:f7255 doi: 10.1136/bmj.f7255 (Published 12 December 2013)

RESEARCH

CHRISTMAS 2013: RESEARCH

Were James Bond's drinks shaken because of alcohol induced tremor?

Graham Johnson *ST5 emergency medicine*¹, Indra Neil Guha *clinical associate professor of* hepatology², Patrick Davies consultant paediatric intensive care³

NS versus BH

A rapidly spinning magnetar or black hole

 E_{gw} limited by central energy reservoir *E_J*

 $E_J \lesssim \text{few } \% Mc^2$

Pulsars when (J, μ) misaligned

NS

(c)2021 van Putten

CC-SNe likely powered by magnetic winds from an **angular momentum-rich central engine**.

Bisnovatyi-kogan 1970

 $E_J \lesssim 30 \% Mc^2$

Do not make pulsars, (J, μ) aligned (Carter's theorem)

BH is potentially *far* more powerful than NS

Amati relation LGRBs - SGRBEEs

- SGRB(-EE)'s from mergers
- T90 of EE's tens of seconds >> accretion time

Duration T90: consistent with τ BH spin

Amati relation LGRBs - SGRBEEs

- SGRB(-EE)'s from mergers
- Too of EE's tens of seconds >> accretion time

Duration T90: consistent with τ BH spin

Broadband Komogorov spectrum of bright GRBs from *BeppoSAX*: no peak expected from proto-neutron stars

Amati relation LGRBs - SGRBEEs

- SGRB(-EE)'s from mergers
- Too of EE's tens of seconds >> accretion time

Duration T90: consistent with τ BH spin

Broadband Komogorov spectrum of bright GRBs from *BeppoSAX*: no peak expected from proto-neutron stars

(van Putten & Gupta 2009)

nLC of BATSE 4B catalogue: consistent with BH spin-down

Amati relation LGRBs - SGRBEEs

- SGRB(-EE)'s from mergers
- Too of EE's tens of seconds >> accretion time

Duration T90: consistent with τ BH spin

nLC of BATSE 4B catalogue: consistent with BH spin-down

True calorimetry in EM, v and GWs?

GW170817-GRB170817A

(c)2021 van Putten

300 Earth masses of gold (at D = 40 Mpc in NGC 4993)

Pozanenko et al. 2018

NS or BH central engine?

Gravitational radiation

Fundamental constant of luminosity

$$L_0 = \frac{c^5}{G} = 3.6 \times 10^{59} \text{erg s}$$

.. hypothetically from a black hole exploding in a light-crossing time scale $t_c = R_g/c$

(c)2021 van Putten

$s^{-1} = 2 \times 10^5 M_{\odot} c^2 s^{-1}$

ESO/M. Kornmesser

Gravitational radiation

http://carina.astro.cf.ac.uk/groups/relativity/research/part4.html

$$L_{gw} = \frac{32}{5} \left(\mathscr{M}\Omega_K \right)^{\frac{10}{3}} L_0$$

Observable = "tiny quadrupole perturbation" x L_0

(c)2021 van Putten

 $\omega_{gw} = 2\omega_K$ a,...

Chirp mass $\mathcal{M} \simeq 2^{\frac{1}{5}} R_g$

LIGO catalogue of mergers

Credit: Visualization: LIGO - Virgo / Frank Elavsky, Aaron Geller / Northwestern

(c)2021 van Putten

Explore by GWs

THE ASTROPHYSICAL JOURNAL LETTERS, 851:L16 (13pp), 2017 December 10

Abbott et al.

Gravitational frequency

Search scope

THE ASTROPHYSICAL JOURNAL LETTERS, 851:L16 (13pp), 2017 December 10

(c)2021 van Putten

Gravitational frequency

Abbott et al.

Search scope

THE ASTROPHYSICAL JOURNAL LETTERS, 851:L16 (13pp), 2017 December 10

Gravitational frequency

Abbott et al.

Search scope

THE ASTROPHYSICAL JOURNAL LETTERS, 851:L16 (13pp), 2017 December 10

Gravitational frequency

Abbott et al.

Butterfly filtering response curves

Search threshold $\mathscr{C}_{GW} \simeq 1 \% M_{\odot} c^2$

Relative sensitiviy = $\frac{\text{merger}}{\text{post-merger}} \sim 1$

Relative sensitiviy = -

Movie in *.mp4 https://zenodo.org/record/4390382

GW-calorimetry

GW170817 Chirp (IMAGE)

(c)2021 van Putten

\mathscr{C}_{GW} indicates NS or BH?

From NS?

 $\mathscr{E}_{GW} \simeq 3.5 \,\% M_{\odot} c^2$ post-merger descending chirp

$$f_{gw} \lesssim 700 \, \mathrm{Hz} f_{spin} = \frac{1}{2} f_{gw} \lesssim 350 \, \mathrm{Hz}$$

$$E_J^- \simeq \frac{\pi}{5} f_{gw}^2 M R^2 \lesssim 1.6 \times 10^{52} \left(\frac{M}{2.5M_{\odot}}\right) \left(\frac{R}{18 \text{ km}}\right)^2 \text{ erg} \ll \mathscr{C}_{GW}$$

HNS is energetically ruled out by a factor of at least 4

(c)2021 van Putten

Rejuvenation in stirred collapse

HNS defines $(M, J), E_J^-$

(c)2021 van Putten

BH with $E_I^+ \gg E_J^-$

Gravitational collapse in the 1.7 s gap

PFA: $p_1 = 1.7/2048$

(c)2021 van Putten

1.6

GW-data

1860

GW170817EE

EM-data (Gill et al. 2019)

van Putten & Della Valle, 2021, under review AI&ML 2021/2

Parameter estimation

Consistency duration GRB170817A, EE in GWs and τ of BH-spin

(c)2021 van Putten

 $\tau_s \simeq T_{90}^{8-70 \text{keV}}$

Consistency Duration EE in GWs Duration GRB170817A

Independent H1- and L1-analysis

Same parameter estimates (t_s , τ_s) from H1 and L1 individually

(c)2021 van Putten

$$f_{gw}(t) = (f_s - f_0) e^{-\frac{t - t_s}{\tau_s}} + f_0$$

Cross-correlation $PDF(t_s)$ of H1 and L1

(c)2021 van Putten

van Putten & Della Valle, 2021, under review

PFA: $p_2 = 4 \times 0.025 / 2048$

Conclusions and outlook **GW1701817:** Delayed collapse to a BH by GW-calorimetry and timing (PFA = 4×10^{-8})

O Multilevel un-modeled data-analysis

Spectrograms generated butterfly MF (enhancement over intermediate time scales) Parameter extraction by χ -image analysis - suitable for AI&ML? PDFs generated by time-slide analysis and multiple trials (template seeds, stride in output)

Conclusions and outlook **GW1701817:** Delayed collapse to a BH by GW-calorimetry and timing (PFA = 4×10^{-8})

O Multilevel un-modeled data-analysis

Spectrograms generated butterfly MF (enhancement over intermediate time scales) Parameter extraction by χ -image analysis - suitable for AI&ML? PDFs generated by time-slide analysis and multiple trials (template seeds, stride in output)

O Implementation by heterogeneous computing

Mixed C++/F90/C99 software under OpenCL ("HPC") High throughput: 6x real-time @200kHz correlations per GPU-node with HBM2 ("HTC") Dynamical load balancing over a synaptic LAN

Conclusions and outlook **GW1701817:** Delayed collapse to a BH by GW-calorimetry and timing (PFA = 4×10^{-8})

O Multilevel un-modeled data-analysis

Spectrograms generated butterfly MF (enhancement over intermediate time scales) Parameter extraction by χ -image analysis - suitable for AI&ML? PDFs generated by time-slide analysis and multiple trials (template seeds, stride in output)

- **O** Implementation by heterogeneous computing Mixed C++/F90/C99 software under OpenCL ("HPC") High throughput: 6x real-time @200kHz correlations per GPU-node with HBM2 ("HTC") Dynamical load balancing over a synaptic LAN
- O Upcoming observations in O4 LIGO-Virgo-KAGRA in 2022 Signals may include ascending and descending chirps!

"GW detection is one of the most exciting and expanding scientific frontiers impacting central questions in astronomy"

(Pathways to Discovery in A&A for the 2020s, Decadal Survey 2021, p42; https://www.nationalacademies.org/event/11-04-2021/pathways-to-discovery-in-astronomyand-astrophysics-for-the-2020s-public-briefing)

(c)2021 van Putten

Expect the un-expected from angular momentum-rich gravitational collapse (recall SN1987A)

