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Statistical approach in nuclear reactions: 
conception of equilibrium

Intermediate energy collisions Preequlibrium emission 
+ equilibration 

evaporation fission multifragmentation

Compound-nucleus decay 
channels (sequential evaporation 
or fission) dominate at low 
excitation energy 
of thermal sources E*<2-3 
MeV/nucl

At high excitation energy 
E*>3-4 MeV/nucl there is a 
simultaneous break-up into 
many fragments 

N.Bohr (1936)

V.Weisskopf (1937) N.Bohr, J.Wheeler (1939) Bondorf et al. (1995) SMM

starting 1980-th :



Multifragmentation in intermediate and high energy nuclear reactions
Experimentally established:
1) few stages of reactions leading to multifragmentation, 
2) short time ~100fm/c for primary fragment production, 
3) freeze-out density is around 0.1ρ0 , 
4) high degree of equilibration at the freeze-out,
5) primary fragments are hot. 



ALADIN data

multifragmentation of
relativistic projectiles

GSI

A.S.Botvina et al.,
Nucl.Phys. A584(1995)737

comparison with
SMM (statistical 

multifragmentation
model)

Statistical equilibrium
has been reached in 

these reactions







Statistical (chemical) equilibrium  
is established at break-up of hot 
projectile residues ! In the case of 
strangeness admixture we expect 
it too ! 

R.Ogul et al. PRC 83, 024608 (2011)    ALADIN@GSI

124,107-Sn, 124-La (600 A MeV) + Sn → projectile (multi-)fragmentation
Very good description is obtained within Statistical Multifragmentation Model, including fragment 

charge  yields, isotope yileds, various fragment correlations. 



FRS data @  GSI
FRS projectile fragmentation of two symetric systems 124Sn + 124Sn and 112Sn + 112Sn at an
incident beam energy of 1 A GeV measured with high-resolution magnetic spectrometer FRS.
(V. Föhr, et al., Phys. Rev. C 84, (2011) 054605)

Experimental data are well reproduced with statistical calculations in the SMM–ensemble .
To reproduce the FRS data symmetry energy term is reduced as shown in the table.
We have also found a decreasing trend of the symmetry energy with increasing charge 
number, for the neutron-rich heavy fragments resulting from 124Sn projectile.
H. Imal, A.Ergun, N. Buyukcizmeci, R.Ogul, A.S. Botvina, W. Trautmann, C 91, 034605 (2015)



Hypernucleus
Discovery of a Strange nucleus:
Hypernucleus

above the ground.exposed to cosmic rays at about 26 k

10-12star. Time taken ~ sec (typical for weak decay)

hyperfragments or hypernuclei.

M. Danysz and J. Pniewski, Philos. Mag. 44 (1953) 348

First-hypernucleus was observed in a stack of photographic emulsions

J.P                       M.D 

Incoming high energy proton from cosmic ray

colliding with a nucleus of the emulsion, breaks it in 
several fragments forming a star.

All nuclear fragments stop in the emulsion after a short path

From the first star, 21 Tracks => 9α + 11H + 1 ΛX

The fragment ΛX disintegrates later , makes the bottom

This particular nuclear fragment, and the others 
obtained afterwards in similar conditions, were called
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Hyperons: Baryons with Strangeness
Cascade or Xi

Ξ0=(uss)
m(Ξ0 ) = 1314.86 +/- 0.2 MeV

0

m(Λ0 ) = 1115.683 +/- 0.006 MeV S = - 1

S S

Ξ−=(dss)
S

Σ−=(dds)
m(Σ- ) = 1197.449 +/- 0.030 MeV S = - 2

Omega

S
Σ+(uus)

m(Σ+ ) =1189.37 +/- 0.07 MeVshorter than 1×10−19 s

Lambda                              Sigma
S 

S                                              S                                               S

Λ0=(uds)                               Σ =(uds)
m(Σ0 ) = 1192.642 +/- 0.024 MeV                 S = - 2

S = - 1

Quark Symbol  charge Strangeness
(e)       (S) 

Up           (u)         2/3         0
Down      (d)        -1/3         0
Strange  (s)        -1/3        -1
Charm     (c)         2/3         0
Bottom    (b)        -1/3         0
Top          (t)          2/3         0

m(Ξ- ) = 1321.71 +/- 0.07 MeV

S = - 1

S  S
lifetimes of ~1×10−10 s                                                                                                       S

with the exception of Σ⁰                                                                                                                      Ω - =(sss)
whose lifetime is                                                                            m(Ω- ) = 1672.45 +/- 0.29 MeV

S = - 1                                                    S = - 3
lifetime of ~ 8.2×10−11 s                     



Why Study Hypernuclei?

Production of nuclei-beyond drip lines

Production of exotic multi-strange nuclei – may be without any neutrons and protons!

• NN interactionWell known from elastic scattering data

•YN, YY interaction Very little data

( short lifetime (ct < 10 cm), yield low)

•unified understanding of NN, YN and YY interactions

A hyperon can be put deep inside a nucleus => No Pauli blocking by the nucleons.

Hence, it can be used as a sensitive probe of the nuclear interior.



size          etc

HYPERNUCLEI & ASTROPHYSICS
Hyperons may appear at the high density core of the neutron star

At a density of four to five times that of

size, mass etc.

nuclear matter saturation density ρ0, a 
neutron star can become a hyperon star.

Theoretical  models  predict  that  the
presence of strange baryons in neutron 
stars strongly affect their properties, like

The effect strongly depends upon the 
interactions of strange baryons which is
still very poorly known!

http://en.wikipedia.org/wiki/Neutron_star

More experimental data needed to         J. Schaffner and I.N.Mishustin,
"Hyperon-rich matter in neutron stars".

constrain theoretical models.                 Phys. Rev.C 53 (1996) 1416-1429.

http://en.wikipedia.org/wiki/Neutron_star


Nuclear reactions: production mechanisms for hypernuclei 

Traditional way for production of hypernuclei:
Conversion of Nucleons into Hyperons

by using hadron and electron beams

(CERN, BNL, KEK, CEBAF, DAΦNE, JPARC, MAMI, ...) 

Advantages: rather precise determination of masses 
(e.g., via the missing mass spectroscopy) :
good for nuclear structure studies !

Disadvantages: very limited range of nuclei in A and 
Z can beinvestsigated; the phase space of the reaction 
is narrow (since hypernuclei are produced in ground 
and slightly excited states), so production probability 
is low; it is difficult to produce multi-strange nuclei.

What reactions can be used to produce
exotic strange nuclei and nuclei with many    
hyperons ? 



multifragmentation in intermediate and high energy nuclear reactions
+ nuclear matter with strangeness 

Λ hyperons captured

production of hypermatter

hyperfragments

A.S.Botvina and J.Pochodzalla, Phys. Rev.C76 (2007) 024909

Generalization of the statistical de-excitation model for nuclei with Lambda hyperons

In these reactions we expect analogy with 

Sunan
Sunum Notları
Normal fragmantation and multifragmentation e.c Afterwards you have faster processes , 10-20 fm/c , it expand to After secondary This is the general picture in nuclear reactions



Sunan
Sunum Notları
The model assumes that a hot nuclear spectator with total mass (baryon) number A0, charge Z0, number of _ hyperons H0, and temperature T expands to a low-density freeze-out volume, where the system is in chemical equilibrium. Thestatistical ensemble includes all breakup channels composed of nucleons and excited fragmentswith mass numberA, charge Z, and number of _’s H. The primary fragments are formed in the freeze-out volume V .We use the excluded volume approximation V = V0 + Vf , where V0 = A0/ρ0 (ρ0 ≈ 0.15 fm−3 is the normal nuclear density), and parametrize the free volume Vf = κV0, with κ ≈2. Nuclear clusters in the freeze-out volume are described as follows: Light fragments with mass number A < 4 are treated as elementary particles with corresponding spin and translational degrees of freedom (“nuclear gas”). Their binding energies were taken from experimental data [1,7,24]. Fragments with A = 4 are also treated as gas particles with table masses, however, some excitation energy is allowed, Ex = AT 2/ε0 (ε0 ≈ 16 MeV is the inverse volume leveldensity parameter [7]), which reflects the presence of excitedstates in 4He, 4_H, and 4_He nuclei. Fragments withA > 4 are treated as heated liquid drops. In this way one can study the nuclear liquid-gas coexistence of hypermatter in the freeze-out volume. The internal free energies of these fragments are parametrized as the sum of the bulk (FBA ), the surface (FSA), thesymmetry (FsymAZH ), the Coulomb (FCAZ), and the hyper (FhypAH )energies:FAZH (T,V) =  The first three terms are written in the standard liquid-drop form [7]: The model parameters w0 = 16 MeV, β0 = 18 MeV, Tc =18 MeV, and γ = 25 MeV were extracted from nuclear phenomenology and provide a good description of multifragmentation data [7–10]. The Coulomb interaction of thefragments is described within theWigner-Seitz approximation, and FCAZ is taken as in Ref. [7].The new term is the free hyperenergy F hyp AH . We assume that it does not change with temperature, i.e., it is determined solely by the binding energy of the hyper fragments. We have suggested the liquid-drop hyperenergy term [11]FhypAH= (H/A)(−10.68A + 21.27A2/3). (5)In this formula the binding energy is proportional to thefraction of hyperons in the system (H/A). The second partrepresents the volume contribution reduced by the surface termand thus resembles a liquid-drop parametrization based on thesaturation of the nuclear interaction. The linear dependence ata lowH/A is in agreement with theoretical predictions [3] forhypermatter.The breakup channels are generated according to theirstatistical weight. In the grand canonics this leads to thefollowing average yields of individual fragments: Here gAZH is the ground-state degeneracy factor of species(A,Z,H), λT = (2π¯h2/mNT )1/2 is the nucleon thermalwavelength, andmN is the average nucleon mass. The chemicalpotentials μ, ν, and ξ are responsible for the mass (baryon)number, charge, and strangeness conservation in the system.They can be found from the balance equations: Previously we have demonstrated within this model [11]that the fragment mass distributions are quite different forfragments with different strangeness contents. This meansthat the multifragmentation of excited hypernuclear systemsproceeds in a differentway compared with conventional nuclei.The reason is the additional binding energy of hyperonsin nuclear matter. It was also shown that the yields offragments with two _’s depend essentially on the bindingenergy formulas (i.e., on details of _N and __ interactions)used for the calculations [11,25]. Therefore, an analysis ofdouble hypernuclei can help to improve these mass formulasand reveal information about the hyperon-hyperon interaction.In Ref. [26] the decay of light excited hypersystems wasconsidered within the framework of the Fermi breakup model.It was also concluded that the production rate of single anddouble hypernuclei is directly related to their binding energy.In thiswork we extend our analysis to systems containing up tofour hyperons, which may be produced during the dynamicalstage of relativistic heavy-ion collisions [16,23].



Separation energy

Binding energy

liquid-drop approximation

Sunan
Sunum Notları
We show experimental data on the separation energy of lambda hyperons in hypernuclei,Together with our liquid drop approximation and with RMF calculations in these refs.We see reasonable agreement and reproduction of the main trend: increasing and saturation ofSeparation energy of hyperons with mass number of nuclei. Therefore the liquid drop approximationCan be used for the estimation of single hyper nuclei.We compare the predictions of the RMF model with our approach for some multiple hypernuclei.There is a similar agreement in binding energies and reproduction of trend of the increasing binding Energy with increasing hyperon number.İn fig 1 we see that at intermediate and heavy nuclei predictions ot the LD approximation slightly underestimate Hyperon binding , by comparison with both data  and RMF.





Double ratio method for hypernuclei
Grand

ArxiV: 1711.01159v2
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Summary
We have demonstrated that the hyperon binding energies can be effectively
evaluated from the yields of different isotopes of hypernuclei.

The double ratio method is suggested for this purpose. The advantage of this
procedure is its universality and the possibility to involve many different isotopes.
This method can also be applied for multi-strange nuclei, which binding energies
were very difficult to measure in previous hypernuclear experiments.

We believe such kind of research would be possible at the new generation of ion
accelerators of intermediate energies, as FAIR (Darmstadt), NICA (Dubna), and others.

It is promising that new advanced experimental installations for the fragment
detection will be available soon
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circles, without de-excitation
triangles, E*=1.5 MeV/nucl.

squares, E*=2 MeV/nucl.
stars, E*=3 MeV/nucl.
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Comparison of liquid drop and
Samanta formula integrated with

hyper-SMM

• Both formula have the similar trend 
except the intermediate mass
fragments
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