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Motivation
Analyze the effects of an external magnetic field

on the QCD phase diagram
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• What are the effects of B on chiral symmetry breaking and
confinement?

• What happens to the CEP?
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QCD phase Diagram in the presence of a magnetic field
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Important for:
• Measurements in Heavy Ion Collisions1:

• RHIC energy scale: eBmax ≈ 5 × 1018 G (5 × m2
π)

• LHC energy scale: eBmax ≈ 5 × 1019 G (15 × m2
π)

• Magnetized neutron stars: low T and high µB region
(B ∼ 1018−20 G in the interior?)2

• First phases of the Universe: high T and low µB region

1− [V. V. Skokov, et al., IJMPA 24 (2009) 5925]; 2− [E. J. Ferrer, et al., Phys.Rev. C82 (2010) 065802]
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Framework: the PNJL model
Polyakov loop extended Nambu-Jona–Lasinio model

L = q̄ [iγµDµ − m̂c] q + Lsym + Ldet + U
(
Φ, Φ̄; T

)
− 1

4
FµνF µν

where

Lsym = Gs

8∑
a=0

[
(q̄λaq)2 + (q̄iγ5λaq)2]

Ldet = −K {det [q̄(1 + γ5)q] + det [q̄(1 − γ5)q]}

• Covariant derivative: Dµ = ∂µ − iqf Aµ
EM − iAµ

• Constant B field in the z direction: AEM
µ = δµ2x1B

• For the Polyakov loop potential we use

U
(
Φ, Φ̄; T

)
T 4 = −a (T )

2
Φ̄Φ + b(T )ln

[
1 − 6Φ̄Φ + 4(Φ̄3 + Φ3) − 3(Φ̄Φ)2]
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Framework: the PNJL model
• Regularization: 3-momentum cutoff Λ
• NJL parametrization3:

mu = md = 5.5 MeV, ms = 140.7 MeV
GsΛ2 = 3.67, KΛ5 = −12.36, Λ = 602.3 MeV

⇒ Fixed to reproduce several physical vacuum properties
(fπ, Mπ, MK , and Mη′)

• U
(
Φ, Φ̄; T

)
parametrization4:

a0 = 3.51, a1 = −2.47, a2 = 15.2, b3 = −1.75
T0 = 210 MeV

⇒ Chosen to reproduce lattice results (T dec = 171 MeV)
3− [P. Rehberg, et al. PRC53, 410]; 4− [S. Roessner, et al. PRD75, 034007]
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Phase diagram for B = 0: Up/Down quark
• Isospin symmetry: ⟨ūu⟩ =

⟨
d̄d
⟩

• Vacuum normalized up-quark condensate: ⟨ūu⟩ (T, µB)/ ⟨ūu⟩ (0, 0)

• T χ(µB = 0) = 200 MeV

• T Φ(µB = 0) = 171 MeV

• CEP at
{

T CEP = 133 MeV
µCEP

B = 862 MeV

• Crossover transition for T > 133 MeV
• Second-order phase transition at T = 133 MeV
• First-order phase transition for T < 133 MeV
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Phase diagram for B = 0: Strange quark

• Vacuum normalized s-quark condensate: ⟨s̄s⟩ (T, µB)/ ⟨s̄s⟩ (0, 0)

• Small variation at the chiral
transition

• Crossover transition for every T
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Phase diagram for B = 0: Polyakov loop
• Polyakov loop value: Φ(T, µB)

• Φ → 0: confined phase (low temperatures)
• Φ → 1: deconfined phase (high temperatures)

• T Φ(µB = 0) = 171 MeV

• Small variation at the chiral
transition

• Crossover transition for every T
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Net-baryon fluctuations

• The nth-order net-baryon fluctuations (susceptibility):

χn
B(T, µB) = ∂n

(
P (T, µB)/T 4)
∂(µB/T )n

• Susceptibilities ratios have no volume dependence:

χ4
B/χ2

B = κσ2 χ3
B/χ1

B = Sσ3/M

• They measure the kurtosis and skewness of the net-baryon
distribution.

• Fluctuations provide important information on critical phenomena:
• possible experimental signatures for the presence of a CEP and the

onset of deconfinement
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χ3
B and χ4

B fluctuations (B = 0)
250 250

• Non-monotonic dependencies around the CEP
• Positive fluctuations of χ3

B on the chiral restored phase
• χ4

B fluctuations are symmetric with respect to the chiral transition

• A similar non-monotonic dependence occurs at high µB (strange
quark transition) but no CEP is present

• A stronger Gs would give rise to a first-order transition and a CEP
• An external magnetic has this effect

11 / 27



χ4
B/χ2

B and χ3
B/χ1

B fluctuations ratios (B = 0)
250 250

• Clear distinction between the broken/restored chiral symmetry region
• There is a pronounced variation around deconfinement transition
• The non-monotonic dependence at higher µB is still visible

• Can the non-monotonic (critical) region still persist in the
absence of a CEP?
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Two models at finite B: different scalar couplings
• Constant coupling: Gs = G0

s = 3.67/Λ2

• Magnetic field dependent coupling: Gs = Gs(eB)
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[M. Ferreira, et al., Phys. Rev. D89 (2014) 116011-9]

• Same vacuum properties for both models:
• Gs(eB) → G0

s as B → 0

5− [G. Bali, et al., JHEP 1202 (2012) 044]
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Phase diagram at finite B: Up quark
• External magnetic field: eB = 0.3 GeV2

• Gs(eB) model shows Inverse Magnetic Catalysis
• Both T χ and T Φ decrease with B

• µcrit
B (T = 0) also decreases with B for the Gs(eB) model

• Gs(eB) model =⇒ smaller region for the chiral broken phase
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Phase diagram at finite B: Strange quark
• External magnetic field: eB = 0.3 GeV2

• A new first-order phase transition happens at higher µB

• A CEP related with the strange quark appears

• The strange CEP also occurs at lower µB for the Gs(eB) model
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Location of the CEP in the presence of a magnetic field

Distinct behaviors between models at large B:
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Case G0
s:

• increasing magnetic fields shift
both CEPs to higher temperatures

Case Gs(eB):
• light CEP: it occurs at smaller

µB and at a practically unchanged
temperatures

• strange CEP: it occurs at smaller
µB and, at high values of B, also
at smaller temperatures
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χ3
B and χ4

B fluctuations in a strong B

a) b) c)

d) e) f)
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• Three CEP like structures at high µB:
• 1st: s-quark first-order phase transition
• 2nd: population of a new LL for the d-quark
• 3rd: s-quark first-order phase transition at higher µB
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χ4
B/χ2

B and χ3
B/χ1

B fluctuations ratios in a strong B
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• Only the non-monotonic behavior around the CEPs remains
• B concentrates the high fluctuation region around the CEP
• The behavior of isentropic trajectories shows the presence of several

CEPs: slight focusing effect towards the strange CEP
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χ4
B/χ2

B and χ3
B/χ1

B fluctuations ratios in a strong B
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Case Gs(eB):
• µCEP

B decreases with B =⇒ the chiral crossover at µB = 0 possibly turns
into a 1st-order phase transition for high enough B

• Increasing of χ
3(4)
B /χ

1(2)
B at small µB due to the dragging of the critical

region by the CEP =⇒ sign the vicinity of a CEP at low µB?
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Sound speed around the (ligh) CEP at finite B
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B = 0:

• local minimum that tends to zero
as the CEP gets closer

• very close to the CEP (crossover
region) both transitions coincide

B ̸= 0:

• two minima related with both transitions (chiral and deconfinement)

• 2nd minimum (related with chiral transition) tends to zero as the CEP
gets closer

• near the CEP c2
s reflects the changes in the QCD phase diagram due

to B =⇒ it is sensitive to both the chiral symmetry restoration and
deconfinement transitions
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Conclusions

� The presence of an external magnetic field causes a complex pattern
of multiple phase transitions

� B induces multiple phase transitions, and thus the emergence of sev-
eral CEPs also in the strange sector

� The CEP’s location strongly depends on whether the IMC is taken
into account:

• The G0
s predicts that µCEP

B increases with B (eB > 0.3 GeV2)
– Suppression of fluctuations at low µB

• The Gs(eB) predicts that µCEP
B decreases with B

– Enhancement of fluctuations at low µB

� Fluctuations do not necessarily indicate the existence of a CEP
� The speed of sound shows a much richer structure in quark magnetized

matter and allows to identify both chiral and deconfinement transitions
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(Backup slides) PNJL model in an external magnetic field
Thermodynamic potential:

Ω(T, µi) = U(Φ, Φ̄, T ) − Nc

∑
i=u,d,s

|qi|eB

2π

∞∑
n=0

αn

∫ ∞

−∞

dpz

2π

(
Ei

+
T

3
ln
{

1 + 3Φ̄e−(Ei−µi)/T + 3Φe−2(Ei−µi)/T + e−3(Ei−µi)/T
}

+
T

3
ln
{

1 + 3Φe−(Ei+µi)/T + 3Φ̄e−2(Ei+µi)/T + e−3(Ei+µi)/T
})

+ Gs

∑
{i=u,d,s}

⟨q̄iqi⟩2 + 4K ⟨q̄uqu⟩ ⟨q̄dqd⟩ ⟨q̄sqs⟩

• In the presence of an external magnetic field B = Bẑ:

Ei =
√

2n|qi|eB + p2
z + M2

i

• n = 0, 1, 2, ... is the Landau level.
• Dimensional reduction: D → D − 2 7−→ kx, ky, kz → kz.
• The model is modified in the following:

2

∫
d3p

(2π)3
f(Ei) →

|qB|
2π

∞∑
n=0

αn

∫
dpz

2π
f

(√
p2

z + 2|qB|n + M2
i

)
with α0 = 1 and αn ̸=0 = 2
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(Backup slides) Parameters and results

Physical quantities Parameter set
and constituent quark masses

fπ = 92.4 MeV mu = md = 5.5 MeV
Mπ = 135.0 MeV ms = 140.7 MeV
MK = 497.7 MeV Λ = 602.3 MeV
Mη′ = 960.8 MeV G0

sΛ2 = 3.67
Mη = 514.8 MeV∗ KΛ5 = 12.36
fK = 97.7 MeV∗ Mu= Md = 367.7 MeV∗

Mσ = 728.8 MeV∗ Ms = 549.5 MeV∗

Ma0 = 873.3 MeV∗

Mκ = 1045.4 MeV∗

Mf0 = 1194.3 MeV∗

θP = −5.8o∗ ; θS = 16o∗

− [S. P. Klevansky, et al., Phys. Rev. C53 (1996) 410]

− [P. Costa, et al., Phys. Rev. D71 (2005) 116002]
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(Backup slides) The magnetic field dependence of Gs

• The T χ
c (B)/T χ

c (eB = 0) (given by LQCD6) is obtained by the following
Gs(eB) dependence

Gs(ζ) = G0
s

(
1 + a ζ2 + b ζ3

1 + c ζ2 + d ζ4

)
, where ζ = eB/Λ2
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[M. Ferreira, et al., Phys. Rev. D89 (2014) 116011-9]

• The pseudocritical temperature decrease ratio is possible via the Gs(eB)
• Furthermore, the crossover nature of the transitions is preserved

6− [G. Bali, et al., JHEP 1202 (2012) 044]
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(Backup slides) Quark condensate: Gs vs. Gs(eB)

Gs = G0
s

Gs(eB)

• Gs(eB) still leads to MC at low temperatures
• B enhances the quark condensate

• Gs(eB) generates IMC on the transition temperature region
• B weakens the quark condensate
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(Backup slides) Polyakov loop: Gs vs. Gs(eB)
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• The Polyakov loop shows the following trends (as in LQCD):
• for a given temperature, it increases with B and changes strongly on the

transition region
• The inflection point moves to smaller temperatures with increasing B
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