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Review
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The original idea of Matsui and Satz (1986)

Quarkonia is quite stable in the vacuum.

Deconfinement is due to colour screening, quantities measurable in
Lattice QCD at finite temperature (static) support this. For example
Polyakov loop.

Dissociation of heavy quarkonium in heavy-ion collisions due to colour
screening signals the creation of a quark-gluon plasma.
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Colour screening

V (r) = −αs
e−mD r

r

In the vacuum
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Colour screening

V (r) = −αs
e−mD r

r

At finite temperature
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Another mechanism, the decay width

This effect makes the peak in the spectral function broader. It can
arrive to a point where it is so broad that it does not make sense to
speak of a bound state anymore.
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(Very) Qualitative spectral function

T = 0
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(Very) Qualitative spectral function

Only screening
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(Very) Qualitative spectral function

Decay width
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Laine et al. perturbative potential (2007)

V (r) = −αsCF

[
mD +

e−mD r

r

]
− iαsTCFφ(mDr)

with

φ(x) = 2

∫ ∞
0

dzz

(z2 + 1)2

(
1− sin(zx)

zx

)

This potential was obtained through the Wilson loop in Minkownski
space at finite temperature.

It has an imaginary part that has to be related with a decay width.
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Effective field theories

QCD

NRQCD

pNRQCD

pNRQCD

NRQCDHTL

HTL

m

1/r ∼ mv

V ∼ mv2

T
mD

(Brambilla, Ghiglieri, Petreczky And Vairo (2008), M. A. E and Soto
(2008))
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Energy scales for zero temperature heavy quarkonium
Heavy quarkonium at T = 0 is a system with a lot of different energy
scales.
For example, for computing the decay of J/Ψ to electrons...

We need annihilation cross section of the quark and the anti-quark to
electrons. The energies involved are of the order of mc .
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Energy scales for zero temperature heavy quarkonium

Heavy quarkonium at T = 0 is a system with a lot of different energy
scales.
For example, for computing the decay of J/Ψ to electrons...

We also need the probability that the quark and the anti-quark are at
the same point, this is given by the wave-functions. The energies
involved are of the order of 1/r .

Ψab(r)
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Energy scales for zero temperature heavy quarkonium

Heavy quarkonium at T = 0 is a system with a lot of different energy
scales.
For example, for computing the decay of J/Ψ to electrons...

If we want to make a precision computation, we need to include the
effects of the color octet component of J/Ψ. The energy involved
here is of order of the binding energy.
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Heavy quarkonium is non-relativistic

In a perturbative computation of the binding energy.

E = mQαs

∞∑
n=0

αn
sAn(v)

because v is small we can not know the size of An(v), for example, it
could go like 1/v .
If we use EFT the computation is an expansion in both v and αs .

E = mQαsv
2
∑
n,m

αn
s v

mBn,m

now Bn,m is of order 1.
In perturbation theory v ∼ αs .
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Energy scales in a thermal bath

In the weak-coupling regime

We have an almost free gas of quarks and gluons with typical energy
πT .

At long distances (order 1
gT ), non-trivial collective phenomena arise,

as for example chromoelectric static fields screening.

At even longer distances (order 1
g2T

), non-perturbative phenomena
arise, as for example chromomagnetic static fields screening.
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Energy scales in a thermal bath

In the weak-coupling regime
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Heavy quarkonium in a thermal bath

In this case we have to combine the two types of energy scales.

The energy scales typical of a non-relativistic bound state. mQ , 1
r and

∆E .

The energy scales of a weakly-coupled quark-gluon plasma. πT , gT ...

Depending on the relation of T with the energy scales of the bound state
we are going to have very different physical situations.
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The case 1/r � T � E � mD

Brambilla, M.A.E, Soto and Vairo (2010)
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Thermal effects

The physical results that come from energy scales higher than the
temperature are not affected by the thermal bath.

1

eq/T ± 1

Consequence: The EFT resulting from integrating out degrees of
freedom higher than T are still valid for this situation.

These are NRQCD and pNRQCD.
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NRQCD

Gives exactly the same results as QCD for all Green functions
evaluated at distances bigger than 1

mQ
.

One can always compute the NRQCD from QCD (matching) using
perturbation theory because mQ � ΛQCD .

This EFT is also useful for Lattice computations as the UV cutoff of
this theory is much smaller than mQ .

Suppressions in 1
mQ

that are not obvious from QCD are trivially seen
with this Lagrangian.
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NRQCD

LNRQCD = Lg + Lq + Lψ + Lχ + Lψχ

Lg = −1

4
F a
µνF

µνa +
d2

m2
Q

F a
µνD

2Fµνa + d3
g

1

m2
Q

gfabcF
a
µνF

µb
α F ναc

Lψ = ψ†
(
iD0 + c2

D2

2mQ
+ c4

D4

8m3
Q

+ cFg
σB

2mQ
+ cDg

DE−ED
8m2

Q

+icSg
σ(D×E−E×D)

8m2
Q

)
ψ

Lχ = c .c of Lψ

Lψχ = f1(1S0)
m2

Q
ψ†χχ†ψ + f1(3S1)

m2
Q
ψ†σχχ†σψ + f8(1S0)

m2
Q
ψ†T aχχ†T aψ

+ f8(3S1)
m2

Q
ψ†T aσχχ†T aσψ
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pNRQCD

There are still simplifications that are not obvious from NRQCD.

Thermal effects are going to see the bound state as a color dipole.
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pNRQCD

LpNRQCD =
∫
d3rTr

[
S† (i∂0 − hs)S

+O† (iD0 − ho)O
]

+ VA(r)Tr(O†rgES + S†rgEO)

+VB(r)
2 Tr(O†rgEO + O†OrgE) + Lg + Lq

Gives the same results as QCD and NRQCD for Green functions
evaluated at distances much bigger than r .

The matching between NRQCD and pNRQCD can be done
perturbatively if 1

r � ΛQCD .

The degrees of freedom for the heavy quarks are now a color singlet
field and a color octet field.

Using pNRQCD provides automatically with a Coulomb resummation.
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From pNRQCD to pNRQCDHTL

Now we take into account thermal effects. For this we integrate out
degrees of freedom with virtuality of order T 2 and we go from pNRQCD
to a new EFT pNRQCDHTL.

In the gluons and light quarks sector of pNRQCDHTL we will have the
usual Hard Thermal Loop action.

The potential of the singlet and the octet will have thermal
corrections
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Integrating out the T scale, Leading order in αs

Now we take into thermal effects into the singlet potential

−ig2CF
r i

D − 1
µ4−D

∫
dDk

(2π)D
i

E − ho − k0 + iη
[k2

0Dii (k0, k)+k2D00(k0, k)]r i

All the thermal bath information is encoded in the gluon propagator D.
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Integrating out the T scale, Leading order in αs

δVs = π
9NcCF α

2
s T

2 r + 2π
3mCF αs T

2

+αsCF IT
3π

[
−N3

c
8
α3
s
r −

Nc (Nc+2CF )α2
s

mr2 + 4(Nc−2CF )παs

m2 δ3(r) + Nc
αs

m2

{
∇2

r ,
1
r

}]
There is an infrared divergence

IT =
2

ε
+ ln

T 2

µ2
− γE + ln(4π)− 5

3
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Integrating out the T scale, next to leading order in αs

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

� � � �
� � � �
� � � �
� � � �
� � � �
� � � �

δV
(2 loops)
s = −3

2ζ(3)CF
αs
π r2 T m2

D + 2
3ζ(3)NcCF α

2
s r

2 T 3

+i
[
CF
6 αs r

2 T m2
D

(
−2
ε + γE + lnπ − ln T 2

µ2 + 2
3 − 4 ln 2− 2 ζ

′(2)
ζ(2)

)
+ 4π

9 ln 2 NcCF α
2
s r

2 T 3
]

This contribution was first found in the static limit by Brambilla, Ghiglieri,
Petreczky and Vairo (2008).
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Computations in the mα2
s scale

Because T � mα2
s

1

eβk − 1
→ T

k
− 1

2
+ · · ·

The results coming from this energy scale can not be reproduced by a
potential.
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Contribution from the mα2
s scale

δEn,l = −παsCF Tm2
D

3

a2
0n

2

2
[5n2 + 1− 3l(l + 1)]

a0 is the Bohr radius of the fundamental state.

δΓn,l = 1
3N

2
cCFα

3
sT − 16

3mCFαsTEn + 8
3NcCFα

2
sT

1
mn2a0

+ 2Enα3
s

3

{
4C3

F δl0
n + NcC

2
F

(
8

n(2l+1) − 1
n2 − 2δl0

n

)
+ 2N2

cCF

n(2l+1) + N3
c

4

}
−αsCFTm

2
D

6

(
2
ε + ln

E2
1
µ2 + γE − 11

3 − lnπ + ln 4
)
a2

0n
2[5n2 + 1− 3l(l + 1)]

+
2αsCFTm

2
D

3
C2
Fα

2
s

E2
n

In,l

In,l =
E 2
n

C 2
Fα

2
s

∫
d3k

(2π)3
|〈n, l |r|k〉|2 ln

E1

En − k2/m
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Final result. mαs � T � mα2
s � mD

Sum of all thermal bath induced terms. (Non-thermally induced terms
coming from the mα2

s scale are subtracted).
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Final result. mαs � T � mα2
s � mD
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Check results, compare with lattice

Comparison of MEM lattice computation (Aarts, Allton, Kim, Lombardo,
Oktay, Ryan, Sinclair and Skullerud (2011)) with our computations in the
1/r � T � E � mD regime fitting αs .

Miguel A. Escobedo (IPhT) EFT at T > 0 28th of January, 2015 37 / 64



Check results, compare with lattice

Comparison of MEM lattice computation (Aarts, Allton, Kim, Lombardo,
Oktay, Ryan, Sinclair and Skullerud (2011)) with our computations in the
1/r � T � E � mD regime fitting αs .

Miguel A. Escobedo (IPhT) EFT at T > 0 28th of January, 2015 38 / 64



m� T � 1
r ∼ gT . Dissociation

temperature.
M.A.E and Soto (2010)
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Thermal effects

Now we can start with NRQCD Lagrangian at T = 0. Thermal effects can
be included in a new EFT called NRQCDHTL.
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Thermal effects

Effects at the energy scale T are going to see heavy quarks as
elements that are very far away from each other.

We will have to average this thermal fluctuations in the gluons that
are interchanged by the heavy quarks.
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NRQCDHTL

We will have HTL corrections in the gluon and light quarks
propagators. In fact, this is going to be the more relevant change for
bound states phenomenology.

NLO corrections to heavy quark sector.
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NRQCDHTL

We will have HTL corrections in the gluon and light quarks
propagators. In fact, this is going to be the more relevant change for
bound states phenomenologically.

NLO corrections to heavy quark sector.

Why is it NLO?

In the Coulomb gauge at the scale T , only the spatial gluons are
thermalized: Ai .

In this gauge A0 is not modified by the temperature at LO up to the
scale gT .

The coupling of heavy quarks with Ai is always multiplied at least by
one power of 1

mQ
.
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NRQCDHTL → pNRQCDHTL

After averaging thermal fluctuations we find HTL propagator.

This HTL modification is a leading order effect in the A0 field at
distances r because 1

r ∼ mD .

The LO potential is going to be modified, and this can break the
bound state.
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The potential at m� T � mαs

V (r) = −αse−mDr

r − αsmD

+ i16α2
sCFT

3

πm2
D

(
π2(mlq

D )2

4T 2g2 + g(mcβ) + m2
c

2T 2(eβmc +1)

)
φ(mDr),

We consider the effect of the charm mass that can be important for
bottomonium. The mc → 0 result was first found by Laine, Philipsen,
Romatschke and Tassler.

mlq
D is the Debye mass that is found in the mc →∞ limit.

g(0) = π2

12 and goes exponentially to zero at large values of mcβ.

φ(x) = 2

∫ ∞
0

dzz

(z2 + 1)2

[
sin(zx)

zx
− 1

]
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The dissociation temperature

The temperature when the imaginary part of the potential is of the
same order of magnitude as the real part is lower than the
temperature where screening is important for bound states (in the
limit of weak coupling).

If both screening and dissipation are a perturbation the bound state
survives.

If the imaginary part of the potential is bigger than the real part then
the the bound state does not exist anymore.

It is natural then to propose as dissociation temperature the
temperature where the real part of the potential is as big as the
imaginary part.

1

a3
0

= 16αs(πT )CFT
3

(
π2(mlq

D )2

4T 2g2
+ g(mcβ) +

m2
c

2T 2(eβmc + 1)

)
.
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Dissociation temperature for charmonium

Assuming g small and 1
a0
� mD . For J/Ψ

αs Td (MeV)

αs(πT ) 230
αs(2πT ) 280

Too close to Tc?
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Dissociation temperature for bottomonium

For Υ(1S)

αs Td (MeV)

αs(πT ) 440
αs(2πT ) 500
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Dependence of bottomonium dissociation with charm mass

mc (MeV) Td (MeV)

∞ 480
5000 480
2500 460
1200 440

0 420

Table: Dissociation temperature for Upsilon (1S) for different values of the charm
mass
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Cross-section
Brambilla, M.A.E, Ghiglieri and Vairo (2011)
Brambilla, M.A.E, Ghiglieri and Vairo (2013)

Miguel A. Escobedo (IPhT) EFT at T > 0 28th of January, 2015 50 / 64



Duality imaginary potential/cross-section

Related by the cutting rules.

No information is lost except for mD ∼ 1/r or mD � 1/r .

More physical picture.

Also true at finite chemical potential.
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Perturbative computations of cross-section for quarkonia in
the literature

Gluo-dissociation

Bhanot and Peskin (1979)
Quasi-free dissociation

Combridge (1978), Park, Kim, Song, Lee and Wong (2007)
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Gluo-dissociation in EFT

HQ + g → Q + Q̄

Imaginary part of the diagram
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Power counting

The gluon is on-shell.

The energy difference between a heavy quarkonium state and two free
heavy quarks is of order mQv

2.

This effect is found when taking into account the energy region mQv
2. It

can be studied using pNRQCD

δΓ ∝ αsr
2T (∆E )2

Miguel A. Escobedo (IPhT) EFT at T > 0 28th of January, 2015 54 / 64



Quasi-free dissociation

HQ + p → Q + Q̄ + p

p is a parton that can be a quark or a gluon.

The parton and the heavy quark interact through a virtual gluon.

Energy and momentum conservation does not impose any constraint
to the parton energy, as opposite to what happened in
gluo-dissociation. Dominates mD � E .
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Quasi-free dissociation in the literature

1/r � T � E

Park, Kim, Song, Lee and Wong (2007)

Uses same techniques as Bhanot and Peskin computation of
gluo-dissociation.

Multipole expansion. This is also done in EFT.

Large Nc limit. This is the main difference with EFT computation.
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Quasi-free dissociation in the literature

T � 1/r

Combridge (1978)

Γ(HQ + p → Q + Q̄ + p) = 2Γ(Q + p → Q + p)

This is only true when mDa0 � 1. In this limit it coincides with the
imaginary part of the potential computed by Laine, Philipsen, Romatschke
and Tassler.
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Quasi-free dissociation in EFT

1/r � T

We can go beyond large-Nc limit.
Power counting tells us that the contribution to the decay with goes like
α2
s r

2T 3. This means quasi-free dissociation dominates if mD � ∆E .

1/r ∼ T

Not computed before.
T � 1/r

The decay width information is encoded in the imaginary part of the
potential, and must be ressumed.
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Some notation

σ(k ,mD) = σR f (x , y)

where

σR = 8πCFα
2
sNFa

2
0

x = mDa0

y = ka0

I will only show the result for the fermion part, the boson part is
quantitatively and qualitatively very similar.
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T ∼ 1
r � mD cross-section for 1S

f (x , y) = −3

2
+ 2 log

(
2

x

)
+ log

(
y2

1 + y2

)
− 1

y2
log(1 + y2)

x � 1 and y ∼ 1.

2 4 6 8 10

y

1.5

2.0

2.5

3.0

3.5

4.0

4.5

f

mDa0 = 0.1 and mDa0 = 0.2.
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Summary cross-section for 1S

mDa0 = 0.001

2 4 6 8 10

y

10

12

14

16

18

f

1
r � T � mD ,T ∼ 1

r � mD and T � 1
r ∼ mD . Discrepancy between

blue and red lines signals a failure of color dipole approximation.
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Summary of results

In EFT we can compute the cross-section for a wide range of
temperatures.

∆E � mD . Gluo-dissociation dominates. Multipole expansion is
accurate.

1/r � T � mD � ∆E . Quasi-free dissociation dominates. Multipole
expansion is accurate.

1/r ∼ T . Quasi-free dissociation dominates. Multipole expansion is
not accurate.

T � 1/r ∼ mD . Quasi-free dissociation dominates. It can be
encoded in the imaginary part of a potential, it needs to be resummed.
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Conclusions
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Conclusions

Extract a Schrödinger equation from QCD and know at which
precision we need something more. Quantum field theory definition of
the potential.

All relevant temperature regimes except mD ∼ E are well understood
in perturbation theory and thermal equilibrium

There are two dissociation mechanism, screening and decay width,
the later dominates in the perturbative regime.

Dissociation temperature of Υ(1S) is around 450MeV. Similar to
maximum temperature at LHC.
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