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The Thirring Model
More interesting….

Since [g2] < 0 for d>2 
expect perturbative expansion to be ill-behaved on dimensional grounds

νγγµ

D(p) =

(

2|p⃗|
e2

+
Nf

8

|p⃗|2

(p2
0 + v2

F |p⃗|2)
1
2

)−1

λ =
e2Nf

16εε0!vF
≃

1.4Nf

ε

S =

Nf
∑

a=1

∫

dx0d
2x

[

ψ̄aγµ∂µψa + iV ψ̄aγ0ψa +
1

2g2
V 2

]

D(p) =

(

1

g2
+

Nf

8

|p⃗|2

(p2
0 + v2

F |p⃗|2)
1
2

)−1

∫ Λ pd−1

p2
dp ∼ Λd−2

11

Each loop yields O(Λd-2) divergence 

⇒ new counterterm at each order of g2 

⇒ expansion is non-renormalisable for d >2

Meson Correlation Functions

exp(ik.x)ψψ( )xψψ(0)
x
Σ

For k⃗ ̸= 0 can always excite a particle-hole pair with almost
zero energy⇒ algebraic decay of correlation functions
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zero energy
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When isn’t there a Sign Problem?
Whenever the fermion measure  ≡   det(M✝M)

describes quarks q,qdescribes conjugate quarks qc,qc

QCD simulations fail due to light qqc bound states  
carrying non-zero baryon charge 

2 cases where this isn’t an issue
A: qq and qqc states bind with different 


dynamics and are not degenerate 


eg. Gross-Neveu, NJL


B: Goldstone baryons are a feature, not a bug


eg. QC2D, isospin QCD, adjoint QCD, 

6 in SU(4), 7 in G2, bilayer graphene….


some models contain gauge invariant fermion states

qq, qqc qq, qqc

qq qq

Today we’re mostly focussed 
on Case A 

Generic channel binding ~ O(1/N)

Goldstone channel binding ~ O(1)



Gross-Neveu model in 2 + 1 dimensions. . .

L =

Nf∑

i=1

ψ̄i(∂/ + m)ψi −
g2

2Nf
(ψ̄iψi)

2,

. . . just about the simplest QFT with fermions
Can also write in terms of an auxiliary scalar σ:

L = ψ̄i(∂/ + m +
g√
Nf

σ)ψi +
1

2
σ2.

For g2 > g2
c ∼ O(Λ−1) the ground state has a

dynamically-generated fermion mass Σ0 = g√
Nf

⟨σ⟩ ̸= 0

given in the Nf → ∞ limit by the chiral Gap Equation
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simplest example of a fixed point in 2+1d 
The Gross-Neveu Model

2 The Gross-Neveu Model for d = 3

I will begin by discussing the simplest model, the Gross-Neveu (GN) model 9, in
which most of the important theoretical issues are already present. The Lagrangian
is

LGN = ψ̄i(∂/ + m)ψi −
g2

2Nf
(ψ̄iψi)

2. (2)

For bare fermion mass m = 0, there is a discrete chiral symmetry

ψ "→ γ5ψ ; ψ̄ "→ −ψ̄γ5, (3)

which is spontaneously broken whenever a non-vanishing condensate ⟨ψ̄ψ⟩ is gen-
erated. To proceed, we introduce a bosonic scalar auxiliary field σ and rewrite

LGN = ψ̄i(∂/ + m + σ)ψi +
Nf

2g2
σ2. (4)

The original Lagrangian (2) can be recovered by Gaussian functional integration
over σ. Chiral symmetry breaking for m → 0 is now signalled by a non-vanishing
vacuum expectation value Σ ≡ ⟨σ⟩ for the scalar field: it then follows from (4) that
the fermion gets a dynamically generated mass M ≃ Σ.

We can calculate Σ using an expansion in inverse powers of Nf , the number of
flavors. This expansion associates a factor Nf with each closed fermion loop, and
in effect 1/

√
Nf with each fermion-scalar interaction vertex. To leading order, in

the chiral limit m → 0, only the tadpole diagram shown in Fig. 1a contributes to
Σ, leading to the self-consistent Gap Equation:

Σ
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or, with a simple UV cutoff Λ on momentum (note 2 < d < 4)
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Equation (6), relating a bare coupling constant g2 to both a UV scale Λ and
a physical scale Σ, can be interpreted as a renormalisation condition. It turns out
to be the physical solution of (5) for couplings larger than the critical coupling g2

c

given by
1

g2
c

=
8Λd−2

(4π)
d
2 (d − 2)Γ(d

2
)
, (7)

at which point chiral symmetry is spontaneously broken (see Fig. 4). Only for
g2 → g2

c , can the ratio Λ/Σ be made to diverge, implying a continuum limit. Note
that it is also possible to approach the continuum limit from the symmetric phase10.

Remarkably, for 2 < d < 4, to the same leading order in 1/Nf all dependence on
Λ is absorbed in defining the value of g2

c . The only other Green function involving
a fermion loop is the scalar two-point function shown in Fig. 1b, but in the vicinity
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i = 1, . . . , Nf

ψi, ψ̄i

{γµ, γν} = 2δµν
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4
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For m=0 there is a discrete Z2 symmetry
spontaneously broken at large g
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GN variants with U(1) or SU(2)L⊗SU(2)R symmetries also available

Introduce auxiliary scalar σ: 
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Large-Nf solution for 
fermion massgap Σ = ⟨σ⟩:
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Figure 1: Leading order diagrams in the GN model

of the fixed point, once (6) is taken into account the scalar propagator is finite and
can be expressed in closed form 11. Eg, for d = 3,

Dσ(k) =
1

Nf

2π
√

k2

(k2 + 4Σ2) tan−1

(√
k2

2Σ

) . (8)

In the large-Nf limit Dσ is essentially a chain of fermion bubbles. It is worth
examining its behaviour in two limits. In the infra-red,

lim
k→0

Dσ(k) ∝
1

k2 + 4Σ2
, (9)

and hence the σ resembles a fundamental boson with mass 2Σ. This shows the
scalar to be a weakly bound fermion - anti-fermion composite. In the ultra-violet,
on the other hand, for general d we have

lim
k→∞

Dσ(k) ∝
1

kd−2
. (10)

Thus the UV asymptotic behaviour is harder than that of a fundamental scalar, but
still softer than the 1/k0 corresponding to a non-propagating auxiliary field. The
strong interaction between fermion and anti-fermion is responsible for this modi-
fication, which in turn makes diagrams corresponding to higher order corrections,
such as those of Fig. 2, less divergent than expected by naive power counting.

The result, known for a long time 12, but discussed recently with renewed in-
terest 13, is that the 1/Nf expansion about the fixed point g2 = g2

c is exactly
renormalisable for 2 < d < 4.

An important aspect of the model’s renormalisability is that it depends on a
precise cancellation between logarithmic divergences from different graphs 11. This
can be understood in terms of the four-fermi scattering amplitude, shown schemat-
ically in Fig. 3: there are three different types of logarithmic divergence, each
represented by a blob, but in the massless limit only two tuneable parameters in
the renormalised Lagrangian, implying a non-trivial consistency relation.

In turn this implies that in the deep UV limit the amplitude assumes a universal
form

lim
k→∞

Mff→ff =
Ad

Nfkd−2
, (11)

3

r ≫ (g2Nf)−1

ψψ̄

Σ(Nf)/g2, ⟨ψ̄ψ(Nf)⟩/g4

S =

∫

d3x Ψ̄(γµ∂µ)Ψ + mΨ̄Ψ

im3Ψ̄γ3Ψ; im5Ψ̄γ5Ψ

m35Ψ̄γ3γ5Ψ

tr(γµγµ) = 4

1

g2
=

2Λ

π2
−

Σ

π
≡

1

g2
c

−
Σ

π

13ie. continuum limit Σ/Λ → 0 as g2 → gc±2

⇒



GN Thermodynamics
The large-Nf approach can also to be applied to T, µ ̸= 0
and predicts a chiral symmetry restoring phase transition:

Tc|µ=0 =
Σ0

2 ln 2
; µc|T=0 = Σ0

Remarkably, lattice Monte Carlo simulations can be
applied to Nf < ∞ even for µ ̸= 0 Action is real!
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Σ
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10*nB
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T/Σ0

0.0

0.5

1.0

µ/Σ0

There is even evidence for a tricritical point at small T
µ !

[J.B. Kogut and C.G. Strouthos PRD63(2001)054502]

. – p.7/33

chirally symmetric  
quark matter 



Fermi Surface Phenomena

Consider qq̄ “jawbone” diagram

ψΓψ

ψ

ψ

x

y

0

C(y⃗, x0) =
∑

x⃗

tr
∫

p

∫

q

Γ
eipx

ip/ + µγ0 + M
Γ

e−iqxe−iq⃗.y⃗

iq/ + µγ0 + M

µ < µc:
C ∝

∫ ∞
0 pdpJ0(py)e−2x0

√
p2+M2 ∼ M

x0
e−2Mx0 exp

(
− |y⃗|2M

4x0

)

Gaussian width O(
√

x0)
µ > µc:
C ∝

∫ ∞
µ pdpJ0(py)e−2px0 ∼ µ

x0
e−2µx0J0(µ|y⃗|) ∝ J0(kFy)

Oscillatory profile; shape constant as x0 ↗
. – p.10/33

y dependence yields Bethe-Salpeter wave function



Oscillations develop as µ ↗
Graphic evidence for existence of a sharp Fermi surface
Why does free-field theory prediction work so well?

. – p.11/33

SJH, JB Kogut, CG Strouthos, TN Tran, PRD68 016005 GN on 322×48 

μa=0.2 μa=0.4

   μa=0.6 μa=0.8



Fermion Dispersion relation

0 0.5 1 1.5

k

-0.4

-0.2

0

0.2

0.4

E

µ=0.2
µ=0.3
µ=0.4
µ=0.5
µ=0.6

µ KF βF KF /µβF

0.2 0.190(1) 0.989(1) 0.962(5)
0.3 0.291(1) 1.018(1) 0.952(4)
0.4 0.389(1) 0.999(1) 0.973(1)
0.5 0.485(1) 0.980(1) 0.990(2)
0.6 0.584(3) 0.973(1) 1.001(2)

The fermion dispersion relation is fitted with

E(|⃗k|) = −E0 + D sinh−1(sin |⃗k|)

yielding the Fermi liquid parameters

KF =
E0

D
; βF = D

coshE0

coshKF

. – p.12/33



σ Propagator in Quark Matter (Nf → ∞)

Given by D−1
σ (k;µ) = 1 − Π(k;µ) =

1  −

Static Limit k0 = 0: D−1
σ = g2

π (µ − µc)
Complete screening for r > 0 ⇔ Debye mass MD = ∞
Explains free-field Friedel oscillations

Zero Momentum Limit k⃗ = 0⃗: D−1
σ = g2

4πµ [M 2
σ + k2

0]

Conventional boson of mass Mσ = 2
√

µ(µ − µc)

Stable because decay into qq̄ requires energy 2µ

and is Pauli-blocked. ⇔ Plasma frequency ωP = Mσ

. – p.13/33



Numerical Results withNf = 4
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t
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ωa

0

1

2

β=0.92
β=1.00
β=1.25

[with C.R. Allton, J. Clowser, PRD66(2002)094511]

In the bulk chirally symmetric phase (g < gc,µ = T = 0), the
σ correlator does not resemble that of a bound state, but
rather a resonance with width Γ increasing as g ↘ 0
ie. D−1

σ ∝ (k + Γ) ⇒ ρσ(ω) ∝ Γω
ω2+Γ2

. – p.14/33

CR Allton, JE Clowser, SJH, JB Kogut, CG Strouthos PRD66 094511

μ=0



Numerical Results withNf = 4
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x0
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M
σ

In contrast with behaviour in the chirally-symmetric bulk
phase, in quark matter the σ exhibits a sharply-defined
pole at Mσ(µ) consistent with O(1/Nf) corrections to the
leading order result Mσ = 2

√
µ(µ − µc) with µca ≈ 0.16

Note σ tightly bound for µ−µc

µ ≪ 1

. – p.15/33

leading order 
prediction

μ>μc



Meson Correlation Functions

exp(ik.x)ψψ( )xψψ(0)
x
Σ

For k⃗ ̸= 0 can always excite a particle-hole pair with almost
zero energy⇒ algebraic decay of correlation functions

|⃗k| ≪ µ
zero energy

pairs ⇒ C ∼ 1
x2
0

|⃗k| = 2µ
Overhauser instability

⇒ C ∼ 1

x3/2
0

|⃗k| > 2µ ⇒ C ∼ e−(|⃗k|−2µ)x0

x
3/2
0
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Plots of Cγ5(k⃗, x0) show special behaviour for |⃗k| ≈ 2µ
µ=0.2

1e-05
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0.01
µ=0.4

0 8 16 24 32 40 48

x0

µ=0.6

0 8 16 24 32 40 48
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0.001
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µ=0.8

. – p.24/33



0 8 16 24 32 40 48
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0.001

0.01

0.1

0 8 16 24 32 40 48

x0

0.0001

0.001

0.01

eg. in the spin-1 channel at µa = 0.6, Cγ⊥ (left) looks
algebraic as predicted by free field theory, but Cγ∥ (right)
decays exponentially.

The interpolating operator for Cγ∥ in terms of continuum
fermions is q̄(γ0 ⊗ τ2)q
ie. with same quantum numbers as baryon charge density

. – p.20/33
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Dispersion relation E(|⃗k|) extracted from Cγ∥

A massless vector excitation?

. – p.21/33longitudinal



Sounds Unfamiliar?
Light vector states in medium are of of great interest:

Brown-Rho scaling, vector condensation. . .
In the Fermi liquid framework a possible explanation is a
collective excitation thought to become important as
T → 0: Zero Sound

Ordinary FIRST sound is a breathing mode
of the Fermi surface: velocity β1 ≃ 1√

2
kF
µ

ZERO sound is a propagating distortion
of the Fermi surface: velocity β0 must be determined
self-consistently

. – p.22/33



Fermi Liquid Behaviour
A semi-quantitative description of interacting degenerate
matter first given by Landau (1958), and given a relativistic
generalisation by Baym & Chin (1976).

Basic idea: dominant low energy excitations are
quasiparticles carrying same quantum numbers as
fundamental particles
Quasiparticle energy: εk⃗ Width: ∼ (εk⃗ − µ)2

Equilibrium distribution: nk⃗ =
(
exp(

ε
k⃗
−µ

T ) + 1
)−1

For T → 0

εk⃗ ≃ µ + βF (|⃗k| − kF )
Fermi Fermi Fermi
energy velocity momentum

. – p.16/33
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Z =

∫

Dxe−
SE
!

tf − t0 = Nta

⟨O⟩β′ =

∫

O(x)e−β′H(x)dx
∫

e−β′H(x)dx

⟨O⟩β′ =

∫

O(x)e−(β′−β)H(x)e−βH(x)dx
∫

e−(β′−β)H(x)e−βH(x)dx

⟨O⟩β′ =

∫

O(x)e−(β′−β)H(x)e−βH(x)dx
∫

e−(β′−β)H(x)e−βH(x)dx
≡

⟨O(x)e−(β′−β)H(x)⟩β
⟨e−(β′−β)H(x)⟩β

εk⃗ ≃ µ + βF (|⃗k|− kF )

2

For T→0

The heart of Landau’s approach is the variation of εk⃗ under
small departures from equilibrium:

δεk⃗ =

∫
d2k⃗′

(2π)2
Fk⃗,⃗k′δnk⃗′

where the Fermi Liquid Interaction is related to the
2-particle forward scattering amplitude:

Fk⃗,σ,⃗k′,σ′ = −Mk⃗,σ,⃗k′,σ′

Knowledge of F enables non-trivial relations between
µ, kF and βF to be derived
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k

k ’

k

k

k

k

k

k’ ’ ’ ’

σ σ

Direct Exchange
attractive repulsive
vanishes in chiral limit naturally O(1/Nf)

Fk⃗,⃗k′ =
g2

4Nf

[
1 − k⃗.⃗k′

εk⃗εk⃗′

]
Dσ(εk⃗ − εk⃗′ , k⃗ − k⃗′)

=
πµ

NfM 2
σ(µ)

(1 − cos θ)

Since at Fermi surface εk⃗ − εk⃗′ ≃ 0
we can take the static limit of Dσ. . .

. – p.18/33
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Boltzmann equation in collisionless limit:

s − cos θ

cos θ
Φ(θ) =

µg

4π2

∮

θ′
Fθ,θ′Φ(θ′) = G

∫
dθ′

2π
[R−cos(θ−θ′)]Φ(θ′)

for GN model G ≃ µ
8Nf (µ−µc)

, R = 2+G
2−G , s ≡ β0

βF
.

Φ(θ)

0 0.2 0.4 0.6 0.8 1
µa

0.995

1

1.005

1.01

s

µca

A solution with s > 1 exists for almost all µ > µc

It is highly peaked in the forward direction
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sound speed : Fermi velocity
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The NJL Model

Effective description of soft pions interacting with
nucleons/constituent quarks
LNJL = ψ̄(∂/ + m + µγ0)ψ − g2

2
[(ψ̄ψ)2 − (ψ̄γ5τ⃗ψ)2]

∼ ψ̄(∂/ + m + µγ0 + σ + iγ5π⃗.τ⃗)ψ +
2

g2
(σ2 + π⃗.π⃗)

Introduce isopsin indices so full global symmetry is
SU(2)L⊗SU(2)R⊗U(1)B
Dynamical χSB for g2 > g2

c ⇒ isotriplet Goldstone π⃗
Scalar isoscalar diquark ψtrCγ5 ⊗ τ2 ⊗Acolorψ breaks U(1)B

⇒ diquark condensation signals high density ground state
is superfluid

. – p.25/33

The NJL model informs phenomenology of colour superconductivity

Color Superconductivity

In the asymptotic limit µ → ∞, αS(µ) → 0, the ground state
of QCD is the color-flavor locked (CFL) state characterised
by a BCS instability, [D. Bailin and A. Love, Phys.Rep. 107(1984)325]
ie. diquark pairs at the Fermi surface condense via

⟨qα
i (p)Cγ5q

β
j (−p)⟩ ∼ εAαβεAij × const.

breaking SU(3)c⊗SU(3)L⊗SU(3)R ⊗U(1)B ⊗U(1)Q
−→SU(3)∆⊗U(1)Q̃

The ground state is simultaneously
superconducting (8 gapped gluons),
superfluid (1 Goldstone),
and transparent (all quasiparticles with Q̃ ̸= 0 gapped).

[M.G. Alford, K. Rajagopal and F. Wilczek, Nucl.Phys.B537(1999)443]

. – p.4/33



Model is renormalisable in 2+1d so GN analysis holds
In 3+1d, an explicit cutoff is required. We follow the
large-Nf (Hartree) approach of Klevansky (1992) and
match lattice parameters to low energy phenomenology:

Phenomenological Lattice Parameters
Observables fitted extracted
Σ0 = 400MeV ma = 0.006
fπ = 93MeV 1/g2 = 0.495
mπ = 138MeV a−1 = 720MeV

The lattice regularisation preserves
SU(2)L⊗SU(2)R⊗U(1)B

. – p.26/33

SJH, DN Walters PRD69 076011 

Barely a field theory!



Equation of State and Diquark Condensation

Add source j[ψtrψ + ψ̄ψ̄tr]

Diquark condensate esti-
mated by taking j → 0

Our fits exclude j ≤ 0.2

. – p.27/33



The Superfluid Gap

Quasiparticle
propagator:

⟨ψu(0)ψ̄u(t)⟩ = Ae−Et + Be−E(Lt−t)

⟨ψu(0)ψd(t)⟩ = C(e−Et − e−E(Lt−t))

Results from 96 × 122 × Lt, µa = 0.8 extrapolated to
Lt → ∞ (ie. T → 0) then j → 0

The gap at the Fermi surface signals superfluidity

. – p.28/33



• Near transition, ∆ ∼ const, ⟨ψψ⟩ ∼ ∆µ2

• ∆/Σ0 ≃ 0.15 ⇒ ∆ ≃ 60MeV
in agreement with self-consistent approaches
• ∆/Tc = 1.764 (BCS)⇒ Ltc ∼ 35
explains why j → 0 limit is problematic
• Currently studying µI = (µu − µd) ̸= 0,
which “re”introduces a sign problem!

. – p.29/33
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2

kinetic matrix Mxy is defined in [2] and we choose
the same bare parameters used therein.

One can separate the Fermi surface of up and
down quarks by simultaneously setting baryon
chemical potential µB ≡ (µu + µd)/2 ̸= 0 and
isospin chemical potential µI ≡ (µu − µd)/2 ̸= 0.
With µI = 0, τ2Mτ2 = M∗, which is a sufficient
condition to show that detM is both real and pos-
itive [4]. With µI ̸= 0 however, this is no longer
true such that once again we are faced with the
sign problem.

The fact that physically the two scales are or-
dered µI ≪ µB suggests that one may be able
to apply techniques recently developed to study
QCD with µB ≪ T [5,6,7]. First, however, we
present the results of a partially quenched calcu-
lation.

3. Partially Quenched µI

Whilst the primary motivation for investigat-
ing µI ̸= 0 is to study the superfluid phase which
sets in at large µB , this requires one to introduce
an explicit symmetry breaking parameter (j); it
is currently not clear how to study µI ̸= 0 in the
j → 0 limit [2]. Instead, we choose to study the
chiral symmetry restoring phase transition with
the aim of controlling the systematics of intro-
ducing µI ̸= 0.

The first step we take is to perform a “partially
quenched” calculation in which µI = 0 when gen-
erating the background fields and is made non-
zero only during the measurement of fermion ob-
servables. In particular, we measure the up and
down quark condensates

⟨ūu⟩ ,
〈

d̄d
〉

≡
1

V

∂ lnZ

∂mu,d
=

1

2

〈

tr( ± τ3)M
−1

〉

(4)

as functions of µB for various µI on a 124 lattice.
Some results are presented in Fig. 1.

The results agree qualitatively with those of
mean-field studies of the model in which the in-
troduction of a small but non-zero µI is seen to
suppress the up quark condensate and enhance
the down [8,9]. This can be understood by not-
ing that with µI ̸= 0, µu (µd) reaches the critical
chemical potential at a lower (higher) value of µB.
Why ⟨ūu⟩ deviates from the µI = 0 result more

Figure 1. ⟨uu⟩ and
〈

dd
〉

condensates for various
µB and µI on a 124 lattice.

than
〈

d̄d
〉

is not so clear, but may be an effect
associated with T > 0 on a finite lattice [9].

4. Continuation from Imaginary µI

One recent method used to study QCD with
small baryon chemical potential µB is to measure
quantities at imaginary µB, where the measure of
the path integral is real, and fit results to a trun-
cated Taylor expansion in µB/T about µB = 0.
One can then analytically continue the results to
real µB [7]. We propose to use a similar method
by simulating at imaginary isospin chemical po-
tential (µ̃I), where once again detM is real, and
expanding observables in powers of µ̃I/µB.
For our initial investigation we have measured

the quark condensates and baryon and isospin
number densities

nB,I ≡
1

2V

∂ lnZ

∂µB,I
=

1

4

〈

ūγ0u± d̄γ0d
〉

(5)

on a 124 lattice at µB = 0.6, which from Fig. 1 can
be seen to be where the effect of having µI ̸= 0
is largest. In QCD, one can show that e.g.

〈

ψψ
〉

expanded about µB = 0 is analytic in µ2
B, such

that for small imaginary µB the quantity remains
real [6]. For our simulations, however, this is not
the case, and measured quantities are, in general,
complex. Therefore, we fit the data by the Taylor
series

(

⟨ūu⟩
〈

d̄d
〉

)

=
∞
∑

n=0

(

An

Bn

)(

µ̃I

µB

)n

(6)

partially quenched study of ⟨uu⟩ vs ⟨dd⟩ 
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Figure 2. Real and imaginary parts of ⟨uu⟩ and
〈

dd
〉

as functions of imaginary µI with µB = 0.6
on a 124 lattice.

and
(

nB

nI

)

=
∞
∑

n=0

(

Cn

Dn

)(

µ̃I

µB

)n

, (7)

each truncated at some suitable point. We can
then analytically continue to real µI using e.g.

⟨ūu⟩ = A0 +A1µI −A2µ
2
I −A3µ

3
I + · · · (8)

Figure 2 shows the real and imaginary parts
of the condensates as functions of µ̃I with fits to
constant + quadratic and linear only forms re-
spectively. The quality of the fits is very good,
suggesting that our ansätze are correct. The real
parts are in complete agreement whilst the imagi-
nary parts are anti-correlated, which implies that
the sum of the condensates

〈

ψ̄ψ
〉

contains only
the even terms of the expansion, whilst their dif-
ference

〈

ψ̄τ3ψ
〉

contains only the odd terms. A
similar effect is seen in the number densities, as
nB is found to be real and therefore even in
µ̃I/µB, whilst the isospin density is pure imag-
inary. For a good quality fit to nI , however, we
have to include the cubic term. These data and
fits are plotted in Fig. 3.

Figure 3. Baryon and isospin density as functions
of imaginary µI with µB = 0.6 on a 124 lattice.

Whilst these results are only preliminary, we
have shown that we can calculate the coefficients
in (6) and (7) as functions of µB and in principle,
reproduce reliable forms of the curves in Fig. 1.
With this aim, we plan to repeat this exercise
for various values of µB in both the the chirally
broken and restored phases on various lattice vol-
umes. Also, whilst it is difficult to study the di-
quark condensate in the j → 0 limit, it would be
interesting to compare the response of ⟨ud⟩ to µI

at fixed j to that of
〈

ψψ
〉

at fixed mass.
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NJL Model in 2+1d
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⟨ψψ⟩ ∝ j
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No gap at Fermi surface

High density phase µ > µc is critical, rather like the low-T
phase of the 2d XY model Kosterlitz & Thouless (1973)
δ =δ(µ) ≃ 3 – 5 Cf. 2d XY model δ ≥ 15
New universality class due to massless fermions
No long-range ordering, but phase coherence

⟨ψψ(0)ψψ(r)⟩ ∝ r−η(µ) ⇒ Thin Film Superfluidity
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Use a twisted source 
To test this scenario, with A. Sehra we are currently
running simulations with a “twisted” source j(x) = j0eiθ(x)

with θ a periodic function of x.
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where ϒ is the helicity modulus 
232 S. Hands, A.S. Sehra / Physics Letters B 637 (2006) 229–234

Fig. 2. J2 vs. j0 on a 162 × 64 lattice for various µ.

Fig. 3. Υ vs. j0 on a L2
s × 64 lattice for µ = 0.8.

introduce the U(1)B -equivalent form of the PCAC hypothesis:

(11)⟨0|∆−
µJµ|−⟩ = √

Υ M2
− = 2j+⟨0|qq−|−⟩

where we have used the relation Υ = f 2
π derived in [10], and

the second equality follows from (9). Combining (10) and (11)
leads to the equivalent of the “Gell-Mann–Oakes–Renner” re-
lation:

(12)ΥGMORM2
− = 8j⟨qq+⟩.

This can be compared with numerical data for ⟨qq+(j)⟩ and
M−(j) in [7]. At j = 0.3, M− = 0.95, ⟨qq+⟩ = 0.72 yield-
ing ΥGMOR ≈ 1.9; at j = 0.1, M− = 0.4, ⟨qq+⟩ = 0.52 yield-
ing ΥGMOR ≈ 2.6. We conclude Υ ≪ ΥGMOR, consistent with
our hypothesis that no symmetry breaking occurs, but that the
dynamics are dominated by long-range phase fluctuations of
the order parameter field, described by a strongly-interacting
scalar diquark field rather than a weakly-interacting Goldstone
mode.

234 S. Hands, A.S. Sehra / Physics Letters B 637 (2006) 229–234

Fig. 5. J2 vs. Lt on a 322 × Lt lattice at µ = 0.8 for j0 = 0.025 and j0 = 0.05. The filled points have been included in the linear fits described in the text.

4. Summary

In this short study of the response of the system to a twisted
diquark source forcing a baryon number current, we have pro-
vided direct evidence for the superfluid nature of the ground
state of NJL2+1 at high baryon density, and quantified it at one
representative value of µ via the helicity modulus Υ . It should
be stressed that the “physical” value Υ/Σ ≃ 0.2 quoted is still
to be extrapolated to the continuum limit. It is probably more
important to note that the numerical value of Υ is an order
of magnitude smaller than might be expected in an orthodox
symmetry breaking scenario, and is consistent with the non-
Goldstone, strongly self-interacting nature of the scalar diquark
excitations above the ground state.

We also studied the response of the system to non-zero tem-
perature. Whilst we were unable to extrapolate to the zero
source limit in a controlled way, by studying fixed j0 we were
able to estimate a critical temperature Tc for breakdown of su-
perfluidity of the same order of magnitude as, and only slightly
smaller than, the Kosterlitz–Thouless prediction for a 2d sys-
tem with U(1) global symmetry, which follows from charac-
terising the superfluid/normal transition as arising from vortex
pair unbinding. More refined simulations would be required to
determine whether Tc actually has the KT value, or whether
NJL2+1, which in addition to the scalar diquark excitations con-
tains massless fermion degrees of freedom, actually lies in a
different universality class, as suggested by estimates of the
critical exponent δ [7].
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Fig. 4. J2 vs. j0 on a 322 × Lt lattice at µ = 0.8 for various Lt .

3.2. T > 0

In this section for the first time we explore the superfluid
phase at non-zero temperature. We expect a restoration to the
normal phase at some critical Tc. In a comparable numerical
study of NJL3+1 which exhibits superfluidity via orthodox sym-
metry breaking [3], the value of Tc could be estimated from the
zero temperature gap ∆ via the BCS prediction ∆/Tc ≃ 1.76.
Since this implied that Lt had to exceed 35a for the system to
be superfluid, an unambiguous extrapolation j → 0 to permit
a systematic study of T > 0 was not possible. In the current
case we shall see that although the j → 0 extrapolation still re-
mains a problem, attaining T < Tc is well within reach of the
simulation.

First let us review a heuristic argument for the expected
value of Tc , starting from the Hamiltonian Heff (8) with φ2

0 =
Υ [9]. The phase field θ(x⃗) may be disrupted by topologically
non-trivial vortex excitations of the form θ = qψ , |∇⃗θ | = q/r ,
where q is integer and x⃗ is written (r,ψ). The energy of a single
vortex is thus

(13)E ≈ Υ

2

Ls∫

a

2πr dr

(
q

r

)2

= πΥ q2 ln
(

Ls

a

)
.

Since a vortex can be located on any of L2
s lattice sites, the

entropy

(14)S = 2 ln
(

Ls

a

)
.

The free energy F = E − T S thus changes sign for q = 1 vor-
tices at a critical temperature

(15)Tc = π

2
Υ.

The interpretation is that a phase transition separates a low-T
superfluid phase in which vortices are confined to bound dipole
pairs, and a high-T normal phase in which the vortex anti-
vortex plasma screens the long-range interactions responsible
for the divergent energy in (13). The relation (15) remains valid
in a more sophisticated renormalisation group treatment, except
that Υ is now T -dependent and should be replaced by its value
Υ (Tc) exactly at the transition [12].

Combining our result for Υ with (15) yields an estimate
Lt ≈ 4.5 for the temporal lattice extent where a transition to
the normal phase might be expected at µ = 0.8. Fig. 4 shows
J2(j0) on 322 ×Lt lattices with Lt ranging from 64 all the way
down to 2. At the extremes Lt ! 32, Lt " 4 the data are rem-
iniscent of those characterising respectively the high and low
baryon density phases in Fig. 1. For intermediate temperatures,
however, J2(j0) shows positive curvature near the origin fol-
lowed by negative curvature at larger j0, and once again the
means of extrapolating j0 → 0 to determine whether superflu-
idity persists is unclear.

In Fig. 5 we try a different tactic, plotting J2 for every even
Lt ∈ [2,64] for fixed j0. A linear fit J0 = a0Lt + a1 through
data taken at j0 = 0.025 with Lt " 42 seems quite reasonable,
yielding a0 = 0.00212(25), a1 = −0.01537(9). If we identify
the intercept on the Lt -axis with the transition, we deduce
Ltc = 7.25(95) and hence Υ/Tc = 1.02(13), to be compared
with the theoretical value 0.637 from (15). Some caution is nec-
essary, however; the data of Fig. 3 suggest errors due to finite Ls

are O(40%) for this smallest j0. A repeat of the linear fit with
j0 = 0.05 data (also shown in Fig. 5) for which volume effects
are much smaller yields a0 = 0.00499(16), a1 = −0.0278(24),
and Υ/Tc = 0.79(9). We stress, therefore, that these estimates
for Tc are exploratory, with as yet unquantified systematic er-
rors. The issue can only be settled definitively by taking first
Ls → ∞, then j0 → 0, requiring further simulations.

KT estimate

for vortex

unbinding 

For Ls→∞ with μa=0.8


ϒ/Σ=0.200(2) 

supports superfluidity 

hypothesis

SJH, AS Sehra PLB637 229  

μa=0.8



Relativity in Graphene
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∑

µ

[

Πµν(x) − Πµν(x − µ̂)
]

= 0

g2
R =

g2

1 − g2/g2
lim

⟨ψ̄ψ⟩ = 0

H = −t
∑

r∈B

3
∑

i=1

b†(r)a(r + si) + a†(r + si)b(r)

9

“tight-binding” Hamiltonian

describes hopping of electrons in π-orbitals
from A to B sublattices and vice versa
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Fig. 2. (Colour online) The energy band structure of graphene. Valence and conduction bands
meet at six K points.

and

ϵ(k) = t

√

1 + 4 cos2
kxa

2
+ 4 cos

kxa

2
cos

√
3kya

2
. (12)

Accordingly, because the graphene structure contains two atoms per unit cell (two
sublattices), the spectrum of quasiparticles excitations has two branches (bands)
with the dispersion43 E± = ±ϵ(k) shown in Fig. 2. In Eq. (10) we introduced the
spinors

Υσ(k) =

(

aσ(k)
bσ(k)

)

(13)

with the operator Υσ(k) being the Fourier transform of the spinor Υσ(n) =

(

an,σ

bn,σ

)

:

Υσ(n) =
√

S

∫

BZ

d2k

(2π)2
eiknΥσ(k). (14)

Here S =
√

3a2/2 is the area of a unit cell and the integration in Eqs. (10) and
(14) goes over the extended rhombic Brillouin zone (BZ). We also add to H0 the
Zeeman term and the chemical potential

HZ = −
∑

σ

µσ

∫

BZ

d2k

(2π)2
Υ†

σ(k)Υσ(k) (15)

Define modified operators

⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)

a±(p⃗) = a(K⃗± + p⃗)

H ≃ vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗Ψ(p⃗)

Ψ =( b+, a+, a−, b−)tr

10

yielding a “4-spinor”

⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
√

3l
)

a±(p⃗) = a(K⃗± + p⃗)

H ≃ vF

∑

p⃗

Ψ†(p⃗)α⃗.p⃗Ψ(p⃗)

Ψ =( b+, a+, a−, b−)tr

10

Φ(K⃗± + p⃗) = ±vF [py ∓ ipx] + O(p2)

vF =
3

2
tl

H ≃ vF

∑
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Ψ†(p⃗)
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⎜

⎜

⎝
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−py + ipx
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⎠

Ψ(p⃗)

= vF
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p⃗

Ψ†(p⃗)α⃗.p⃗ Ψ(p⃗)

12

⇒ low-energy massless fermions  

with velocity 

⟨k⃗±|H |⃗k±⟩ = ±(Φ(k⃗) + Φ∗(k⃗)) ≡ ±E(k⃗)

Φ(k⃗) = 0 ⇒ k⃗ = K⃗± = (0,±
4π

3
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)
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Ψ =( b+, a+, a−, b−)tr
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2
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1

300
c
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For monolayer graphene the number of flavors Nf = 2

(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)

Physics World  November 20062

Feature: Graphene physicsweb.org

to manipulate the motion of the electrons in graphene
paves the way to virtually lossless and ultrafast transis-
tors with atomic dimensions.

Massless electrons
Graphene’s unique properties arise from the collective
behaviour of electrons. That in itself is nothing new: as
summarized in Philip Anderson’s famous dictum
“more is different”, we know that when a large number
of particles interact strongly with each other, unex-
pected collective motions can emerge. In the case of
graphene, however, the interaction between electrons
and the honeycomb lattice causes the electrons to
behave as if they have absolutely no mass (see box on
page XX). Because of this, the electrons in graphene
are governed by the Dirac equation – the quantum-
mechanical description of electrons moving relativis-
tically – and are therefore called Dirac fermions.

The relativistic behaviour of electrons in graphene
was first predicted in 1947 by the Canadian theorist
Philip Russell Wallace. At the time, however, nobody
believed that a one-atom-thin solid could exist, so
Wallace instead used the graphene model as his starting
point to study graphite. Building on his work, the ther-
modynamic and transport properties of graphite were

studied extensively in the 1960s, and the remarkable
agreement between the theoretical predictions of prop-
erties such as the heat capacity and the experimental
data is regarded as one of the greatest successes of con-
densed-matter physics.

We are already familiar with massless Dirac fermi-
ons in high-energy particle physics: neutrinos. But neu-
trinos have no electric charge and therefore do not
interact strongly with any kind of matter. The Dirac
fermions in graphene, in contrast, carry one unit of
electric charge and so can be manipulated using elec-
tromagnetic fields. Since the manipulation of electrons
within materials is at the heart of modern electronics,
the radically different behaviour of electrons in
graphene may allow us to go beyond the limits of sili-
con-based semiconductor technology.

The trademark behaviour that distinguishes a gra-
phene sheet from an ordinary metal, for example, is
the unusual form of the Hall effect. In the original
Hall effect, discovered in 1879, a current flowing
along the surface of a metal in the presence of a trans-
verse magnetic field causes a drop in potential at right
angles to both the current and the magnetic field. As
the ratio of the potential drop to the current flowing
(called the Hall resistivity) is directly proportional to
the applied magnetic field, the Hall effect is used to
measure magnetic fields.

A century later, Klaus von Klitzing discovered that
in a 2D electron gas at a temperature close to absolute
zero the Hall resistivity becomes quantized, taking only
discrete values of h/ne2 (where h is Planck’s constant,
n is a positive integer and e is the electric charge). The
quantization is so precise that this “quantum Hall
effect” (QHE) is used as the standard for the meas-
urement of resistivity.

During a discussion about the discovery of graphene
at a tea party in Boston in early 2005, my collaborators
and I started to wonder whether the QHE would be dif-
ferent in graphene. We realized that due to a quantum-
mechanical effect called a Berry’s phase, the Hall

● Graphene is a one-atom-thick sheet of carbon that was isolated for the first time in
2004 – a feat long thought to be impossible

● Graphene’s 2D nature and honeycomb atomic structure cause electrons moving in
the material to behave as if they have no mass

● Electrons in graphene move at an effective speed of light 300 times less than the
speed of light in a vacuum, allowing relativistic effects to be observed without
using particle accelerators

● A key experimental signature of graphene is the way it modifies the quantum Hall
effect seen in metals and semiconductors

● The electrons in graphene can travel large distances without being scattered,
making it a promising material for very fast electronic components

At a Glance: Graphene

Graphene was first isolated by Andre Geim’s team at the University of Manchester just two years ago using the surprisingly simple technique of ripping layers from a graphite
surface using adhesive tape. By repeatedly peeling away thinner layers (left), single-atom-thick sheets were obtained (right), as shown in these scanning electron micrographs.

1 A sticky success



only becoming approximately relativistic (i.e., linear) for
ka * t0=t [17]. For ! ! t the dispersion then takes the
expected form "2 ¼ ð!$ vFkÞ2 [18]. However, recent
theoretical studies of strained bilayers suggest that under
mechanical deformation the parabolic bands split to form
separate Dirac cones, so that in this case a description in
terms of Nf ¼ 4 relativistic species is not a bad approxi-
mation [19]. Our formulation makes the additional,
perhaps unwarranted, approximation that interactions be-
tween charge carriers on different layers are of identical
strength and character to interactions within a layer—the
necessity for this will become clear below.

The second ingredient of the model is that the layers are
given equal and opposite constant bias voltages $!, in-
ducing on one layer a negatively charged concentration of
particles and on the other a positively charged concentra-
tion of holes. As the notation implies, the bias voltage is
equivalent to a chemical potential, and in fact the theory is
formally very similar to the case of QCD with isospin
chemical potential !I ¼ !1 ¼ &!2, where the subscripts
which here label the layers usually stand for the light quark
flavors u and d. Euclidean formulations of systems with
! ! 0 are generally afflicted with a ‘‘Sign Problem,’’ i.e.,
the Lagrangian density L is no longer positive definite, or
even real, since the inequivalence under time reversal
translates into inequivalence under complex conjugation
in Euclidean metric. This makes Monte Carlo importance
sampling as a means to handle strongly fluctuating observ-
ables inoperable. However, the case of isospin chemical
potential is known not to have a Sign Problem and is hence
simulable using orthodox methods, as we shall now
demonstrate.

If we denote the fermion degrees of freedom on one
layer by c and on the other by ", define units so that
vF¼1, and write

P
!¼0;1;2@!#!þðiA0þ!Þ#0¼D½A;!),

then the fermion part of the Lagrangian can be written

L ¼ ð !c ; !"Þ
D½A;!) þm ij

&ij D½A;&!) &m

 !
c

"

 !

* !"M": (2)

Here we have introduced two new real parameters: m is an
artificial bare mass which induces a gap in the fermion
dispersion relations and whose sign has no physical con-
sequence for a single flavor in the absence of interactions; j
a source strength coupling c to ", thus linking the layers
and eventually enabling calculation of the exciton conden-
sate. In principle both m ! 0 and j ! 0 limits need to be
taken in order to make contact with physical bilayer
graphene. Integration over the Grassmann bispinors ",
!" then results in the functional measure detM½A).
An important identity which the model inherits from the

gauge theory is

Dy½A;!) ¼ &D½A;&!): (3)

It is then straightforward to check (assuming the dimension
of D is even) that

detM ¼ det ½ðDþmÞðDþmÞy þ j2)> 0; (4)

and

MyM

¼ ðDþmÞyðDþmÞ þ j2

ðDþmÞðDþmÞy þ j2

 !
;

(5)

implying both that

detMyM * det 2M; (6)

and also that the desired functional measure detM results
from integrating over bosonic fields # starting from a
nonlocal ‘‘pseudofermion’’ Lagrangian

L pf ¼ #y½ðDþmÞyðDþmÞ þ j2)&1#: (7)

This has the practical advantage that # has half as many
degrees of freedom as", and makes Eq. (7) the appropriate
starting point for the design of a hybrid Monte Carlo
simulation algorithm.
The specific version of Dþm in our lattice model

employs single-component staggered fermion fields c x,
"x defined on the sites of a 2þ 1d square lattice, with a
noncompact formulation of the electrostatic potential Ax

formally defined on the link joining sites x and xþ 0̂,

ðDþmÞxy ¼
X

i¼1;2

$ix

2
½%y;xþ{̂ & %y;x&{̂)

þ $0x

2
½ð1þ iAxÞe!%y;xþ0̂

& ð1& iAx&0̂Þe&!%y;x&0̂) þm%xy; (8)

where the signs $!x ¼ ð&1Þx0þ+++þx!&1 ensure Lorentz co-
variance in the long wavelength limit. It can be shown that
the relation between the number of staggered fields N
(counting c , " yields N ¼ 2) and the number Nf of
continuum Dirac 4-spinors is [20]

Nf ¼ 2N: (9)

It is worth noting the global symmetries present in the
model. For ! ¼ m ¼ j ¼ 0 the continuum action (2) is
invariant under a U(8) rotation " ! U", ~" ! ~"Uy

where ~" * i !"#3#5. This symmetry is broken to ðUð4ÞÞ2
by ! ! 0, and then to ðUð2ÞÞ4 by m ! 0. Setting the
interlayer coupling j ! 0 with m ¼ 0 locks the c and "
components together, so that in this case the residual
symmetry is U(4). For the staggered lattice fermions of
(8) the original symmetry is Uð2Þ , Uð2Þ", where the sec-
ond rotation can be written as Uð&; xÞ ¼ exp ði"x&a$aÞ,
where $a is one of the four Hermitian generators of U(2)
and "x * ð&1Þx0þx1þx2 . Setting ! ! 0 breaks this to
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invariant under a U(8) rotation " ! U", ~" ! ~"Uy
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by ! ! 0, and then to ðUð2ÞÞ4 by m ! 0. Setting the
interlayer coupling j ! 0 with m ¼ 0 locks the c and "
components together, so that in this case the residual
symmetry is U(4). For the staggered lattice fermions of
(8) the original symmetry is Uð2Þ , Uð2Þ", where the sec-
ond rotation can be written as Uð&; xÞ ¼ exp ði"x&a$aÞ,
where $a is one of the four Hermitian generators of U(2)
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λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

18

Bilayer effective theory

Bias voltage µ couples to layer fields ψ, φ with opposite sign 
(Cf.  isospin chemical potential in QCD) 

inherited from gauge theory

“Gap parameters” m, j are IR regulators 

No sign problem!

λ =
g2

Rπ

4

detM = det[(D + m)†(D + m) + j2] > 0

+
1

2g2
A2
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detM = det[(D + m)†(D + m) + j2] > 0

+
1

2g2
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Intra-layer (𝜓𝜓) and inter-layer (𝜓𝜙) interactions have same strength

☞

W Armour, SJH, CG Strouthos  PRD87 065010 

 lattice sizes 323, 483

 (g2a)-1 = 0.4 ⇒ close to QCP on chirally symmetric side


“Covariant” derivative

Case B



Carrier Density

of j ! 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@!j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
3 for various

!. Dotted lines show a quadratic extrapolation j ! 0. Dashed
lines show the same quantity evaluated for free fields with
! ¼ 0:1, 0.2.
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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of j ! 0 is to round off this behavior by reducing the
carrier susceptibility j@nc=@!j slightly. Once again, the
contrast with the free field behavior, which only reaches
saturation at !a ! 1:3 and is shown by the dashed line, is
marked.

How should we interpret the finding that nintc " nfreec ?
For degenerate fermions the carrier density, remembering
to count both particle and hole states, is given by nc ¼
k2F=2". For free massless fermions the Fermi energy ! is
equal to Fermi momentum kF; if we wish to retain the
notion of a Fermi surface (albeit one distorted by exciton
condensation) for the interacting system, we are forced to
conclude ! ! EF < kF implying strong self-binding, i.e.,
the degenerate fermions have a large negative contribution
to their bulk energy. This is a feature of working near a
QCP, and was not observed, e.g., in studies of relatively

weakly interacting systems at nonzero density such as the
Gross-Neveu model in 2þ 1d [25] where interactions are
suppressed by 1=Nf, or two color QCD [4] where the quark
density nq * nfreeq all the way to saturation.
As before, the region of physical interest is for ! well

below saturation: Fig. 9 plots the variation of nc with
source strength j, togther with a quadratic extrapolation
to j ¼ 0, showing that the effect of j ! 0 for this observ-
able is regular but certainly not negligible. Finally Fig. 10
plots ncð!; j ¼ 0Þ together with a power law fit nc ¼
b1!

b2 . The fitted parameters are

b1 ¼ 18:6ð4Þ; b2 ¼ 3:32ð1Þ: (16)

As expected, the fitted value of b2 considerably exceeds the
naive expectation nc / !d based on a weakly interacting
system.
In Fig. 11 we show the chiral condensate order parame-

ter h !""i as a function of ! for various values of the
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FIG. 8 (color online). Carrier density nc vs ! on 323, m ¼ 0
and j ¼ 0:01, 0.02, 0.03. The dashed line shows the same
quantity evaluated with j ¼ 0:01 for free fields.
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FIG. 9 (color online). Carrier density nc vs j on 48
3 for various

!. Dotted lines show a quadratic extrapolation j ! 0. Dashed
lines show the same quantity evaluated for free fields with
! ¼ 0:1, 0.2.
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FIG. 10 (color online). Carrier density ncðj ¼ 0Þ vs ! on 483

fitted to a power law for ! ¼ 0:05–0:20. The dashed line
corresponds to exponent b2 ¼ 3:32ð1Þ.
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FIG. 11 (color online). Chiral condensate h !""i vs ! on 323

for j ¼ 0:02 and m ¼ 0:01, 0.02, 0.03. Dashed lines show the
same quantity evaluated for free fields.
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Observe premature saturation  
(ie. one fermion per site) at µa≈0.5 

(other lattice models typically saturate at µa≳1)
         
         ⇒ 

no discernable onset μo > 0

Fit small-µ data: 
nc(j=0)∝µ3.32(1)  
Cf. free-field 

ncfree∝µd∝µ2 

NB nc∝kF2  (Luttinger’s theorem)

j→0

µat ≈ EFat < kFas

ncfree(µ) << ncfree(kF) ≈ nc(µ)

saturation here

free fermion
result

ðUð1Þ # Uð1Þ"Þ2, followed bym ! 0, j ¼ 0 to ðUð1ÞÞ2, and
m ¼ 0, j ! 0 to Uð1Þ # Uð1Þ".

The fermion action is supplemented by a Gaussian
weight for the A fields

Saux ¼
N

4g2
X

x

A2
x; (10)

where g2 is a parameter governing the strength of
the coupling between the potential and the fermions. The
resulting dynamics describes A fluctuations having the
same form as the continuum action (1) in the strong-
coupling or large-Nf limits, but for which explicit screen-
ing removes the long-ranged r%1 tail away from these
limits; further justification for this approximation is given
in Refs. [9,14]. For Nf ¼ 2 this formulation yields an
identical path integral to the lattice action couched in terms
of compact link variables given in Eq. (7) of Ref. [14]. For
Nf > 2, however, the two approaches are not equivalent
since the compact formulation leads to extra terms of the
form ð !c c !!!Þ2 in the effective action—although these
operators may well be irrelevant at the critical point. The
exact lattice version of the noncompact action for " ¼ 0
and arbitrary Nf once A is integrated out is given in
Eq. (2.2) of Ref. [21]. Another consequence of the non-
compact formulation is the violation of reflection positiv-
ity; indeed, the absence of unitarity in similar models in the
strong-coupling limit g2 ! 1 has been discussed exten-
sively in Refs. [15,22]. We note that graphene models with
compact link variables have formulated directly on honey-
comb lattices in Refs. [23,24].

Next we discuss the implications of relaxing the require-
ment that inter- and intra-layer interactions between fer-
mions are identical. The nontrival terms in the action are of
the form !cUe"c , !cU&e%"c , where U is a complex
number not constrained to have unit modulus. Integration
over U leads to repulsive particle-particle and hole-hole
interactions, and attractive particle-hole interactions.
Suppose we wanted to make the model more realistic by
introducing a distinction between intra-layer and interlayer
interactions. One way to do this would be to introduce a
second boson field coupling to c and ! with opposite
signs, in effect introducing repulsion between c -particles
and !-holes so that the !c -! and !!-c couplings are
weaker than those of !c -c or !!-!. The interaction terms
could then be written !c xUVe"c xþ0̂,

!!xUV&e%"!xþ0̂,
% !c xU

&V&e%"c x%0̂, % !!xU
&Ve"!x%0̂, etc. In the limit

V ! 1 integration over c , !c leads to a factor detD½"),
while integration over !, !! gives detD½%"). With the
help of (3) we confirm the resulting functional measure
detD½")Dy½") is positive definite. In the limit U ! 1,
however, the same process leads to detD½")D&½%") ¼
det 2D½"), which is no longer positive definite. In other
words, attempting to make the model more realistic rein-
troduces a Sign Problem, although a more detailed study
would be needed to determine its severity.

Now let us discuss observables. The usual chiral con-
densate (which has been called the exciton condensate in
our earlier work [9,14]) is given by

h !""i * @ lnZ
@m

¼ h !c c i% h !!!i: (11)

Note the sign of the condensate is not physical, and that the
two terms on the rhs of (11) give equal contributions. From
the discussion above it should be clear that for " ! 0
formation of this condensate spontaneously breaks ðUð1Þ #
Uð1Þ"Þ2 to ðUð1ÞÞ2, resulting in two Goldstone modes in
the limit m ! 0, j ! 0. The exciton condensate discussed
in Ref. [13] and which is the main focus of this paper is
given by

h""i * @ lnZ
@j

¼ ih !c!% !!c i: (12)

In this case the symmetry breaks to Uð1Þ # Uð1Þ" implying
the same number of Goldstones. In fact for " ¼ 0 and
m ¼ j, h !""i and h""i are physically indistinguishable,
both being equivalent to the chiral condensate of theNf¼2
theory. Figure 1 below confirms that with " ¼ 0 our code
generates results consistent with h !""i=h""i * m

j .

With " ! 0 we next define the charge carrier density

nc *
@ lnZ
@"

¼ h !cD0c i% h !!D0!i: (13)

Once again, both terms on the rhs give equal contribu-
tions—the first term represents the density of electrons in
layer 1, and the second the density of holes in layer 2.
Figure 1 shows the results of a pilot run on 83 at g%2 ¼

0:4 andma ¼ 0:05. For ja ¼ 0:05 the two condensates are
degenerate at " ¼ 0 as argued above. As " increases, our
naive expectation is that a Fermi surface of radius " forms
on each layer, one containing particles, the other holes,
implying nc / "2. As " grows, c !c and ! !! pairing are
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FIG. 1 (color online). Fermion condensates as a function of "
at g%2 ¼ 0:4 on 83 with bare mass ma ¼ 0:05, ja ¼ 0:05, 0.1.
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Exciton Condensate

suppressed because a free particle-hole pair costs energy
2! to create at either Fermi surface, whereas c !" pairing is
promoted, because it costs zero energy to create a particle
on one Fermi surface and a hole at the other, with the
density of states at either increasing / !. Thus h !""i
decreases as ! rises from 0, while h""i increases. The
rise in h""i seems to be relatively more pronounced for
smaller j. This trend persists until !at ’ 0:3. What hap-
pens after that should be understood in terms of saturation,
an artifact which sets in when the fermion density is a
significant fraction of its maximal value of one per lattice
site. With our normalization of nc this sets in for !at ’
0:5, a surprisingly small value based on experience with
other models. In a saturated world fermion excitations of
all kinds are kinematically suppressed, and the condensates
tend to zero in this limit.

III. NUMERICAL RESULTS

Our strategy in this paper is to investigate the effect of
varying ! in our bilayer model (8) and (10) starting close
to the quantum critical point. The first task is to find the
coupling g2c where the QCP is located for Nf ¼ 4; we use

the approach [9,15] of searching for a maximum of h !""i
as g"2 is varied and identifying that with the strong cou-
pling limit of the continuum model. We then assume
g"2
c * g"2

peak, since if the value Nfc ¼ 4:8ð2Þ obtained in

Ref. [9] is universal there should only be a narrow range of
g"2 corresponding to the chirally broken phase. The results
for h !""ðmÞi in Fig. 2 show that g"2

peak % 0:30, much larger

than the value % 0:05 obtained with the compact formula-
tion [9]. Another contrast with previous work is that it is
also apparent that g"2

peak increases with m, from roughly

0.275 atma ¼ 0:07 to 0.35 forma ¼ 0:01, although at this

stage we cannot exclude the possibility that finite volume
effects influence the result. For small m a linear extrapo-
lation to the chiral limit seems reasonable; we conclude,
conservatively, that in this limit g"2

peak 2 ð0:275; 0:35Þ.
Figure 3 shows h !""i data as a function of m for g"2 %

g"2
peak. While the quadratic extrapolation to the chiral limit

is not conclusive, the marked nonlinearity of the fits sug-
gests the QCP value g"2

c lies close to this region; however,
a much more extensive simulation campaign would be
needed to pin it down. For our purposes it suffices to
work close to a strongly interacting QCP, while leaving
the issue of whether chiral symmetry spontaneously breaks
unresolved. Henceforth, all numerical results are obtained
with the coupling value g"2 ¼ 0:4—this implies that the
lattice cutoff is constant as ! is varied. Unless otherwise
stated, the chiral limit m ¼ 0 will be assumed.
Figure 4 shows the exciton condensate h""i as a func-

tion of ! for three different j. The figure shows the same

FIG. 2 (color online). h !""i vs g"2 for Nf ¼ 4 and various m
near g"2

peak % 0:30. The simulations were performed on both 323

and 483 lattices.

FIG. 3 (color online). h !""i vs m for g"2 ¼ 0:35, 0.375, 0.40
fitted to a quadratic polynomial.
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FIG. 4 (color online). h""i vs ! on 323 for m ¼ 0 and ja ¼
0:01, 0.02, 0.03. Dashed lines show the same quantity evaluated
for free fields.
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broad features as Fig. 1, namely a rapid rise to a fairly
sharp maximum at !a ! 0:3, followed by a still more
rapid fall; the signal is very small indeed by !a ¼ 0:6.
As we shall see, at this value of ! the system has reached
saturation with a maximum possible density of particle-
hole pairs consistent with the Pauli exclusion principle on a
fixed lattice; our model can only be interpreted as a de-
scription of bilayer graphene for values of ! much smaller
than this.

The dashed lines in Fig. 4 show h!!i evaluated using
the same measurement code but with g2 set to zero, yield-
ing the value for free fields. Since the ðUð1Þ % Uð1Þ"Þ2
symmetry is manifest for j ¼ 0 the free field condensate
must vanish in this limit, and the curves are consistent with
this expectation. The large disparity between h!!iint
and h!!ifree notable in the range 0:2 & !a & 0:4 signals
that ðUð1Þ % Uð1Þ"Þ2 is surely spontaneously broken here.
Close inspection of the figure reveals that h!!ifree rises
monotonically, but not quite smoothly, with ! until reach-
ing a maximum at !a & 0:9. The disparity with the
apparent saturation observed in the interacting model will
be further discussed below. The barely visible wiggles are
probably a finite volume artifact similar to that noted in
studies of another system with a Fermi surface [3]. Figure 5
plots the same scan but this time showing that the effect of
varying m is negligible except for the very smallest values
of!. Since the operator!! is constructed to be conjugate
to j, not m, this is as expected.

In order to interpret the condensate data it is necessary to
extrapolate j ! 0. Figure 6 shows h!!i for several j on
two different volumes, together with extrapolations of the
form

h!!i ¼ h!!ðj ¼ 0Þiþ Ajþ Bj2 þ Cj3: (14)

Taking finite volume effects into account, it seems that at
least for !a ' 0:10 the fitted intercept is nonvanishing,
confirming the spontaneous breaking of particle-hole

symmetry due to excitonic condensation h!!i ! 0.
The extrapolated condensate is shown fitted to a power
law of the form h!!ðj ¼ 0Þi ¼ a1!

a2 in Fig. 7: the fitted
parameters are

a1 ¼ 7:0ð2Þ; a2 ¼ 2:39ð2Þ: (15)

The power-law rise is more rapid than would be expected
from a BCS-style mechanism driven by condensation of
particle-hole pairs in the immediate vicinity of a Fermi
surface. This is because in a BCS condensation the density
of available pairing states scales with the area of the Fermi
surface, / !d(1 in d space dimensions. Despite this some-
what empirical approach, the nonlinear increase of h!!i
with ! is a robust conclusion at variance with a conven-
tional weakly interacting BCS scenario.
Next we consider the carrier density nc defined in (13),

and shown in Fig. 8. This rises monotonically from zero
with ! until !a) 0:5, when saturation sets in; the effect
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m=0.03
m=0

FIG. 5 (color online). h!!i vs ! on 323 for ja ¼ 0:02 and
ma ¼ 0, 0.01, 0.02, 0.03. The dashed line shows the same
quantity evaluated for m ¼ 0 for free fields.
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FIG. 6 (color online). h!!i vs j for m ¼ 0 and various ! on
323 (open) and 483 (closed symbols). Dotted lines show fits to
Eq. (14). Dashed lines show the same quantities evaluated for
! ¼ 0, 0.2 on 483 for free fields.
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FIG. 7 (color online). h!!ðj ¼ 0Þi vs ! on 483 fitted to a
power law for ! ¼ 0:05–0:20. The dashed line corresponds to
exponent a2 ¼ 2:39ð2Þ.
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rapid rise with µ to exceed  
free-field value;  

then peak at µa≈0.3;
then fall to zero at saturation 

Exciton (ie superfluid) condensation, with 
no discernable onset µo>0  

Fit small-µ data: 
⟨ΨΨ(j=0)⟩∝µ2.39(2) 

Cf. weak BCS pairing 
⟨ΨΨ⟩∝Δµd-1∝µ ? 

j→0

ðUð1Þ # Uð1Þ"Þ2, followed bym ! 0, j ¼ 0 to ðUð1ÞÞ2, and
m ¼ 0, j ! 0 to Uð1Þ # Uð1Þ".

The fermion action is supplemented by a Gaussian
weight for the A fields

Saux ¼
N

4g2
X

x

A2
x; (10)

where g2 is a parameter governing the strength of
the coupling between the potential and the fermions. The
resulting dynamics describes A fluctuations having the
same form as the continuum action (1) in the strong-
coupling or large-Nf limits, but for which explicit screen-
ing removes the long-ranged r%1 tail away from these
limits; further justification for this approximation is given
in Refs. [9,14]. For Nf ¼ 2 this formulation yields an
identical path integral to the lattice action couched in terms
of compact link variables given in Eq. (7) of Ref. [14]. For
Nf > 2, however, the two approaches are not equivalent
since the compact formulation leads to extra terms of the
form ð !c c !!!Þ2 in the effective action—although these
operators may well be irrelevant at the critical point. The
exact lattice version of the noncompact action for " ¼ 0
and arbitrary Nf once A is integrated out is given in
Eq. (2.2) of Ref. [21]. Another consequence of the non-
compact formulation is the violation of reflection positiv-
ity; indeed, the absence of unitarity in similar models in the
strong-coupling limit g2 ! 1 has been discussed exten-
sively in Refs. [15,22]. We note that graphene models with
compact link variables have formulated directly on honey-
comb lattices in Refs. [23,24].

Next we discuss the implications of relaxing the require-
ment that inter- and intra-layer interactions between fer-
mions are identical. The nontrival terms in the action are of
the form !cUe"c , !cU&e%"c , where U is a complex
number not constrained to have unit modulus. Integration
over U leads to repulsive particle-particle and hole-hole
interactions, and attractive particle-hole interactions.
Suppose we wanted to make the model more realistic by
introducing a distinction between intra-layer and interlayer
interactions. One way to do this would be to introduce a
second boson field coupling to c and ! with opposite
signs, in effect introducing repulsion between c -particles
and !-holes so that the !c -! and !!-c couplings are
weaker than those of !c -c or !!-!. The interaction terms
could then be written !c xUVe"c xþ0̂,

!!xUV&e%"!xþ0̂,
% !c xU

&V&e%"c x%0̂, % !!xU
&Ve"!x%0̂, etc. In the limit

V ! 1 integration over c , !c leads to a factor detD½"),
while integration over !, !! gives detD½%"). With the
help of (3) we confirm the resulting functional measure
detD½")Dy½") is positive definite. In the limit U ! 1,
however, the same process leads to detD½")D&½%") ¼
det 2D½"), which is no longer positive definite. In other
words, attempting to make the model more realistic rein-
troduces a Sign Problem, although a more detailed study
would be needed to determine its severity.

Now let us discuss observables. The usual chiral con-
densate (which has been called the exciton condensate in
our earlier work [9,14]) is given by

h !""i * @ lnZ
@m

¼ h !c c i% h !!!i: (11)

Note the sign of the condensate is not physical, and that the
two terms on the rhs of (11) give equal contributions. From
the discussion above it should be clear that for " ! 0
formation of this condensate spontaneously breaks ðUð1Þ #
Uð1Þ"Þ2 to ðUð1ÞÞ2, resulting in two Goldstone modes in
the limit m ! 0, j ! 0. The exciton condensate discussed
in Ref. [13] and which is the main focus of this paper is
given by

h""i * @ lnZ
@j

¼ ih !c!% !!c i: (12)

In this case the symmetry breaks to Uð1Þ # Uð1Þ" implying
the same number of Goldstones. In fact for " ¼ 0 and
m ¼ j, h !""i and h""i are physically indistinguishable,
both being equivalent to the chiral condensate of theNf¼2
theory. Figure 1 below confirms that with " ¼ 0 our code
generates results consistent with h !""i=h""i * m

j .

With " ! 0 we next define the charge carrier density

nc *
@ lnZ
@"

¼ h !cD0c i% h !!D0!i: (13)

Once again, both terms on the rhs give equal contribu-
tions—the first term represents the density of electrons in
layer 1, and the second the density of holes in layer 2.
Figure 1 shows the results of a pilot run on 83 at g%2 ¼

0:4 andma ¼ 0:05. For ja ¼ 0:05 the two condensates are
degenerate at " ¼ 0 as argued above. As " increases, our
naive expectation is that a Fermi surface of radius " forms
on each layer, one containing particles, the other holes,
implying nc / "2. As " grows, c !c and ! !! pairing are
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FIG. 1 (color online). Fermion condensates as a function of "
at g%2 ¼ 0:4 on 83 with bare mass ma ¼ 0:05, ja ¼ 0:05, 0.1.
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Quasiparticle Dispersion

hole branch

particle
 branch

<Ψ(k)Ψ(k)>~ e-E(k)t

Normal

Anomalous

A≈B ⇔ k≈kF

Amplitudes A, B, C show crossover 
from holes to particles
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CN(k⃗, t) = ⟨ψ(k⃗, t)ψ̄(k⃗, t)⟩ = Ae−ENt + Be−EN (Lt−t);

CA(k⃗, t) = ⟨ψ(k⃗, t)φ̄(k⃗, t)⟩ = C[e−EAt − e−EA(Lt−t)].
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Again, consistent with a gapped Fermi surface with Δ/µ=O(1)

And the gap Δ ?….
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Both Δ and kF scale superlinearly with μ
This is a much more strongly correlated system  

than the GN model!



There is life beyond the Sign Problem!

Simple models support rich behaviour once µ≠0  
which can be exposed with orthodox simulation techniques 

• in-medium modification of interactions

• Friedel oscillations

• sound

• Fermi surface pairing

• thin-film superfluidity

• strongly-correlated superfluidity

Summary

Left hanging:   
how can we identify a Fermi surface in a gauge theory?
what extra physics does the Sign Problem “buy” for us?        

superconductivity through pairing?



Hadron Wavefunctions
in Two Color QC2D
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Beyond the fundamental requirements of determin-
ing the thermodynamic and symmetry properties of the
ground state, it is interesting to examine the nature of
excitations. As well as offering continuity with the tra-
ditional concerns of lattice QCD at T = µ = 0, such
questions bear on transport in the baryonic medium; an-
swers to these questions in QCD would have the poten-
tial to inform, say, descriptions of neutron star spin down
(via quantitative information on shear and bulk viscosi-
ties) and cooling (via a knowledge of which if any ex-
citations remain gapless and hence capable of carrying
energy away). There has been exploratory work in sev-
eral directions. In [11] the hadron spectrum of QC2D was
calculated as a function of µ; beyond µo in the meson
sector the usual ordering mπ < mρ is reversed, confirm-
ing earlier studies [12]. Above onset the lightest states are
found in the 0+ and 1+ channels, with approximate de-
generacy found between mesons and diquarks, as might
be expected in a superfluid phase in which baryon num-
ber is no longer a good quantum number. The spectrum
of heavy QQ quarkonium states also shows a non-trivial
µ-dependence [13], possibly as a result of the formation
of Qq states in the quarkyonic regime. In a recent study
binding energies of multi-baryon “nuclei” formed from 0+

and 1+ bound states have been estimated [14].
On a different tack, quark and gluon propagators have

been calculated as functions of T and µ in gauge-fixed con-
figurations [6,7,15]. The electric (longitudinal) gluon prop-
agator in Landau gauge becomes strongly Debye-screened
with increasing T and µ, whereas the magnetic (trans-
verse) gluon shows little sensitivity to T , and exhibits a
mild enhancement in the quarkyonic regime before becom-
ing suppressed at large µ. Finally, the properties of topo-
logical excitations have been studied using a cooling proce-
dure to identify instantons [16]. An enhancement of topo-
logical susceptibility χT is seen on entering the quarkyonic
regime, which can be accommodated within the standard
perturbative description of Debye screening with the ac-
companying observation of a decrease in instanton scale
size ρ(µ) ∝ µ−2. χT does fall very steeply, however, once
⟨L⟩ > 0.

In this work we attempt to probe the interaction be-
tween quarks, and extract information on the spatial ex-
tent of hadrons, by calculating hadron correlation func-
tions in which the qq̄ or qq pair at the sink are spatially
separated by a vector r⃗ [17]. For a bound state H whose
temporal decay in Euclidean space is governed by a simple
exponential e−EHx0 , the spatial profile, determined nu-
merically as a function of r⃗, is proportional to the equal-
time Bethe-Salpeter wave function

Ψ(r⃗, τ) =

∫

d3x⃗⟨0|ψ̄(x⃗, τ)ψ(x⃗ + r⃗, τ)|H⟩. (2)

The typical wave function profile for a bound state is
Gaussian, the width giving basic information about the
size of the hadron. However, the correlators also yield in-
teresting information even in the absence of a bound state,
as explored in a study of the Z2 Gross-Neveu model with
µ ̸= 0 in 2 + 1d [18]. Above onset, the wave function is

no longer positive definite, but rather has an oscillatory
structure with spatial frequency of order kF ∼ µ. These
oscillations have a similar origin to the Friedel oscillations
observed in the density-density correlations of electrons in
metals (and thought to be responsible for the spin-glass
behaviour of certain alloys), characteristic of a sharp, well-
defined Fermi surface; the more primitive nature of the
point-split hadron correlator makes it easier to measure in
a numerical simulation, however. The observation of oscil-
latory wave functions in [18], with wavelength decreasing
systematically with µ, is one of several calculations lead-
ing to the identification of the Z2 GN model as a Fermi
liquid.

A wave function study in QC2D has the potential to
shed light on several outstanding issues in gauge theo-
ries at non-zero chemical potential, the most fundamen-
tal being whether it is indeed possible to identify a well-
defined Fermi surface, since Fermi momentum kF is not
a gauge-invariant quantity. It may also help clarify the
nature of the quarkyonic state, which roughly speaking
may be thought of as a degenerate quark system in which
only gauge-invariant excitations are permitted. Since two-
quark interactions are the most relevant at a Fermi sur-
face in the renormalisation group sense [19, 20], to what
extent lessons learned with Nc = 2 can be generalised
to QCD remains to be seen. Nonetheless in principle the
wave function should be a useful tool to chart the pas-
sage from BEC to BCS realisations of superfluidity as µ
increases, which theoretically should take place for QC2D
near enough the chiral limit. All these reasons motivate
the current, exploratory study.

2 Formulation

In this section we explore the theoretical expectations for
the wave function as a function of interquark separation r.
We begin, following [18], with the expression for the me-
son correlator Cm(x0; r⃗ ) with a local point source at the
origin, and q and q̄ separated by r⃗ at the sink. In anticipa-
tion of our later numerical results we choose the a priori
arbitrary sign of µ to yield the slowest decaying result in
the positive x0 direction in diquark channels with non-
zero baryon charge. Initially we assume free fields with
quark mass m, and work at strictly zero temperature; the
chemical potential µ can then be understood as a Fermi
energy for a system of degenerate quarks with Fermi en-
ergy EF (µ) ≡ µ =

√

k2
F + m2. The onset value at which

the ground state contains a non-zero matter density is
thus µo = m:

Cm(x0, r⃗ ) =
∑

x⃗

tr

∫

d4p

(2π)4

∫

d4q

(2π)4

×Γ
eipx

i/p − µγ0 + m
Γ

e−iqxe−iq⃗·r⃗

i/q − µγ0 + m
. (3)

The Dirac matrix Γ = , γ5 for channels JP = 0+, 0−.

Page 12 of 13 Eur. Phys. J. A (2015) 51: 39

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

Ψ
(r
,τ
)

D 0γ i [1
− ] µ

0.0

0.25

0.5

0.75

1.0

D 01[0
+ ]

0 1 2 3 4 5 6

r

− 0.2

0.0

0.2

0.4

0.6

0.8

1.0

D 0γ 5 [0
− ]

0 1 2 3 4 5 6

M γ 5 γ i [1
+ ]

r

Ψ
(r
,τ
)
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4 Numerical results

Hadron wave functions formed from interacting quarks
were calculated using QC2D ensembles generated using
the quark action (21) and (22) together with an unim-
proved Wilson gauge action for the gluons. The simula-
tion parameters were β = 1.9, κ = 0.168, corresponding
to lattice spacing a = 0.178(5) fm with scale set by as-
suming the string tension is (440MeV)2, and mass ratio
mπ/mρ = 0.807(5) [8]. Most results are obtained on a
123 × 24 lattice, corresponding to a physical temperature
T = 44(2)MeV, although for µa = 0.25 we also have re-
sults from 163 × 24 for comparison. This temperature is
sufficiently low to support the existence of an extended
range of µ in which the theory is simultaneously con-
fining (as indicated by a near-vanishing Polyakov loop)
and superfluid (as indicated by a non-vanishing conden-
sate ⟨ψT

2 (Cγ5)τ2ψ1⟩ ≠ 0 as j → 0). With these param-
eters values of µa in the range [0.0, 1.1] were explored;
the onset value µo = 1

2mπ = 0.323(3)a−1. The large
quark mass implies that the window in µ where BEC-
like behaviour occurs is at best very narrow, and so far
has not been observed. The so-called “quarkyonic” regime
where baryon density, pressure and superfluid condensate
all scale with µ according to the expectations of a sys-
tem of degenerate quarks, lies approximately in the range
µa ∈ (0.4, 0.8) [8, 9].

For |r⃗ | > 0 the point-split correlators (30) and (31) are
not gauge invariant without an insertion of path-ordered
link variables along some selection of paths joining the
two halves of the sink. To mitigate the effects of the signal
fluctuations introduced by this non-unique procedure, we
instead choose to gauge-fix the configuration and use unit

links to complete the loop. We fix a discretised Coulomb
gauge defined by

∆G(x) ≡
3

∑

i=1

[

AG
i (x) − AG

i (x − ı̂)
]

= 0, (33)

where the gauge transformation G(x) extremises the func-
tional

F [UG] = −Re Tr
∑

x

3
∑

i=1

UG
i (x), (34)

with UG
µ (x) = G(x)Uµ(x)G−1(x+µ). To achieve this, the

simplest algorithm [21] one can adopt is a local procedure
which visits one lattice site at a time and attempts to
minimize its contribution to the functional (34), which
can be written as

Floc(x̄) ∝ −ReTr
∑

µ

[

Uµ(x̄) + Uµ(x̄ − µ̂)
]

. (35)

Two observables are usually monitored during this pro-
cedure. One is the functional (34) itself, which decreases
monotonically and eventually reaches a plateau. The other
one is a measure of the first derivative of F [U ] during the
gauge-fixing process defined as

θG ≡
1

V

∑

x

Tr
[

∆G(x)(∆G)†(x)
]

, (36)

where V is the lattice volume. This quantity eventually
approaches zero when F [U ] reaches its minimum and can
be used as a stopping parameter for the procedure. Here
we chose θ ≤ 10−30.
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