

UNIVERSIDADE DE COIMBRA

The QCD phase diagram in the presence of external magnetic fields

Pedro Costa,

Márcio Ferreira and Constança Providência

CFisUC, University of Coimbra, Portugal

THOR meets THOR

Exploring the interface of fundamental and effective approaches to extreme matter

11-14 June 2018 Lisbon, Portugal

Outline

Motivation

- PNJL model in the presence of an external magnetic field
- **③** Chiral transition and the Critical End Point (CEP) at B = 0
- Net baryon fluctuations at B = 0
- How does an external magnetic field influence the QCD phase diagram?
- In the second second
- ${\ensuremath{\textcircled{}}}$ Sound speed around the CEP at finite B
- Onclusions

Motivation

Analyze the effects of an external magnetic field on the QCD phase diagram

- What are the effects of *B* on chiral symmetry breaking and confinement?
- What happens to the CEP?

QCD phase Diagram in the presence of a magnetic field

Important for:

- Measurements in Heavy Ion Collisions¹:
 - RHIC energy scale: $eB_{max} \approx 5 \times 10^{18} \text{ G} (5 \times m_{\pi}^2)$
 - LHC energy scale: $eB_{max} \approx 5 \times 10^{19} \text{ G} (15 \times m_{\pi}^2)$
- Magnetized neutron stars: low T and high μ_B region $(B \sim 10^{18-20} \text{ G in the interior?})^2$
- First phases of the Universe: high T and low μ_B region

1- [V. V. Skokov, et al., IJMPA 24 (2009) 5925]; 2- [E. J. Ferrer, et al., Phys.Rev. C82 (2010) 065802]

Framework: the PNJL model

Polyakov loop extended Nambu-Jona-Lasinio model

$$\mathcal{L} = \bar{q} \left[i \gamma_{\mu} D^{\mu} - \hat{m}_c \right] q + \mathcal{L}_{\mathsf{sym}} + \mathcal{L}_{\mathsf{det}} + \mathcal{U} \left(\Phi, \bar{\Phi}; T \right) - \frac{1}{4} F_{\mu\nu} F^{\mu\nu}$$

where

$$\begin{split} \mathcal{L}_{\mathsf{sym}} &= G_s \sum_{a=0}^8 \left[(\bar{q}\lambda_a q)^2 + (\bar{q}i\gamma_5\lambda_a q)^2 \right] \\ \mathcal{L}_{\mathsf{det}} &= -K \left\{ \det \left[\bar{q}(1+\gamma_5)q \right] + \det \left[\bar{q}(1-\gamma_5)q \right] \right\} \end{split}$$

- Covariant derivative: $D^{\mu} = \partial^{\mu} i q_f A^{\mu}_{EM} i A^{\mu}$
- Constant ${B \over B}$ field in the z direction: $A_{\mu}^{EM}=\delta_{\mu 2}x_{1}B$
- For the Polyakov loop potential we use

$$\frac{\mathcal{U}\left(\Phi,\bar{\Phi};T\right)}{T^{4}} = -\frac{a\left(T\right)}{2}\bar{\Phi}\Phi + b(T)\ln\left[1 - 6\bar{\Phi}\Phi + 4(\bar{\Phi}^{3} + \Phi^{3}) - 3(\bar{\Phi}\Phi)^{2}\right]$$

Framework: the PNJL model

- Regularization: 3-momentum cutoff Λ
- NJL parametrization³:

$$m_u = m_d = 5.5 \text{ MeV}, \quad m_s = 140.7 \text{ MeV}$$

 $G_s \Lambda^2 = 3.67, \quad K \Lambda^5 = -12.36, \quad \Lambda = 602.3 \text{ MeV}$

 \Rightarrow Fixed to reproduce several physical vacuum properties $(f_{\pi}, M_{\pi}, M_K, \text{ and } M_{\eta'})$

• $\mathcal{U}\left(\Phi, \overline{\Phi}; T\right)$ parametrization⁴:

$$a_0 = 3.51, \quad a_1 = -2.47, \quad a_2 = 15.2, \quad b_3 = -1.75$$

 $T_0 = 210 \text{ MeV}$

 \Rightarrow Chosen to reproduce lattice results ($T^{dec} = 171$ MeV)

3- [P. Rehberg, et al. PRC53, 410]; 4- [S. Roessner, et al. PRD75, 034007]

Phase diagram for B = 0: Up/Down quark

- Isospin symmetry: $\langle \bar{u}u \rangle = \left\langle \bar{d}d \right\rangle$
- Vacuum normalized up-quark condensate: $\langle \bar{u}u \rangle (T, \mu_B) / \langle \bar{u}u \rangle (0, 0)$

- Crossover transition for $T>133\ {\rm MeV}$
- Second-order phase transition at $T=133\ {\rm MeV}$
- First-order phase transition for $T<133\ {\rm MeV}$

Phase diagram for B = 0: Strange quark

• Vacuum normalized s-quark condensate: $\langle \bar{s}s \rangle (T, \mu_B) / \langle \bar{s}s \rangle (0, 0)$

Phase diagram for B = 0: Polyakov loop

- Polyakov loop value: $\Phi(T, \mu_B)$
 - $\Phi \rightarrow 0$: confined phase (low temperatures)
 - $\Phi \rightarrow 1$: deconfined phase (high temperatures)

Net-baryon fluctuations

• The nth-order **net-baryon fluctuations** (susceptibility):

$$\chi_B^n(T,\mu_B) = \frac{\partial^n \left(P(T,\mu_B)/T^4 \right)}{\partial (\mu_B/T)^n}$$

• Susceptibilities ratios have no volume dependence:

$$\chi_B^4/\chi_B^2 = \kappa \sigma^2 \qquad \chi_B^3/\chi_B^1 = S \sigma^3/M$$

- They measure the kurtosis and skewness of the net-baryon distribution.
- Fluctuations provide important information on critical phenomena:
 - possible experimental signatures for the presence of a CEP and the onset of deconfinement

 χ_B^3 and χ_B^4 fluctuations (B=0)

- Non-monotonic dependencies around the CEP
- Positive fluctuations of χ^3_B on the chiral restored phase
- χ^4_B fluctuations are symmetric with respect to the chiral transition
- A similar non-monotonic dependence occurs at high μ_B (strange quark transition) but **no CEP is present**
 - A stronger ${\cal G}_s$ would give rise to a first-order transition and a CEP
 - An external magnetic has this effect

 χ_B^4/χ_B^2 and χ_B^3/χ_B^1 fluctuations ratios (B=0)

- Clear distinction between the broken/restored chiral symmetry region
- There is a pronounced variation around deconfinement transition
- The non-monotonic dependence at higher μ_B is still visible

Can the non-monotonic (critical) region still persist in the absence of a CEP?

Two models at finite *B*: different scalar couplings

- Constant coupling: $G_s = G_s^0 = 3.67/\Lambda^2$
- Magnetic field dependent coupling: $G_s = G_s(eB)$

[M. Ferreira, et al., Phys. Rev. D89 (2014) 116011-9]

- Same vacuum properties for both models:
 - $G_s(eB) \rightarrow G_s^0$ as $B \rightarrow 0$

Phase diagram at finite B: Up quark

• External magnetic field: $eB = 0.3 \text{ GeV}^2$

• G_s(eB) model shows Inverse Magnetic Catalysis

- Both T^{χ} and T^{Φ} decrease with B
- $\mu_B^{\text{crit}}(T=0)$ also decreases with B for the $G_s(eB)$ model
- $G_s(eB)$ model \implies smaller region for the chiral broken phase

Phase diagram at finite *B*: Strange quark

• External magnetic field: $eB = 0.3 \text{ GeV}^2$

- A new first-order phase transition happens at higher μ_B
- A CEP related with the strange quark appears
- The strange CEP also occurs at lower μ_B for the $G_s(eB)$ model

Location of the CEP in the presence of a magnetic field

Distinct behaviors between models at large B:

Case G_s^0 :

• increasing magnetic fields shift both CEPs to higher temperatures

Case $G_s(eB)$:

- light CEP: it occurs at smaller μ_B and at a practically unchanged temperatures
- strange CEP: it occurs at smaller μ_B and, at high values of B, also at smaller temperatures

 χ^3_B and χ^4_B fluctuations in a strong B

• Three CEP like structures at high μ_B :

- 1st: s-quark first-order phase transition
- 2^{nd} : population of a new LL for the d-quark
- 3^{rd} : s-quark first-order phase transition at higher μ_B

 χ_B^4/χ_B^2 and χ_B^3/χ_B^1 fluctuations ratios in a strong B

- Only the non-monotonic behavior around the CEPs remains
- B concentrates the high fluctuation region around the CEP
- The behavior of isentropic trajectories shows the presence of several CEPs: slight focusing effect towards the strange CEP

 χ_B^4/χ_B^2 and χ_B^3/χ_B^1 fluctuations ratios in a strong B

- μ_B^{CEP} decreases with $B \implies$ the chiral crossover at $\mu_B = 0$ possibly turns into a 1^{st} -order phase transition for high enough B
- Increasing of $\chi_B^{3(4)}/\chi_B^{1(2)}$ at small μ_B due to the dragging of the critical region by the CEP \implies sign the vicinity of a CEP at low μ_B ?

Sound speed around the (ligh) CEP at finite B

B = 0:

• local minimum that tends to zero as the CEP gets closer

• very close to the CEP (crossover region) both transitions coincide

$B \neq 0$:

- two minima related with both transitions (chiral and deconfinement)
- 2^{nd} minimum (related with chiral transition) tends to zero as the CEP gets closer
- near the CEP c_s^2 reflects the changes in the QCD phase diagram due to $B \implies$ it is sensitive to both the chiral symmetry restoration and deconfinement transitions

Conclusions

- The presence of an external magnetic field causes a complex pattern of multiple phase transitions
- *B* induces multiple phase transitions, and thus the emergence of several CEPs also in the strange sector
- The CEP's location strongly depends on whether the IMC is taken into account:
 - The G_s^0 predicts that $\mu_B^{\tt CEP}$ increases with $B~(eB>0.3~{\rm GeV^2})$
 - Suppression of fluctuations at low μ_B
 - The $G_s(eB)$ predicts that $\mu_B^{\tt CEP}$ decreases with B
 - Enhancement of fluctuations at low μ_B
- Fluctuations do not necessarily indicate the existence of a CEP
 - The speed of sound shows a much richer structure in quark magnetized matter and allows to identify both chiral and deconfinement transitions

Acknowledgments

• This work has been performed in the framework of COST Action CA15213 THOR: *Theory of hot matter and relativistic heavy-ion collisions*

P. Costa is supported by FCT under Contract No. SFRH/BPD/102273/2014

(Backup slides) PNJL model in an external magnetic field

Thermodynamic potential:

$$\begin{split} \Omega(T,\mu_i) &= \mathcal{U}(\Phi,\bar{\Phi},T) - N_c \sum_{i=u,d,s} \frac{|q_i|eB}{2\pi} \sum_{n=0}^{\infty} \alpha_n \int_{-\infty}^{\infty} \frac{dp_z}{2\pi} \bigg(E_i \\ &+ \frac{T}{3} \ln \Big\{ 1 + 3\bar{\Phi} e^{-(E_i - \mu_i)/T} + 3\Phi e^{-2(E_i - \mu_i)/T} + e^{-3(E_i - \mu_i)/T} \Big\} \\ &+ \frac{T}{3} \ln \Big\{ 1 + 3\Phi e^{-(E_i + \mu_i)/T} + 3\bar{\Phi} e^{-2(E_i + \mu_i)/T} + e^{-3(E_i + \mu_i)/T} \Big\} \bigg) \\ &+ G_s \sum_{\{i=u,d,s\}} \langle \bar{q}_i q_i \rangle^2 + 4K \langle \bar{q}_u q_u \rangle \langle \bar{q}_d q_d \rangle \langle \bar{q}_s q_s \rangle \end{split}$$

• In the presence of an external magnetic field $B = B\hat{z}$:

$$E_i = \sqrt{2n|q_i|eB + p_z^2 + M_i^2}$$

• $n = 0, 1, 2, \dots$ is the Landau level.

- Dimensional reduction: $D \to D 2 \longmapsto k_x, k_y, k_z \to k_z$.
- The model is modified in the following:

$$2\int \frac{d^3p}{(2\pi)^3} f(E_i) \to \frac{|qB|}{2\pi} \sum_{n=0}^{\infty} \alpha_n \int \frac{dp_z}{2\pi} f\left(\sqrt{p_z^2 + 2|qB|n + M_i^2}\right)$$

with $\alpha_0 = 1$ and $\alpha_{n \neq 0} = 2$

(Backup slides) Parameters and results

Physical quantities	Parameter set
	and constituent quark masses
$f_{\pi} = 92.4 \text{ MeV}$	$m_u = m_d = 5.5 \text{ MeV}$
$M_{\pi} = 135.0 \text{ MeV}$	$m_s = 140.7 { m MeV}$
$M_K = 497.7 \mathrm{MeV}$	$\Lambda=602.3~{ m MeV}$
$M_{\eta'} = 960.8 \mathrm{MeV}$	$G_s^0 \Lambda^2 = 3.67$
$M_{\eta} = 514.8 { m MeV^*}$	$K\Lambda^5 = 12.36$
$f_K = 97.7 \mathrm{MeV^*}$	$M_u = M_d = 367.7 {\rm MeV^*}$
$M_{\sigma}=728.8~{ m MeV^*}$	$M_s = 549.5 \mathrm{MeV^*}$
$M_{a_0} = 873.3 { m MeV^*}$	
$M_\kappa = 1045.4 \mathrm{MeV^*}$	
$M_{f_0} = 1194.3 \; {\sf MeV^*}$	
$\theta_P = -5.8^{o^*}$; $\theta_S = 16^{o^*}$	

- [S. P. Klevansky, et al., Phys. Rev. C53 (1996) 410]

- [P. Costa, et al., Phys. Rev. D71 (2005) 116002]

(Backup slides) The magnetic field dependence of G_s

- The $T^{\chi}_c(B)/T^{\chi}_c(eB=0)$ (given by LQCD^6) is obtained by the following $G_s(eB)$ dependence

[M. Ferreira, et al., Phys. Rev. D89 (2014) 116011-9]

- The pseudocritical temperature decrease ratio is possible via the $G_s(eB)$
- Furthermore, the crossover nature of the transitions is preserved
 - 6- [G. Bali, et al., JHEP 1202 (2012) 044]

• $G_s(eB)$ still leads to MC at low temperatures

• B enhances the quark condensate

• $G_s(eB)$ generates IMC on the transition temperature region

• B weakens the quark condensate

- The Polyakov loop shows the following trends (as in LQCD):
 - for a given temperature, it increases with ${\cal B}$ and changes strongly on the transition region
 - The inflection point moves to smaller temperatures with increasing B