Excited Charm(onium) Spectroscopy

Sinéad M Ryan

Royal Society Meeting, 28th January 2015

BACKGROUND	Methods	Charming Results	Conclusion
●000	00000	00000000	

MY CHARMING COLLABORATORS...

Liuming Liu, Graham Moir, Mike Peardon, Christopher Thomas

Background	Methods	Charming Results	Conclusion
●000	00000	00000000	

MY CHARMING COLLABORATORS...

Liuming Liu, Graham Moir, Mike Peardon, Christopher Thomas

Outline

- Background and motivation
- A recipe for spectroscopy
- Results: charmonium and open charm
- Summary and outlook

Background	Methods	Charming Results	Conclusion
0000	00000	00000000	

A CHARM REVOLUTION: CCBAR

Belle & BaBar: narrow charmonium-like structures above the open charm threshold - "X,Y,Z" states. Not all in ${}^{2S+1}L_7$ pattern - what is the nature of these states?

Charmonium spectroscopy after the B-factories

- X(3872): close to $D\bar{D}^*$ threshold - a molecular meson?
- X(4260): 1⁻⁻ hybrid meson?
- X(4430)[±]: charged not *cc*: tetraquark?
- No clear picture has emerged.

0000 00000000000000000000000000000000	Background	Methods	Charming Results	Conclusion
	0000	00000	00000000	

A CHARM REVOLUTION: OPEN CHARM

No surprises were expected in the D_s^{\pm} spectrum but from 2003:

• BABAR observes $D_{s0}^*(2317)^{\pm}$ state

[B.Aubert et al [BABAR Collab] PRL 90(2003) 242001]

• CLEO confirms BABAR discovery and observes $D_{s1}(2460)^{\pm}$

[D. Besson et al [CLEO Collab] PRDb68 (2003)

032002]

 Both significantly lighter and narrower than quark model predictions

[F.Close and E. Swanson, Phys.Rev. D72 (2005) 094004]

Background	Methods	Charming Results	Conclusion
000●	00000	00000000	

LATTICES FOR CHARM SPECTROSCOPY

described in detail in 1301.7670 and 1204.5425

- Symanzik-improved anisotropic gauge action with tree-level tadpole-improved coefficients and $N_f = 2 + 1$
- Anisotropic clover action with stout-smeared spatial links
- $\xi = a_s/a_t = 3.5$
- $a_s \approx 0.12 \text{ fm}, \ a_t^{-1}(m_\Omega) = 5.67(4) \text{ GeV}$
- $20^3, 24^3 \times 128$
- $m_l \sim 400 \text{ MeV}$
- distillation

Background	Methods	Charming Results	Conclusion
0000	00000	00000000	

HADSPEC RECIPE FOR (SINGLE-MESON) SPECTROSCOPY

- a basis of local and non-local operators $\bar{\Psi}(x)\Gamma D_i D_j \dots \Psi(x)$ from *distilled* fields [PRD80 (2009) 054506]. Including
 - all combinations of γ matrices and up to 3 derivatives
 - operators $\sim F_{\mu\nu}$ to access gluonic degrees of freedom
 - operators to explore all \mathcal{J}^{PC} up to $\mathcal{J} = 4$.
- build a correlation matrix of two-point functions

$$C_{ij}=\langle 0|\mathcal{O}_i\mathcal{O}_j^\dagger|0
angle=\sum_nrac{Z_i^nZ_j^{n\dagger}}{2E_n}e^{-E_nt}$$

- solve generalised eigenvalue problem $C_{ij}(t)v_j^{(n)} = \lambda^{(n)}(t)C_{ij}(t_0)v_j^{(n)}$
 - eigenvalues: $\lambda^{(n)}(t) \sim e^{-E_n t} \left[1 + O(e^{-\Delta E t})\right]$ principal correlator
 - eigenvectors: related to overlaps $Z_i^{(n)} = \sqrt{2E_n} e^{E_n t_0/2} v_j^{(n)\dagger} C_{ji}(t_0)$

- operators of definite J^{PC} constructed in step 1 are subduced into the relevant irrep
- a subduced irrep carries a "memory" of continuum spin J from which it was subdduced it overlaps predominantly with states of this J.

J	0	1	2	3	4
A_1	1	0	0	0	1
A_2	0	0	0	1	0
E	0	0	1	0	1
T_1	0	1	0	1	1
T_2	0	0	1	1	1

• Can help identify glue-rich states, using operators with $[D_i, D_j]$

Spin identification

- Using $Z = \langle 0 | \Phi | k \rangle$, helps to identify continuum spins
- For high spins, can look for agreement between irreps
- Data below for T_1^{--} irrep, colour-coding is **Spin 1**, **Spin 3** and **Spin 4**.

BACKGROUND ME	ETHODS	Charming Results	Conclusion
0000 00	0000	00000000	

... The rest of the spin-4 state

- All polarisations of the spin-4 state are seen
- Spin labelling: **Spin 2**, **Spin 3** and **Spin 4**.

Background	Methods	Charming Results	Conclusion
0000	00000	00000000	

IDENTIFYING SPIN - OPERATOR OVERLAPS

- Example -3^{--} continuum
- Look for remnant of continuum symmetry:

$$\langle 0|\Phi_{A_2^{--}}^{[j=3]}|k\rangle = \langle 0|\Phi_{T_1^{--}}^{[j=3]}|k\rangle = \langle 0|\Phi_{T_2^{--}}^{[j=3]}|k\rangle$$

• Can identify two spin-3 states.

Results: the single hadron spectrum

0000 000000 000000	Background	Methods	Charming Results	Conclusion
	0000	00000	00000000	

CAVEAT EMPTOR

- $m_\pi \approx 400 \; MeV$
- No two-meson operators in basis
- No disconnected charm contributions
- No $a \rightarrow 0$ extrapolation

Background	Methods	Charming Results	Conclusion
0000	00000	0000000	

Results: D spectrum

D Meson Spectrum - By J^{P}

[arXiv:1301.7670]

Background	Methods	CHARMING RESULTS	Conclusion
0000	00000	00000000	

Results: Ds spectrum

 D_s Meson Spectrum - By J^P

[arXiv:1301.7670]

0000 00000 00000 00000 0000 0000 0000 0000	Background	Methods	Charming Results	Conclusion
	0000	00000	00000000	

Results: Charmonium

Hybrid Phenomenology

Background	Methods	Charming Results	Conclusion
0000	00000	000000000	

Hybrids in charmonium, D and Ds

Lightest hybrid supermultiplet same pattern and scale as in charmonium and light^[HadSpec:1106.5515] sectors.

Background	Methods	CHARMING RESULTS	Conclusion
0000	00000	000000000	

A disconnected aside...

- for precision spectroscopy of low-lying states: verify size of disconnected diagrams (OZI suppressed in charm)
- what is the contribution for higher-lying (exotic) states?

Number of techniques on the market. Distillation works very well: tractable and statistically precise.

Summary and Outlook

- Precision single-hadron spectrum can be determined at T = 0:
 - improved actions
 - new techniques (eg distillation) and spin identification using overlaps
 - disconnected contributions remain challenging
- Can these ideas be imported for T > 0?
- New (and old) ideas for resonances. Still a difficult problem. More after coffee!

Backup Slides

Background	Methods	Charming Results	Conclusion
0000	00000	000000000	
_			

DISTILLATION

"*distill*: to extract the quintessence of" [OED]

• Distillation: **define** smearing to be explicitly a very low-rank operator. Rank is $N_D(\ll N_s \times N_c)$.

Distillation operator $\Box(t) = V(t)V^{\dagger}(t)$ with $V^{a}_{\underline{x},c}(t)$ a $N_{\mathcal{D}} \times (N_{s} \times N_{c})$ matrix

- Example (used to date): □_∇ the projection operator into D_∇, the space spanned by the lowest eigenmodes of the 3-D laplacian
- Projection operator, so idempotent: $\Box^2_{\nabla} = \Box_{\nabla}$
- $\lim_{N_{\mathcal{D}} \to (N_s \times N_c)} \Box_{\nabla} = I$
- Eigenvectors of ∇^2 not the only choice...

Background	Methods	Charming Results	Conclusion
0000	00000	00000000	

DISTILLATION: PRESERVE SYMMETRIES

• Using eigenmodes of the gauge-covariant laplacian **preserves lattice symmetries**

$$U_i(\underline{x}) \stackrel{g}{\longrightarrow} U_i^g(\underline{x}) = g(\underline{x})U_i(\underline{x})g^{\dagger}(\underline{x}+\hat{\underline{\imath}})$$

$$\Box_{\nabla}(\underline{x},\underline{y}) \xrightarrow{g} \Box_{\nabla}^{g}(\underline{x},\underline{y}) = g(\underline{x}) \Box_{\nabla}(\underline{x},\underline{y}) g^{\dagger}(\underline{y})$$

- Translation, parity, charge-conjugation symmetric
- *O_h* symmetric
- Close to *SO*(3) symmetric
- "local" operator

