Charm and beauty in the quark-gluon plasma

Jon Ivar Skullerud

National University of Ireland Maynooth,

Royal Society, Chicheley Hall, 28 Jan 2015

Outline

Charm and beauty as probes of quark-gluon plasma

Charmonium

S-waves P-waves Nonzero momentum

Open charm

Beauty

Quenched, relativistic Dynamical, NRQCD

Summary and outlook

Quarkonium as probes of QGP

Heavy-ion collisions (SPS, RHIC, LHC) probe the region of high(ish) T, low μ

- Quarkonia probe conditions in early stages of HICs
- Heavy quarks participate less in collective behaviour
- Only cc̄ created in large quantities at RHIC
- Many $b\bar{b}$ pairs are created at LHC

Heavy quarkonia as QGP thermometers

QGP thermometers: sequential suppression

- Matsui and Satz (1986): charmonium dissociates at $T \approx T_c$
- Different states dissociate at different temperatures

$$T_{\Upsilon} > T_{J/\psi} \gtrsim T_{\eta_b} > T_{\Upsilon'} > T_{\chi_c}$$

- May use yields to determine temperature of plasma
- Dynamics crucial: T varies in space and time
- \blacktriangleright Require detailed knowledge of thermal widths \sim dissociation rates

Charm and beauty as probes of quark-gluon plasma Charmonium Open charm Beauty

Methods and topics

Approaches

- Potential models
- Sum rules
- AdS/CFT
- Effective field theories, weak coupling expansion
- Lattice calculations
 - Direct calculation of spectral functions

Summary and outlook

- Temporal correlator ratios
- Spatial correlators
- Indirect studies: fluctuations, thermodynamics

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

Spectral functions

contain information about the fate of hadrons in the medium

- stable states $ho(\omega) \sim \delta(\omega m)$
- resonances or thermal width $ho(\omega) \sim$ lorentzian
- continuum above threshold

• $\rho_{\Gamma}(\omega, \overrightarrow{p})$ related to euclidean correlator $G_{\Gamma}(\tau, \overrightarrow{p})$ according to

$$\mathcal{G}_{\Gamma}(au, \overrightarrow{p}) = \int
ho_{\Gamma}(\omega, \overrightarrow{p}) \mathcal{K}(au, \omega) d\omega \,, \quad \mathcal{K}(au, \omega) = rac{\cosh[\omega(au - 1/2T)]}{\sinh(\omega/2T)}$$

an ill-posed problem — requires a large number of time slices

- Fit to physically motivated Ansatz
- Use Maximum Entropy Method or other Bayesian methods
- Other inversion methods, eg Cuniberti, Tikhonov–Morozov

Reconstructed correlators

The systematic uncertainty of the MEM can be avoided by studying the reconstructed correlator, defined as

$$G_r(\tau; T, T_r) = \int_0^\infty \rho(\omega; T_r) K(\tau, \omega, T) d\omega$$

where K is the kernel

$$\mathcal{K}(au, \omega, au) = rac{\cosh[\omega(au-1/2 au)]}{\sinh(\omega/2 au)}$$

If $\rho(\omega; T) = \rho(\omega; T_r)$ then $G_r(\tau; T, T_r) = G(\tau; T)$

Can be computed directly from the correlators [Ding et al (2012)] Small changes in correlators is compatible with large changes in spectral function [Mocsy&Petreczky (2007)] Charm and beauty as probes of quark–gluon plasma Charmonium

S-waves P-waves Nonzero momentum

Charmonium: Overview

Authors	N _f	ξ	<i>as</i> (fm)	Comments
Asakawa & Hatsuda (2003)	0	4	0.039	
Umeda et al (2003)	0	4	0.10	
Ohno et al [WHOT-QCD] (2011)	0	4	0.10	Variational
Datta et al [Bielefeld] (2003)	0	1	0.020-0.048	
Ding et al [Biel-BNL] (2012)	0	1	0.010-0.031	
Ohno, Ding, Kaczmarek (2014)	0	1	0.010, 0.019	c, b corr ratios
Jakovac et al (2006)	0	2,4	0.056-0.207	
Asakawa et al (2010, 2014)	0	4	0.039	ExtMEM, $p \neq$
Aarts et al [Dub-Swan] (2007)	2	6	0.167	
Oktay & Skullerud (2010)	2	6	0.162	$p \neq 0$
Borsányi et al [WB] (2014)	2+1	1	0.057	
Kelly et al [FASTSUM] (2014)	2+1	3.5	0.123	

Charm and beauty as probes of quark-gluon plasma Charmonium Beautv

S-waves

S-waves: Quenched results

Asakawa & Hatsuda (2003):

Jon Ivar Skullerud

Jakovac et al (2006):

1.2Tc -

2.4Tc -

15

20

Charm and beauty in the quark-gluon plasma

S-waves P-waves Nonzero momentum

S-waves: Quenched results

Charm and beauty as probes of quark–gluon plasma Charmonium

S-waves P-waves Nonzero momentum

Beautv

S-waves: $N_f = 2, 2 + 1$ Oktay and Skullerud (2010)

FASTSUM (Kellv et al)

BW (Borsányi et al)

Jon Ivar Skullerud Charm and beauty in the quark-gluon plasma

Charm and beauty as probes of quark-gluon plasma Charmonium Open charm Beauty Summary and outlook Charmonium S-waves P-waves Nonzero momentum

Charm P-waves

Note that peaks at 6 GeV, 10 GeV, ... are lattice artefacts

S-waves P-waves Nonzero momentum

Charm P-waves

S-waves P-waves Nonzero momentum

Nonzero momentum

- cc̄ pairs produced at nonzero momentum
- Transverse momentum (and rapidity) distributions important to distinguish between models
- Momentum dependent binding?

S-waves P-waves Nonzero momentum

Nonzero momentum — PS correlator ratios

Oktay and Skullerud (2010/2014)

Consistent picture:

- small suppression at low momenta
- larger enhancement at high momenta

S-waves P-waves Nonzero momentum

Nonzero momentum — V correlator ratios

Oktay and Skullerud (2010/2014)

Less momentum dependence in longitudinal correlator

Transverse correlator gets more enhanced at larger p

Charm and beauty as probes of quark–gluon plasma Charmonium Open charm Beauty Summary and outlook Charmonium S-waves P-waves Nonzero momentum

Charm P-waves

Aarts et al (2007)

Kelly [FASTSUM] (2012)

P-waves disappear at $T \lesssim 1.2 T_c$

S-waves P-waves Nonzero momentum

Summary of charmonium results

- ► Still no consensus on S-wave dissociation temperature: $1.2T_c \lesssim T_d^S \lesssim 2T_c$
- Continuum limit for $N_f = 0$ is in sight
- P-waves disappeared by $1.15T_c$
- Drastic changes in spectral functions is consistent with little change in correlators
- Permille precision required to pin down spectral features
- ► No reliable results yet for thermal mass shift, width

Open charm

Authors	N _f	as	ξ	$N_{ au}$	Method
Bazavov et al [BBC] (2014)	2+1	0.107	1	6, 8	Cumulants
		0.055	1	4–12	
Bazavov et al (2014)	2+1	0.107	1	12	Screening corrs
Kelly [FASTSUM] (2015)	2+1	0.125	3.5	16–40	Spectral fns

Cumulant results suggest open charm degrees of freedom become deconfined close to T_c .

But are they sensitive to a single surviving bound state?

Open charm: screening masses

 $s\bar{c}$ mesons behave qualitatively like $s\bar{s}$ mesons Different behaviour from $c\bar{c}$ mesons!

Open charm: spectral functions

Aoife Kelly (2015)

Ιī

Both D and D_s mesons dissociate close to T_c

Quenched, relativistic Dynamical, NRQCD

Beauty

- Many b quarks are produced at LHC
- Cold nuclear matter effects, recombination less important → cleaner probes?
- $T_d^{\Upsilon} \sim 3 5T_c$ hard to do on the lattice
- $\chi_b, \Upsilon(2S)$ melt at $T'_d \lesssim 1.2T_c$?
- Sequential suppression observed at CMS (+ ATLAS, STAR)?

Jon Ivar Skullerud Charm and beauty in the quark-gluon plasma

Quenched, relativistic Dynamical, NRQCD

Beauty at high T

- Quenched, relativistic
 - Jakovac et al (2006): Anisotropic Fermilab,
 ξ = 4, a_s = 0.134, 0.096, 0.072 fm T = 1.15 − 2.31T_c.
 - Ohno, Ding, Kaczmarek (2014) Isotropic Clover, a = 0.019, 0.0097 fm. [Correlator ratios]
- NRQCD
 - ► FASTSUM (2010–2013): $N_f = 2, \xi = 6, a_s = 0.17$ fm
 - ► FASTSUM (2014): $N_f = 2 + 1, \xi = 3.5, a_s = 0.125$ fm
 - Kim, Petreczky, Rothkopf (2014): $N_f = 2 + 1, \xi = 1, N_\tau = 12[a_s(T_c) = 0.107 \text{fm}]$

Quenched, relativistic Dynamical, NRQCD

Beauty: quenched relativistic studies

Results suggest little if any modification in S-waves, but melting of P-waves

Quenched, relativistic Dynamical, NRQCD

Beauty: quenched relativistic studies

- Far smaller modifications observed in beauty than charm
- Beauty P-wave correlators are strongly modified

Quenched, relativistic Dynamical, NRQCD

NRQCD

Scale separation $M_Q \gg T$, $M_Q v$ Integrate out hard scales \longrightarrow Effective theory Expand in orders of heavy quark velocity \mathbf{v} ; we use $\mathcal{O}(\mathbf{v}^4)$ action Advantages

- ▶ No temperature-dependent kernel, $G(\tau) = \int \rho(\omega) e^{-\omega \tau} \frac{d\omega}{2\pi}$
- No zero-modes
- Longer euclidean time range
- Appropriate for probes not in thermal equilibrium

Disadvantages

- \blacktriangleright Not renormalisable, requires $\mathit{Ma_s}\gtrsim 1$
- Does not incorporate transport properties

Quenched, relativistic Dynamical, NRQCD

Spectral functions — T = 0

```
1st generation
[JHEP 1111 103 (2011)]
```


 Υ (1S), Υ (2S) clearly identified [3rd peak does not coincide with physical Υ (3S)]

Quenched, relativistic Dynamical, NRQCD

Spectral functions — First generation

Quenched, relativistic Dynamical, NRQCD

Spectral functions — Second generation

 Υ (2S) melts, but ground state remains robust

Quenched, relativistic Dynamical, NRQCD

Mass shift and width

Fit (left side of) peaks to gaussian \longrightarrow determine peak position (mass) and width Width is upper bound

Results are consistent with perturbation theory,

$$\frac{\Gamma}{T} = \frac{1156}{81} \alpha_s^3, \qquad \frac{\delta E}{M} = \frac{17\pi}{9} \alpha_s T^2 M^2, \qquad \alpha_s \sim 0.4.$$

Quenched, relativistic Dynamical, NRQCD

P-waves

1st generation [JHEP **1312** 064 (2013)]

2nd generation [JHEP **1407** 097 (2014)]

P-waves dissociate close to T_c

Quenched, relativistic Dynamical, NRQCD

MEM and BR method on HotQCD configs

Kim, Petreczky, Rothkopf (2014)

BR has

- sharper features
- surviving P-wave?

Quenched, relativistic Dynamical, NRQCD

BR method on FASTSUM configs

[Tim Harris (2014)]

P-wave appears to survive to higher T?

Quenched, relativistic Dynamical, NRQCD

Summary

- S-wave ground states survive to at least $T \sim 2T_c$
- Excited state disappears near T_c
- Mass shift and width consistent with perturbation theory
- Qualitative agreement between NRQCD and relativistic
- Fate of P-waves still unclear
- Discrepancy MEM vs BR needs to be resolved

- Charmonium studies still dominated by systematic uncertainties
- Requires high precision and control over lattice spacing effects
- D meson studies are in their infancy
- Beautonium can be studied quantitatively thanks to NRQCD
- MEM still method of choice, but systematics needs further understanding

Outlook

- Clarify strengths / weaknesses MEM, BR and other methods
- Can variational methods, extended operators yield useful information?
- Can we identify radial excitations $(\psi', \Upsilon(2S))$?
- Relativistic beauty studies to complement NRQCD
- Your favourite idea goes here