Charm and strangeness production at GSI/FAIR energies

Marcus Bleicher and Jan Steinheimer Frankfurt Institute for Advanced Studies Institut für Theoretische Physik Goethe Universität - Frankfurt

FAIR: Facility for Antiproton and Ion Research

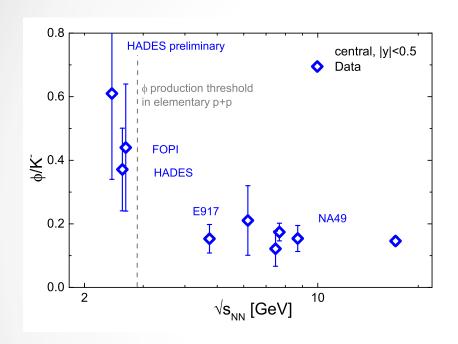
Location: GSI, Darmstadt, Germany

What is sub-threshold particle production?

And why is it interesting for us?

Production of hadrons below threshold

- In elementary reactions, e.g. pp, it is not possible to produce a particle with mass m_{new}, if m_P+m_P+m_{new}>E_{CM,pp} (energy conservation)
- However, in p+A and A+A reaction this is possible
- The question is, what mechanism allows for the production and are they realized

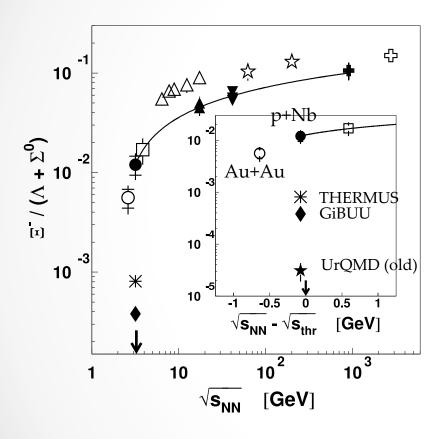

Mechanisms

- Generally three different mechanisms are available:
 - Fermi motion
 (more energy available than we thought)
 - 2) mass reduction/potentials (lowers the threshold for production)
 - 3) multi-step/multi-particle processes (collect energy to reach the threshold)

This talk...

- Explores multi-strange particle production
 i.e. φ and Ξ production
 - → solves a long standing puzzle at GSI energies
- Explores charm production i.e. J/Ψ, Lc and D-mesons
 - → new road for a charm program at FAIR

Motivation: ϕ



ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 80, 025209 (2009)

Motivation: **E**

G. Agakishiev et al. [HADES Collaboration], Phys. Rev. C 80, 025209 (2009)

ϕ production

HADES and FOPI reported unexpected large ϕ contribution to the K^- yield.

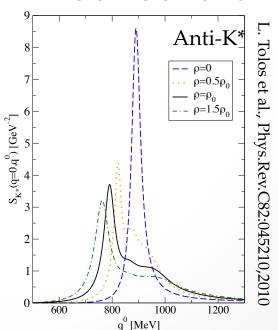
Ξ production

 Ξ^- yield, measured in Ar+KCl much larger than thermal model.

Confirmed in $p+Nb \rightarrow No Y+Y$ exchange!!

Both particles are not well described in microscopic transport models and thermal fits are also not convincing.

Threshold for $p+p \rightarrow p+p+\phi \approx 2.895 \text{ GeV}$ Threshold for $p+p \rightarrow N+\Xi+K+K \approx 3.24 \text{ GeV}$

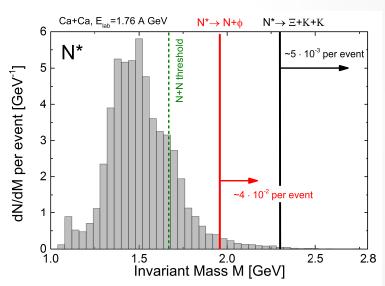

Subthreshold production:Two paradigms

Multi-step processes

- Increase the available energy above threshold by creation of heavy resonances
- NN→NN*,
 N*N*→NN**,
 a) N**N**→ string→X
 b) N**→Nφ
 c) N**→EKK

In-medium modifications

 Decrease the needed energy by in-medium modifications

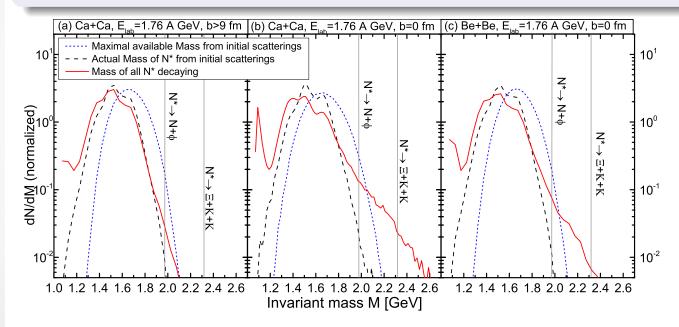


Subthreshold particle production

How does it work?

- Fermi momenta can lift the collision energy above threshold
- Secondary interactions accumulate energy
- Ar+KCl at E_{lab}=1.76
 AGeV
 Is there enough
 energy for φ and Ξ
 production?

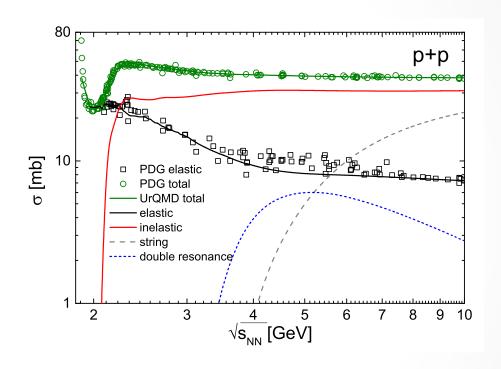
Resonance mass distribution


Yes! But for Ξ , only in the tails.

→ Introduce branching ratio for decay into N_Φ

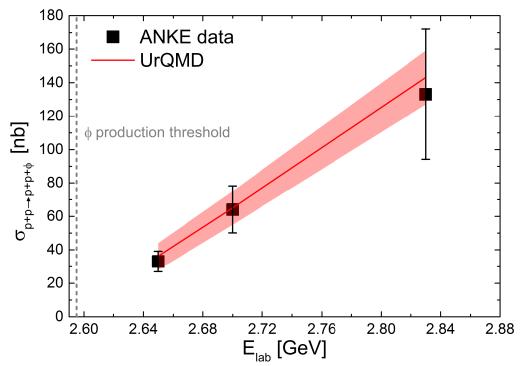
Probabilities

Sub-threshold production baseline


- Fermi momenta lift the collision energy above the threshold.
- Secondary interactions accumulate energy.

Why not introduce these decays for the less known resonances?

New resonances


$\Delta(1232)$
$\Delta(1600)$
$\Delta(1620)$
$\Delta(1700)$
$\Delta(1900)$
$\Delta(1905)$
$\Delta(1910)$
$\Delta(1920)$
$\Delta(1930)$
$\Delta(1950)$
$\Delta(2440)$
$\Delta(2750)$
$\Delta(2950)$
$\Delta(3300)$
$\Delta(3500)$
$\Delta(4200)$

Important: New resonances replace the strings, no additional pp cross section is introduced

Fixing the branching ratio

We use ANKE data on the ϕ production cross section to fix the $N^* \to N + \phi$ branching fraction.

Only 1 parameter

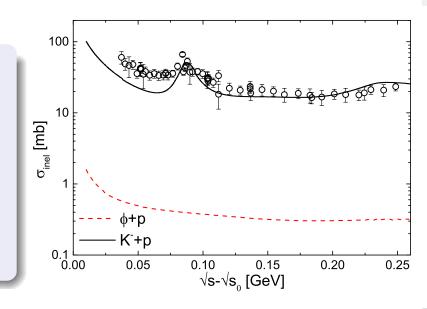
 $\Gamma_{N^* \to N\phi}/\Gamma_{tot} = 0.2\%$ 1 parameter fits all 3 points!

Y. Maeda *et al.* [ANKE Collaboration], Phys. Rev. C **77**, 015204 (2008) [arXiv:0710.1755 [nucl-ex]].

The $\phi+N$ cross section

Does the ϕ have a small hadronic cross section?

- The idea that the ϕ has a small hadronic cross section is not new. A. Shor, Phys. Rev. Lett. **54**, 1122 (1985).
- ullet The ϕ would be an important probe of hadronization.
- COSY and LEPS experiments have found large nuclear absorption cross sections

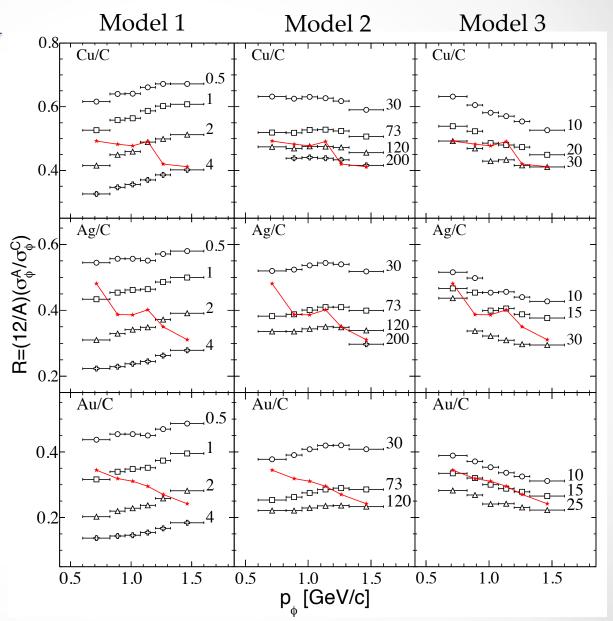

ANKE	SPring-8
14-21 mb	35 mb

M. Hartmann *et al.*, Phys. Rev. C **85**, 035206 (2012) T. Ishikawa *et al.*, Phys. Lett. B **608**, 215 (2005)

Cross sections

Detailed balance \rightarrow absorption cross section

$$\frac{d\sigma_{b\to a}}{d\Omega} = \frac{\langle p_a^2 \rangle}{\langle p_b^2 \rangle} \frac{(2S_1 + 1)(2S_2 + 1)}{(2S_3 + 1)(2S_4 + 1)} \sum_{I=J}^{J_+} \frac{\langle j_1 m_1 j_2 m_2 | |JM \rangle^2}{\langle j_3 m_3 j_4 m_4 | |JM \rangle^2} \frac{d\sigma_{a\to b}}{d\Omega}$$

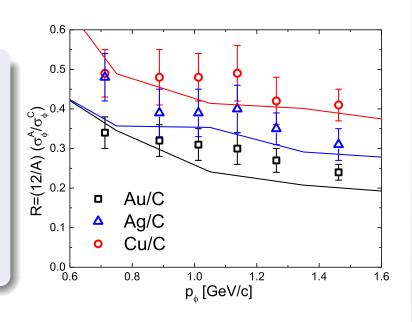


φ transparency ratios I

Model 1: The eikonal approximation of the Valencia group.

Model 2: Paryev developed the spectral function approach for ϕ production in both the primary proton- nucleon and secondary pion-nucleon channels.

Model 3: BUU transport calculation of the Rossendorf group.
Accounts for baryon-baryon and meson-baryon ϕ production processes.

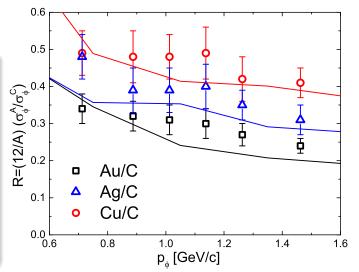


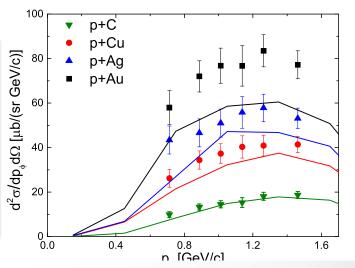
Transparency ratios II

Detailed balance \rightarrow absorption cross section

$$\frac{d\sigma_{b\to a}}{d\Omega} = \frac{\langle p_a^2 \rangle}{\langle p_b^2 \rangle} \frac{(2S_1 + 1)(2S_2 + 1)}{(2S_3 + 1)(2S_4 + 1)} \sum_{J=J_-}^{J_+} \frac{\langle j_1 m_1 j_2 m_2 | |JM \rangle^2}{\langle j_3 m_3 j_4 m_4 | |JM \rangle^2} \frac{d\sigma_{a\to b}}{d\Omega}$$

- ullet $\phi+p$ cross section from detailed balance is very small.
- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Cross section from transparency ratio is model dependent!

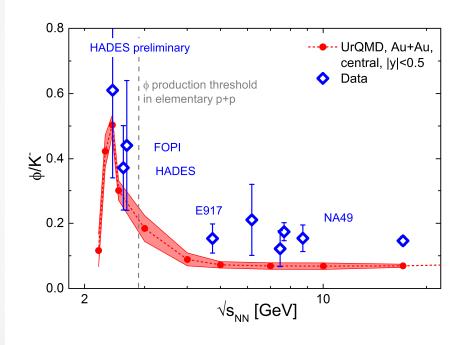



New explanation

- Still the transparency ratio is well reproduced. Remember: this is what lead to the 20 mb cross section from ANKE.
- Cross section from trabsparency ratio is model dependent!
- Not 'absorption' of the ϕ , but of the mother resonance.
- Reactions of the type:

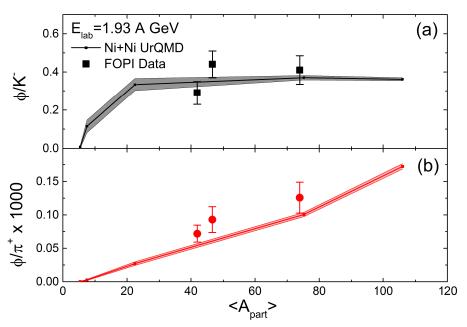
$$N^* + N \to N'^* + N'^*$$

 $N^* + N \to N'^* + N'^*$


where the mass of $N'^* < N *$ so no ϕ can be produced.

Extrapolation to AA

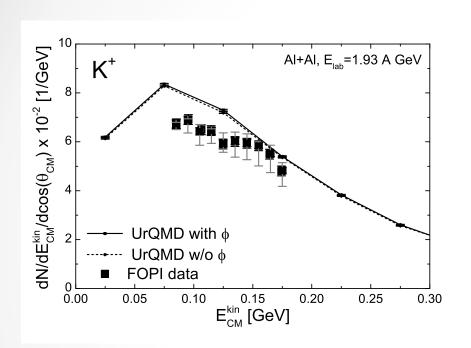
When applied to nuclear collisions:

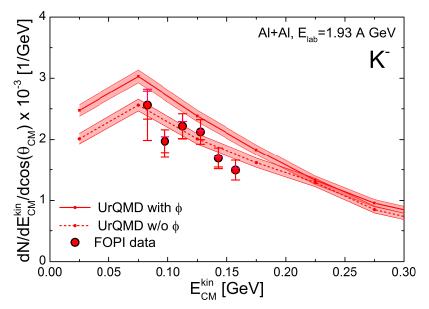


- Qualitative behavior nicely reproduced
- Predicted maximum at 1.25
 A GeV
- High energies: too low due to string production
- HADES preliminary results for 1.23 A GeV, see HADES talks by R. Holzmann and T. Scheib.

Even centrality dependence is very well reproduced: Signal for multi step processes.

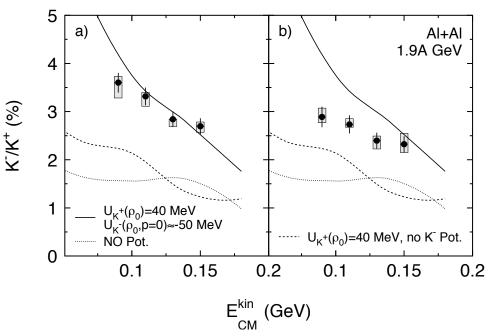
Centrality


Even centrality dependence works well:



- Centrality dependence nicely reproduced.
- Good indicator for multi step production.

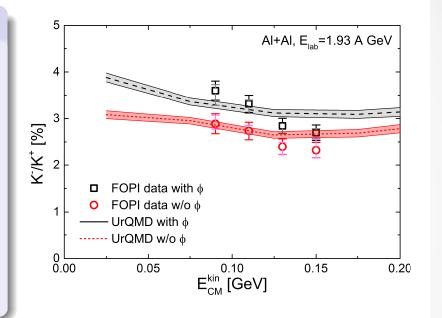
Data from: K. Piasecki et al., arXiv:1602.04378 [nucl-ex].


Plain Kaon yields

Good description of the Kaon data

Comparison to other model studies

P. Gasik et al. [FOPI Collaboration], arXiv:1512.06988 [nucl-ex].


An example

- The K^-/K^+ ratio is used to determine the Kaon nuclear potentials.
- Quantitative result relies on the baseline of non-potential case.
- \bullet ϕ contribution to the K^- found to be important.

A word on the K potential

Kaon Potentials

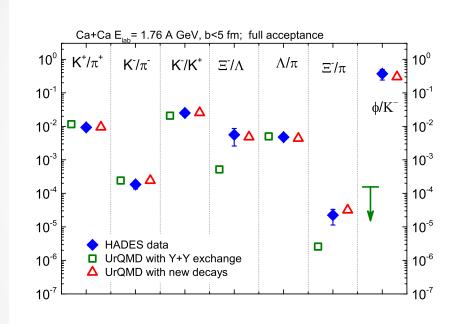
- To constrain the Kaon potentials from kaon spectra one needs to understand the baseline
- For example the ϕ contribution to the K^- .
- But also the general shape of the spectra may depend on the model.

UrQMD results

- K^-/K^+ ratio as function of Kaon energy.
- With and without the ϕ the ratio is much closer to the data already as in a comparable study with K^- potential.
- Can we make robust quantitative statements?

Now for the Ξ

No elementary measurements near threshold.


We use p+Nb at $E_{\rm lab}=3.5$ GeV data $\to \Gamma_{N^*\to\Xi+K+K}/\Gamma_{tot}=3.0\%$

HADES data		
$\langle \Xi^- angle$	Ξ^-/Λ	
$(2.0 \pm 0.3 \pm 0.4) \times 10^{-4}$	$(1.2 \pm 0.3 \pm 0.4) \times 10^{-2}$	
UrQMD		
$\langle\Xi^- angle$	Ξ^-/Λ	
$(1.44 \pm 0.05) \times 10^{-4}$	$(0.71 \pm 0.03) \times 10^{-2}$	

Table: Ξ^- production yield and Ξ^-/Λ ratio for minimum bias p+Nb collision at a beam energy of $E_{\rm lab}=3.5$ GeV, compared with recent HADES results

G. Agakishiev et al., Phys.Rev.Lett. 114 (2015) no.21, 212301.

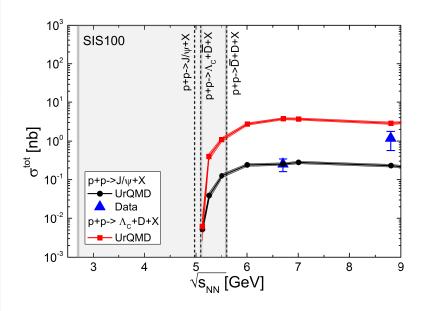
Comparison to data for Ξ

- • Ξ[−] yield in Ar+KCl collisions is nicely reproduced
- Consistent with the p+Nb data.
- Indication for \(\preceq\) production from non-thermal 'tails' of particle production.
- All other strange particle ratios are also in line with experiment

Can we also use this for charm?

Bold..., but possible...

J. Steinheimer, A. Botvina and M. Bleicher, arXiv:1605.03439 [nucl-th].


Why is charm interesting?

Charm at high baryon densities

- Study properties of charmed hadrons in dense nuclear matter.
- Study hadronic charm rescattering.
- Study charm in cold nuclear matter.
- Big part of CBM program...but that was SIS300!

Fixing the branching ratio

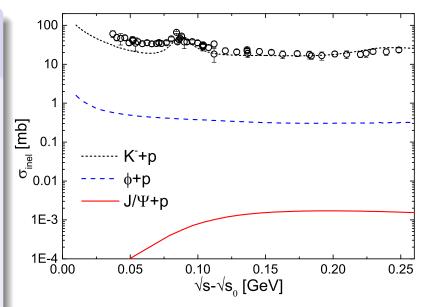
We use data from p+p at $\sqrt{s}=6.7$ GeV to fix the $N^*\to N+J/\Psi$ branching fraction.

Only 1 parameter

$$\Gamma_{N^* \to NJ\Psi}/\Gamma_{tot} = 2.5 \cdot 10^{-5}$$

Assumptions

- We assume the associated production of $N^* \to \Lambda_c + \overline{D}$ to be a factor 15 larger at that beam energy and to contribute about the half of the total charm production.
- We neglect $D + \overline{D}$ pair production as it has a significantly higher threshold
- We neglect string production
- All the contributions should even increase the expected yield.

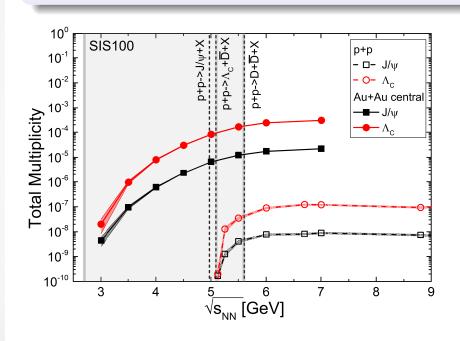

J/Ψ cross section

Detailed balance \rightarrow absorption cross section

- $J/\Psi + p$ cross section from detailed balance is very small.
- Not 'absorption' of the J/Ψ , but of the mother resonance.
- Reactions of the type:

$$N^* + N \to N'^* + N'^*$$

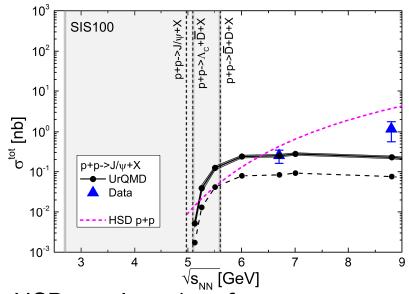
 $N^* + N \to N'^* + N'^*$

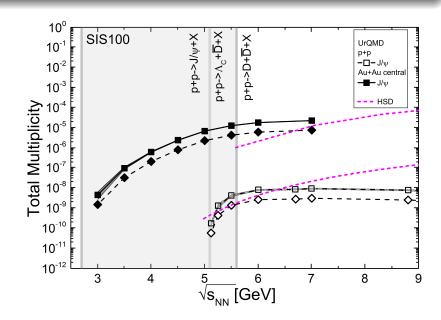

where the mass of $N'^* < N^*$ so no J/Ψ can be produced.

Comparable to: D. Kharzeev and H. Satz, Phys. Lett. B **334**, 155 (1994).

Predictions for SIS-100

When applied to central nuclear collisions (min. bias: divide by 5):

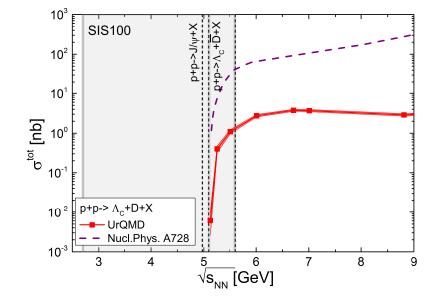

$E_{\rm lab} = 11 \text{ A GeV}$


- $1.5 \cdot 10^{-6} \ J/\Psi$ per event
- $2 \cdot 10^{-5} \ \Lambda_c$ per event
- ullet $pprox 3 4 \cdot 10^{-5} \ \overline{D}$ per event

Comparison to others I

Parametrized cross section for J/Ψ

$$\sigma_i^{NN}(s) = f_i a \left(1 - \frac{m_i}{\sqrt{s}}\right)^{\alpha} \left(\frac{\sqrt{s}}{m_i}\right)^{\beta} \theta(\sqrt{s} - \sqrt{s_{0i}})$$


HSD results taken from:

O. Linnyk, E. L. Bratkovskaya and W. Cassing, Int. J. Mod. Phys. E 17, 1367 (2008)

Comparison to others II

Cross section for
$$p+p \rightarrow p + \overline{D}^0 + \Lambda_c$$

Hadronic Lagrangian

Taken from:

W. Liu, C. M. Ko and S. H. Lee, Nucl. Phys. A 728, 457 (2003)

Summary

- A new mechanism for the production of Ξ and ϕ is introduced and validated in elementary collisions
- This new branching ratio of high mass resonances is fitted to available data and extrapolated to AA
- It allows for the first time to describe the subthreshold multi-strange particle production
- If this mechanism is also be applicable to charm production it may open a new road for charm studies at FAIR-SIS 100