

UNIVERSITÄT

HEIDELBERG

ZUKUNFT

SEIT 1386

Heavy-flavour production via single electron and di-electron measurements

Andrea Dubla for the ALICE Collaboration

- Output Content of the second secon in the initial stages of the collisions
- \rightarrow They experience the full evolution of the system ⇒ sensitive probes of the properties of the Quark-Gluon Plasma
- → Expected to **lose energy** while traversing the medium
- → Collective expansion of the medium
- → Cold Nuclear Matter effect: modification of nPDF (shadowing) - Need reference measurements in pp and p-Pb collisions

Physics motivation

A. Dubla

ALCE detector

Single-electron from heavy-flavour hadron decays

– Low- p_T electrons (p_T < 3 GeV/c): PID via TPC dE/dx complemented with TOF and ITS - High- p_T electrons (p_T > 3 GeV/c): PID using TPC, EMCal

Main background sources:

 $-\gamma$ conversions

A. Dubla

 $-\pi^0$ and η Dalitz decays

Background subtraction:

– Measured: photonic-electron tagging method (e⁺e⁻ pairs) Calculated: data-tuned background cocktail

Dielectron production

A. Dubla

 \Rightarrow Measure Dalitz decays ($\pi^0,\eta,\omega,\eta',\phi$) and 2-body decays (ρ, ω, ϕ) of mesons \Rightarrow Study direct photons via internal conversion ($\gamma^{dir^*} \rightarrow e^+e^-$) (Complementary to real photon measurements, test pQCD calculations)

Study heavy-flavour (HF) production via simultaneous semi-leptonic decays of D and B mesons - Complementary to single HF measurements

Heavy-flavour decay electrons in pp collisions

 Testing the centre-of-mass energy dependence \Rightarrow testing pQCD based calculations down to $p_T = 0.5 \text{ GeV}/c$: at the upper edge of FONLL calculation at all energies \Rightarrow Large improvement in the measurement precision!

A. Dubla

Heavy-flavour decay electrons in pp collisions

- Ratios of cross sections at different energies can be used in order to further test the pQCD FONLL calculation. In the ratios, part of the uncertainties cancel out

> It may helps to set additional constraints to model calculations ____ Eur.Phys.J. C75 (2015) no.12, 610

Studies of heavy-flavour production as a function of multiplicity

– Heavy-flavour production in pp collisions provides insight into their production mechanisms and into the interplay between hard and soft processes in particle production

> – The self-normalized yield shows a faster than linear increase trend and are comparable with J/ψ measurements and PYTHIA8.2 predictions

$p_{T,ee}$ and DCA_{ee} analyses in pp at $\sqrt{s} = 7$ TeV

 \Rightarrow Let the normalization of the charm and beauty contributions free in the cocktail Fit $m_{ee}/p_{T,ee}$ and DCA_{ee} spectra independently to extract the total charm and beauty cross sections

Model dependence

 \Rightarrow Significant model dependence of the extracted total charm and beauty cross section Sensitivity to the different implementation of heavy-quark production mechanisms

A. Dubla

PYTHIA 6 Perugia 2011 tune (LO with parton shower)

POWHEG (NLO) + PYTHIA 6 parton shower

Heavy-flavour production in pp at $\sqrt{s} = 13$ TeV

*p*_{T,ee} **spectrum** in the intermediate-mass region

First measurement of $d\sigma_{c\bar{c}/b\bar{b}}/dy_{ly=0}$ in pp collisions at $\sqrt{s} = 13$ TeV

PYTHIA 6 Perugia 2011 tune (LO with parton shower)		POWHEG (NLO) + PYTHIA 6 parton sho
$d\sigma_{c\overline{c}}/dy _{y=0}$	974 ± 138 (stat.) ± 140 (syst.) µb	1417 ± 184 (stat.) ± 204 (sys
$\mathrm{d}\sigma_{\mathrm{b}\overline{\mathrm{b}}}/\mathrm{d}y _{y=0}$	79 ± 14 (stat.) ± 11 (syst.) μb	48 ± 14 (stat.) ± 7 (sys

 \Rightarrow Fit 2D $p_{T,ee}$ and m_{ee} spectra to extract $d\sigma_{cc/bb}/dy_{ly=0}$ \Rightarrow Similar **model dependence** observed as at $\sqrt{s} = 7$ TeV \Rightarrow Further studies of charm production mechanisms

Heavy-flavour elliptic flow in p-Pb collisions

- Two-particle correlations of HFe with charged particles in high multiplicity and low multiplicity events

 Near and away side modification from low multiplicity to high multiplicity

Heavy-flavour elliptic flow in p-Pb collisions

Jet subtraction: high mult. - low mult.

Modulation present! Collective effects
Initial- or final-state effect

A. Dubla

Significance: 5.1σ for 1.5< p_{Te}< 4 GeV/c</p>

Effect is qualitatively similar to the one observed for light flavours and inclusive muons

Nuclear modification factor

- Production of hard probes (heavy quarks, jets...) in AA collisions is expected to scale with the number of nucleon-nucleon collisions N_{coll} (**binary scaling**)
- **Observable**: nuclear modification factor

$$R_{AA}(p_{T}, y) = \frac{1}{\langle T_{AA} \rangle} \cdot \frac{d^2 N_{AA}/dp_{T} dy}{d^2 \sigma_{pp}/dp_{T} dy}$$

- If no nuclear effects are present $\rightarrow R_{AA} = 1$
- Cold Nuclear Matter effects: \Rightarrow shadowing leads to a reduction of the heavy-flavour yield (important at low p_{T}) – In-medium parton energy loss via radiative (gluon emission)
- and collisional processes depending on: ⇒ colour charge
 - ⇒ quark mass (dead cone effect)
 - \Rightarrow path length and medium density

Dokshitzer and Kharzeev, PLB 519 (2001) 199 Wicks, Gyulassy, J.Phys. G35 (2008) 054001

- Data are better described when the nuclear PDFs (EPS09) are included in the model calculation (TAMU, POWLANG and MC@sHQ+EPOS2) in both centrality intervals
- Suppression at intermediate/high p_{T} is better described by models that include both radiative and collisional energy loss processes
- A. Dubla

- POWLANG: Eur.Phys.J. C73 (2013) 2481;
- TAMU: Phys.Lett. B735 (2014) 445-450;
- MC@HQ+EPOS: PRC 89 (2014) 014905;

- New R_{AA} measurements in Pb-Pb collisions at 5.02 TeV down to $p_T = 0.5$ GeV/c

- New R_{AA} measurements in Pb-Pb collisions at 5.02 TeV down to $p_T = 0.5$ GeV/c
- electron spectra in p-Pb collisions relative to pp collisions
- Large suppression at high p_{T} in Pb-Pb collisions ⇒ final-state effect due to heavy-quark in-medium energy loss

A. Dubla

- R_{pPb} consistent with unity (PLB 754 (2016) 81) \rightarrow no strong modification of heavy-flavour decay

Similar R_{AA} is measured between the two collision energies.
⇒ interplay between harder p_T spectra and larger energy loss at 5.02 TeV w.r.t 2.76 TeV
- modulo different charm/beauty fraction

- Similar R_{AA} is measured between the two collision energies.
 - modulo different charm/beauty fraction
- Suppression compatible with the one observed for muons from heavy-flavour hadron decay at forward rapidity at the same collision energy

A. Dubla

 \Rightarrow interplay between harder p_T spectra and larger energy loss at 5.02 TeV w.r.t 2.76 TeV

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta >$

A. Dubla

- Comparison of **Pb-Pb** and **Xe-Xe** collisions at different N_{part} or N_{ch} may add sensitivity to probe the path-length dependence of energy loss \Rightarrow both radiative and collisional processes relevant for heavy-flavour \Rightarrow constraints to model calculations

A. Dubla

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta >$

ALI-PREL-146838

Data are reproduced by model calculations

- New R_{AA} measured down to $p_T = 0.2$ GeV/c thanks to the low B field used in ALICE during the Xe-Xe data taking!

Possible future measurement of total charm cross section in heavy-ion collisions

Nuclear modification factor in Xe-Xe: rapidity dependence

ALI-PREL-148699

– Also in this collision system a similar suppression is observed with the **muons** from heavy-flavour hadron decay at forward rapidity – Hint of a smaller suppression in 0-10% with respect to 20-40% centrality

- New R_{AA} measured down to $p_T = 0.2$ GeV/c thanks to the low B field used in ALICE during the Xe-Xe data taking!

– Analysis based on the electron impact parameter distribution

- First R_{AA} measurement of beauty-decay electrons in 0-20% centrality at 2.76 TeV - New R_{AA} measurement of beauty-decay electrons in 0-10% centrality at 5.02 TeV $\Rightarrow R_{AA} < 1$ for $p_T > 3$ GeV/c and compatible with the R_{AA} measured at 2.76 TeV

A. Dubla

JHEP 07 (2017) 052

- New R_{AA} measurement of beauty-decay electron in 0-10% centrality at 5.02 TeV \Rightarrow large contribution to the systematic uncertainties from the rescaled pp cross section

 \Rightarrow hint of a smaller suppression for beauty than charm+beauty decay electrons at the same electron p_{T} ⇒ agreement within the uncertainties with models implementing mass-dependent energy loss

Where we are

pp collisions

→ Production cross section described by pQCD calculations ✓ HF are a calibrated probe of the medium created in heavy-ion collisions ✓ new di-electron measurements allow to study heavy-flavour production

Pb-Pb and Xe-Xe collisions

- \Rightarrow Substantial modification of D and B meson p_{T} spectra \Rightarrow Indication for $R_{AA}^{beauty} > R_{AA}^{charm}$ Consistent with the predicted quark-mass dependent energy loss

p-Pb collisions

- ✓ Small cold nuclear matter effects at mid-rapidity
 - observed in Pb-Pb collisions

Potential to constrain energy loss mechanisms and medium transport coefficients

Suggests that charm quarks take part in the collective expansion of the medium

 \checkmark Confirm that D and B meson suppression in Pb-Pb at high p_{T} is a final-state effect

 \Rightarrow But also unexpected results qualitatively resembling the collective behaviour

and what next

Pb-Pb: larger samples at higher energy

- \Rightarrow Improved precision + extended p_T coverage
 - ✓ Quantitatively constrain energy loss models
 - ✓ Study whether charm and beauty quarks thermalize in the medium
 - ✓ Total charm cross-section measurement

p-Pb and pp collisions

- ✓ Crucial role in the interpretation of Pb-Pb results → Production vs. multiplicity/centrality

Major step towards high-precision measurements in the HF sector with the detector upgrades after Run2

Additional studies on collectivity in high multiplicity pp and p-Pb collisions in the HF sector

Production in p-Pb collisions

A. Dubla

- For both inclusive HF and beauty decay electron an $R_pPb = 1$ has been measured within the uncertainties No indication of significant cold nuclear matter effects on charm and beauty production - Large uncertainties do not allow to discriminate among models implementing different CNM effects

ALI-PUB-159941

New R_{AA} measurements in Pb-Pb collisions at 2.76 TeV down to $p_T = 0.5$ GeV/c \Rightarrow low- p_T measurements crucial in all systems to test binary scaling of total charm cross section and possible effect of initial-state effects like nuclear PDF (**shadowing**) \Rightarrow systematic uncertainty largely reduced thanks to the new pp reference at 2.76 TeV

A. Dubla

- Re-scatterings among produced particles convert the initial geometrical anisotropy into an observable momentum anisotropy
- In addition, path-length dependent energy loss induces an asymmetry in momentum space
- Observable: elliptic flow $v_2 = 2^{nd}$ Fourier coefficient of the particle azimuthal distribution

$$E\frac{\mathrm{d}^{3}N}{\mathrm{d}^{3}p} = \frac{1}{2\pi}\frac{\mathrm{d}^{2}N}{p_{\mathrm{T}}\mathrm{d}p_{\mathrm{T}}\mathrm{d}y}\left(1 + \sum_{n=1}^{\infty} 2v_{n}\cos[n(\varphi - \Psi_{\mathrm{RP}})]\right)$$

Heavy-flavour v_2 measurements probe:

- Low/intermediate p_{T} : collective motion, degree of thermalization of heavy quarks and hadronization mechanism (recombination) - High p_{T} : path-length dependence of heavy-quark energy loss

Leptons from heavy-flavour hadron decays

HF-decay muons 2.5 < y < 4 PLB 753, (2016) 41

- Similar v_2 of heavy-flavour decay electrons at mid-rapidity and muons at forward rapidity classes. - Positive v_2 observed \rightarrow 5.9 σ effect for 2 < p_T < 2.5 GeV/c in 20-40% centrality class for the heavy-flavour decay electrons. - Hint for an increase of v_2 from central to semi-central collisions as observed for D mesons - Suggests collective motion of low- p_{T} charm quarks in the expanding fireball

Beauty-decay electron RAA

– Analysis based on the electron impact parameter distribution.

- $\rightarrow R_{AA} < 1$ for $p_T > 3$ GeV/c

A. Dubla

- First R_{AA} measurement of beauty-decay electron at 2.76 TeV in the 0-20% centrality interval:

→ consistent with the picture of mass-dependent radiative and collisional energy loss

Xe-Xe(*a*)**5.44 TeV**

1 Million of MB events

Pb-Pb(*a*)**2.76 TeV**

Centrality class	$\langle T_{\rm AA} \rangle ({\rm mb}^{-1})$	Nevents	$L_{\rm int}$ (μb^{-1})
0–10%	23.44 ± 0.76	16.4×10^{6}	21.3 ± 0.7
30–50%	3.87 ± 0.18	$9.0 imes 10^6$	5.8 ± 0.2

Pb-Pb*a***5.02 TeV**

Centrality class	$\langle T_{AA} \rangle (\mathrm{mb}^{-1})$	Nevents
0–10%	23.42 ± 0.75	10.4×10^{6}
30–50%	3.82 ± 0.14	20.8×10^{6}
60-80%	0.404 ± 0.017	20.8×10^{6}

Model predictions:

A. Dubla

p_T-differential cross section

FONLL: JHEP 9805 (1998) 007 **GM-VFNS: PRL 96 (2006) 012001** *k*_T Fact: PRD 62 (2000) 071502

Heavy-flavour p_{τ} -differential cross sections well described by pQCD calculations at both energies (7 and 2.76 TeV)

A. Dubla

(ALICE) Phys. Rev. D86 (2012) 112007

Similar R_{AA} is observed in Xe-Xe and Pb-Pb when compared at similar $< dN/d\eta >$

- Scenario consistent with the quadratic path length dependence of mediuminduced radiative energy loss $\langle \Delta E \rangle \propto \varepsilon \cdot L^2$

– Pb-Pb and Xe-Xe systems give excellent control over the path length \rightarrow stringent constraints to all model calculations.

A. Dubla

