

Plan

When isn't there a Sign Problem?

• GN₂₊₁

Friedel oscillations

Fermi Liquid

mesons and zero sound

• NJL₃₊₁

superfluid condensate and gap

isospin chemical potential

medium modification of σ propagator

BCS superfluid

• NJL₂₊₁

superfluid condensate

helicity modulus

Thin film superfluid

Bilayer Graphene

excitonic condensate

Strongly correlated superfluid

quasiparticle dispersion

Summary

When *isn't* there a Sign Problem?

Whenever the fermion measure $\equiv \det(M^{\dagger}M)$

describes **conjugate** quarks q^c, \overline{q}^c

describes quarks q,q

QCD simulations fail due to light qq^c bound states carrying non-zero baryon charge

 $D(p) = \left(\frac{2|\vec{p}|}{e^2}\right)$

2 cases where this isn't an issue

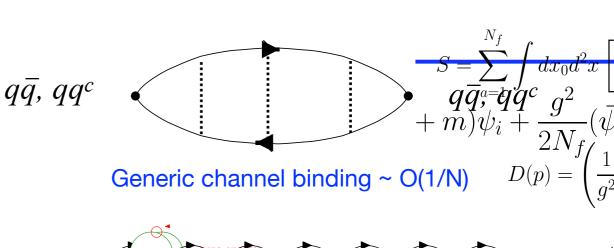
A: qq and qq^c states bind with different dynamics and are not degenerate

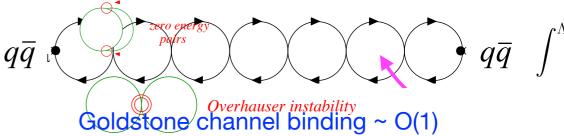
eg. Gross-Neveu, NJL

B: Goldstone baryons are a feature, not a bug

eg. QC₂D, isospin QCD, adjoint QCD, **6** in SU(4), **7** in G₂, bilayer graphene....

some models contain gauge invariant fermion states





Today we're mostly focussed on Case A

Gross-Neveu model in 2+1 dimensions...

which is spontaneously show $\mathcal{L} = \sum_{i=1}^{N_f} \bar{\psi}_i(\not \partial + m) \psi_i - 2 \frac{g^2}{2N_f} \underbrace{\frac{\text{e}\text{rated. To proceed, we introded for the Grand of the$

Can also write in terms of an auxiliary scalar of Chiral symmetry bre vacuum expectation value

 $\mathcal{L} = \bar{\psi}_i(\partial \!\!\!/ + m + \frac{g}{\sqrt{N_f}} \mathcal{F})\psi_i$ the fermion gets a dynamical flavors. Twisick is a specifical flavors. Twisick is a specifical flavors.

in effect 1 erated. To the each to For $g^2>g_c^2\sim O(\Lambda^{-1})$ the ground state has a chiral limit $m \to 0$, only which is spontaneously broken which is spontaneously broken which is spontaneously broken when the self-consiste dynamically-generated fermion mass. To project we introduce a tension of the self-consistence of the se given in the $N_f \to \infty$ limit by the chiral Gap Equation is Lagran

$$\Sigma_0 = g^2 \operatorname{tr} \int_p^1 \frac{1}{ip} \int_{-\infty}^{\infty} \frac{1}{\operatorname{or, with atsimplent points in the presentation}} \int_p^1 \frac{\operatorname{vacuum expectation}}{\operatorname{or, with atsimplent points in the presentation}} \int_p^1 \frac{1}{ip} \int_{-\infty}^{\infty} \frac{\operatorname{vacuum expectation}}{\operatorname{or, with atsimplent points in the presentation}} \int_p^1 \frac{1}{ip} \int_p^1 \frac{\operatorname{vacuum expectation}}{\operatorname{over} 0}.$$
 Chiral symmetry vacuum expectation value of the fermion gets at dynamical wegann

GN Thermodynamics

The large- N_f approach can also to be applied to $T, \mu \neq 0$ and predicts a chiral symmetry restoring phase transition:

$$T_c|_{\mu=0} = \frac{\Sigma_0}{2 \ln 2}; \quad \mu_c|_{T=0} = \Sigma_0$$

Remarkably, lattice Monte Carlo simulations can be Action is real!

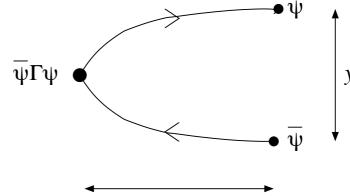
applied to $N_f < \infty$ even for $\mu \neq 0$

chirally symmetric quark matter

There is even evidence for a tricritical point at *small* $\frac{T}{n}$!

[J.B. Kogut and C.G. Strouthos PRD63(2001)054502]

Fermi Surface Phenomena



Consider $q\bar{q}$ "jawbone" diagram

$$C(\vec{y},x_0) = \sum_{\vec{x}} \operatorname{tr} \int_p \int_q \Gamma \frac{e^{ipx}}{i\not p + \mu\gamma_0 + M} \Gamma \frac{e^{-iqx}e^{-i\vec{q}.\vec{y}}}{i\not q + \mu\gamma_0 + M}$$

$$\mu < \mu_c$$
:

$$C \propto \int_0^\infty p dp J_0(py) e^{-2x_0 \sqrt{p^2 + M^2}} \sim \frac{M}{x_0} e^{-2Mx_0} \exp\left(-\frac{|\vec{y}|^2 M}{4x_0}\right)$$

Gaussian width $O(\sqrt{x_0})$

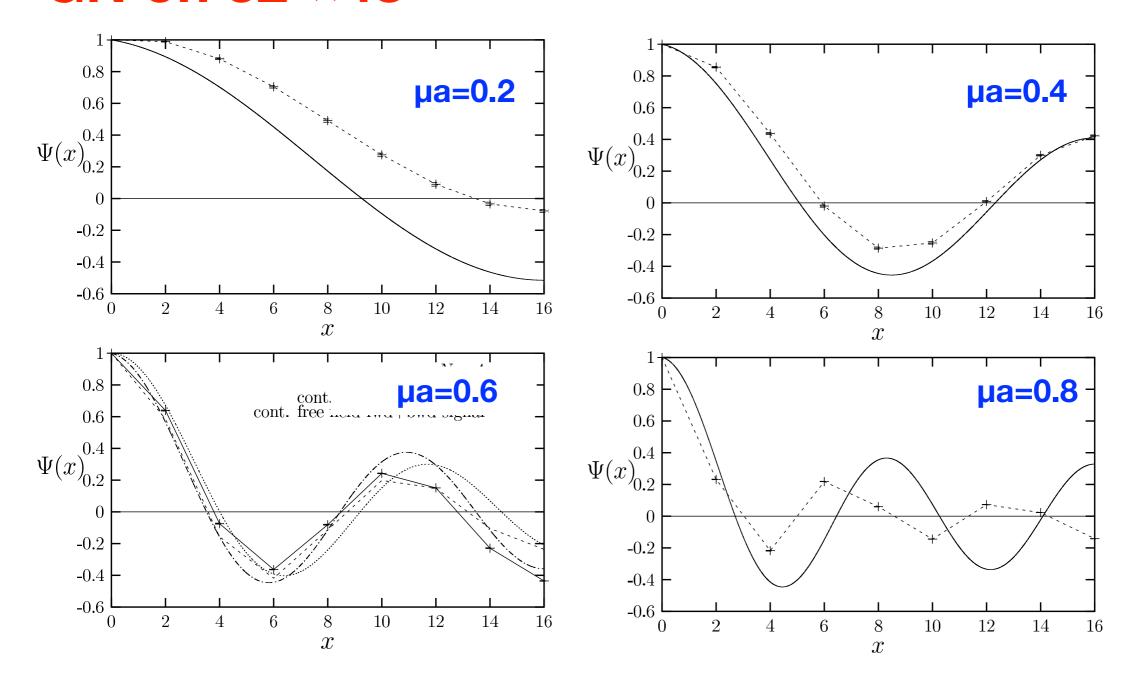
$$\mu > \mu_c$$
:

$$C \propto \int_{\mu}^{\infty} p dp J_0(py) e^{-2px_0} \sim \frac{\mu}{x_0} e^{-2\mu x_0} J_0(\mu |\vec{y}|) \propto J_0(k_F y)$$

Oscillatory profile; shape constant as $x_0 \nearrow$

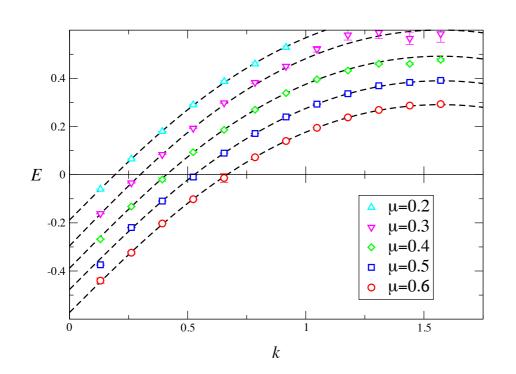
y dependence yields Bethe-Salpeter wave function

GN on 322×48 SJH, JB Kogut, CG Strouthos, TN Tran, PRD68 016005



Oscillations develop as μ \nearrow Graphic evidence for existence of a sharp Fermi surface Why does free-field theory prediction work so well?

Fermion Dispersion relation



μ	K_F	eta_F	$K_F/\mu eta_F$
0.2	0.190(1)	0.989(1)	0.962(5)
0.3	0.291(1)	1.018(1)	0.952(4)
0.4	0.389(1)	0.999(1)	0.973(1)
0.5	0.485(1)	0.980(1)	0.990(2)
0.6	0.584(3)	0.973(1)	1.001(2)

The fermion dispersion relation is fitted with

$$E(|\vec{k}|) = -E_0 + D \sinh^{-1}(\sin|\vec{k}|)$$

yielding the Fermi liquid parameters

$$K_F = \frac{E_0}{D}; \qquad \beta_F = D \frac{\cosh E_0}{\cosh K_F}$$

σ Propagator in Quark Matter $(N_f \to \infty)$

Given by
$$D_{\sigma}^{-1}(k;\mu)=1-\Pi(k;\mu)={1\over 2}$$

Static Limit
$$k_0 = 0$$
:
$$D_{\sigma}^{-1} = \frac{g^2}{\pi}(\mu - \mu_c)$$

Complete screening for $r>0 \Leftrightarrow \mbox{Debye mass } M_D=\infty$ Explains free-field Friedel oscillations

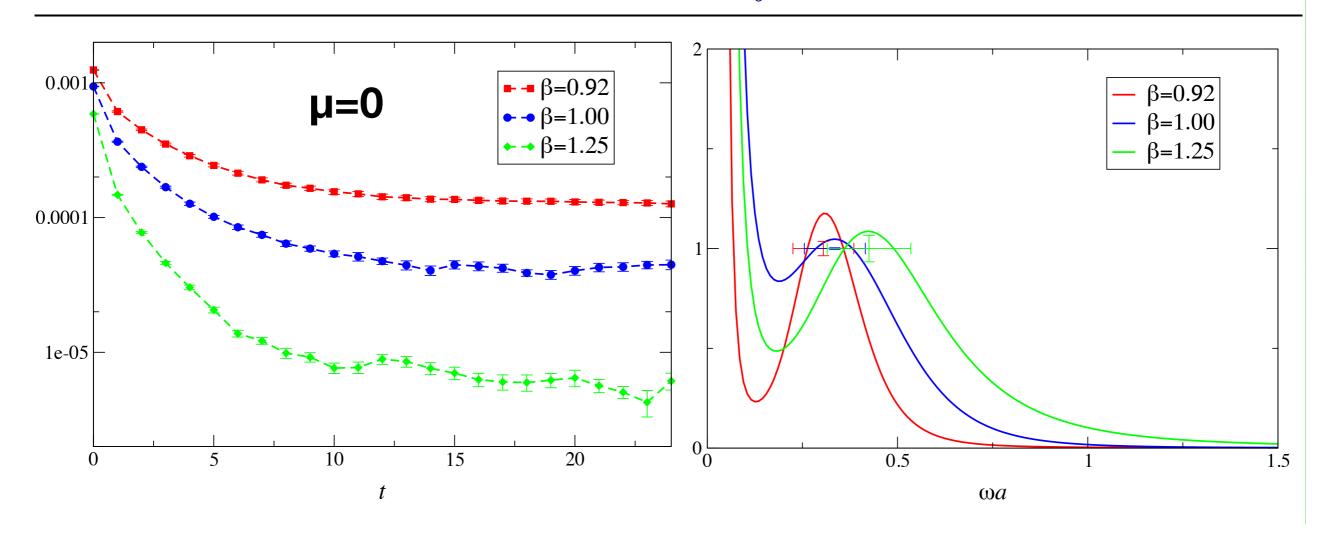
Zero Momentum Limit
$$\vec{k}=\vec{0}$$
: $D_{\sigma}^{-1}=\frac{g^2}{4\pi\mu}[M_{\sigma}^2+k_0^2]$

Conventional boson of mass
$$M_{\sigma}=2\sqrt{\mu(\mu-\mu_c)}$$

Stable because decay into $q\bar{q}$ requires energy 2μ

and is Pauli-blocked. \Leftrightarrow Plasma frequency $\omega_P=M_\sigma$

Numerical Results with $N_f=4$

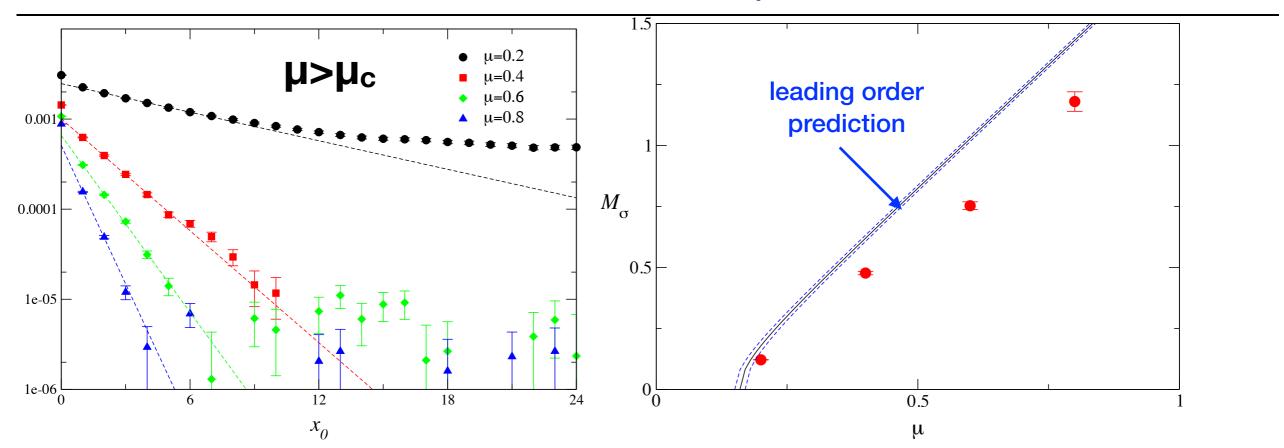


CR Allton, JE Clowser, SJH, JB Kogut, CG Strouthos PRD66 094511

In the bulk chirally symmetric phase $(g < g_c, \mu = T = 0)$, the σ correlator does not resemble that of a bound state, but rather a resonance with width Γ increasing as $g \searrow 0$

ie.
$$D_{\sigma}^{-1} \propto (k+\Gamma) \Rightarrow \rho_{\sigma}(\omega) \propto \frac{\Gamma \omega}{\omega^2 + \Gamma^2}$$

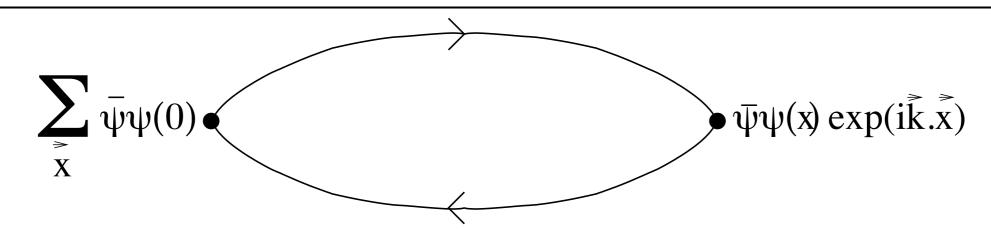
Numerical Results with $N_f=4$



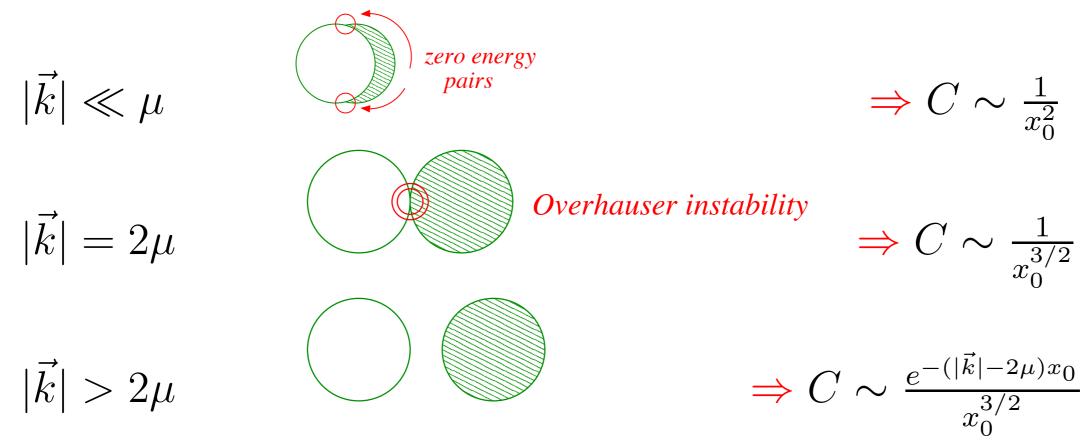
In contrast with behaviour in the chirally-symmetric bulk phase, in quark matter the σ exhibits a sharply-defined pole at $M_{\sigma}(\mu)$ consistent with $O(1/N_f)$ corrections to the leading order result $M_{\sigma}=2\sqrt{\mu(\mu-\mu_c)}$ with $\mu_c a\approx 0.16$

Note σ tightly bound for $\frac{\mu-\mu_c}{\mu}\ll 1$

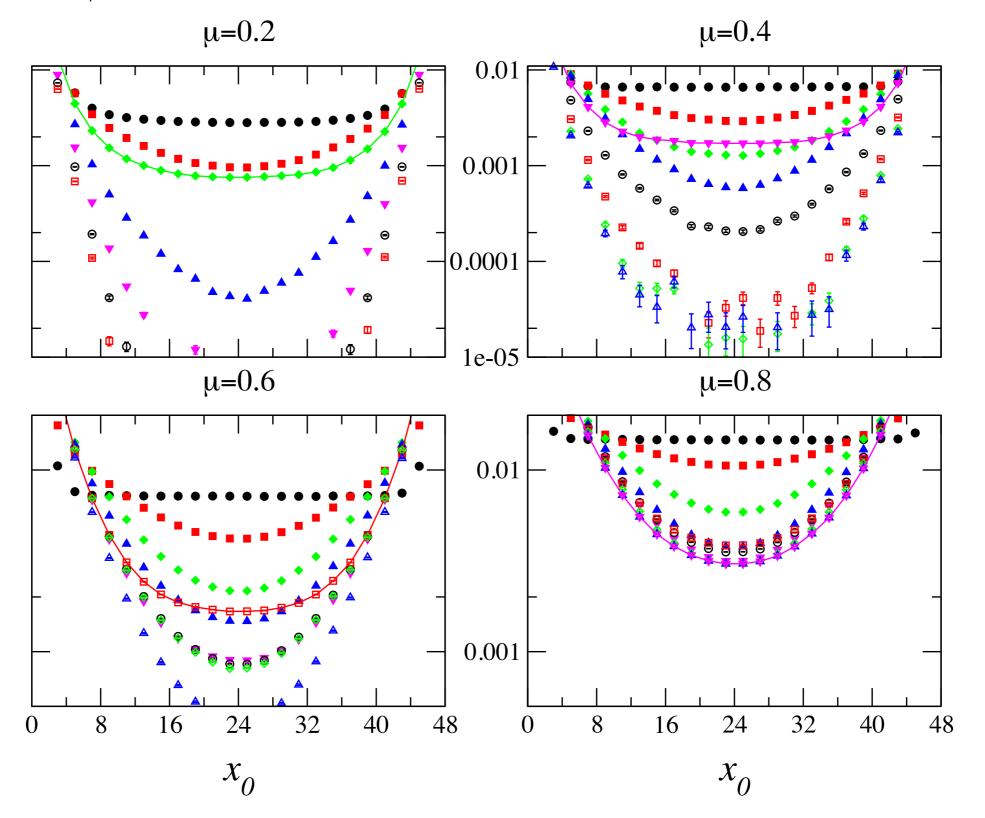
Meson Correlation Functions

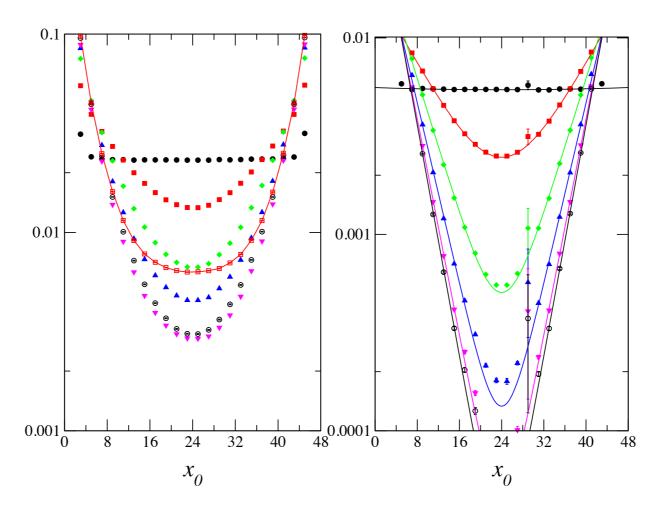


For $\vec{k} \neq 0$ can always excite a particle-hole pair with almost zero energy \Rightarrow algebraic decay of correlation functions



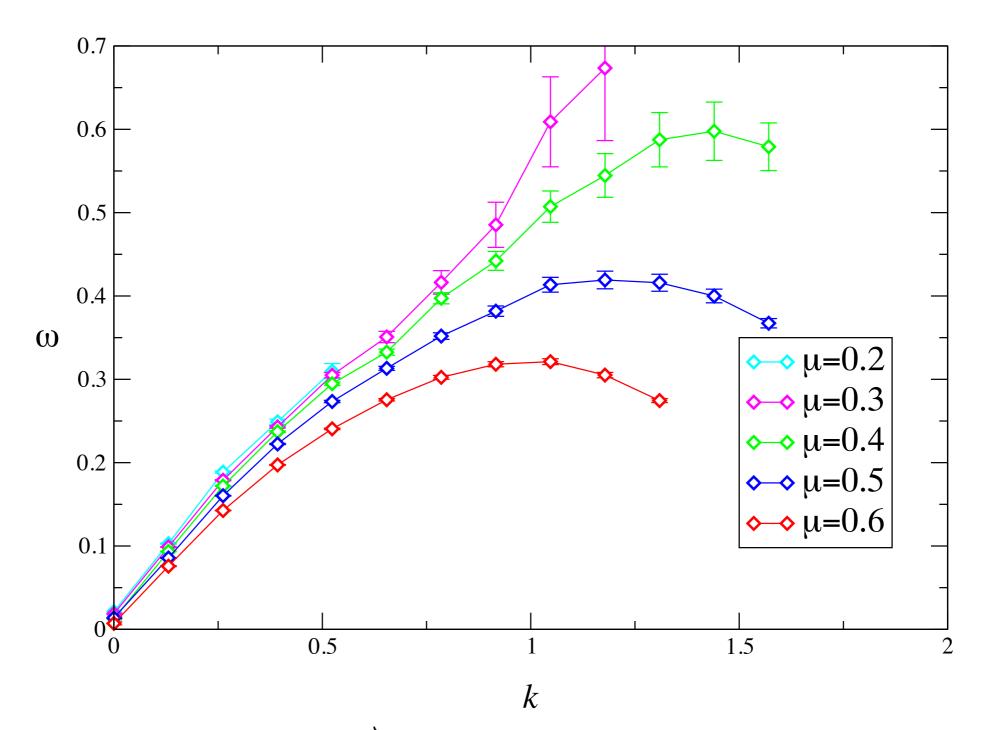
Plots of $C_{\gamma_5}(\vec{k},x_0)$ show special behaviour for $|\vec{k}|\approx 2\mu$





eg. in the spin-1 channel at $\mu a=0.6,\,C_{\gamma_\perp}$ (left) looks algebraic as predicted by free field theory, but C_{γ_\parallel} (right) decays exponentially.

The interpolating operator for $C_{\gamma_{\parallel}}$ in terms of continuum fermions is $\bar{q}(\gamma_0 \otimes \tau_2)q$ ie. with same quantum numbers as baryon charge density



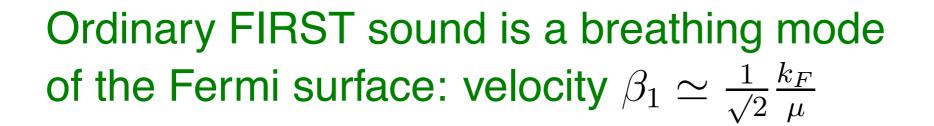
Dispersion relation $E(|\vec{k}|)$ extracted from $C_{\gamma_{\parallel}}$

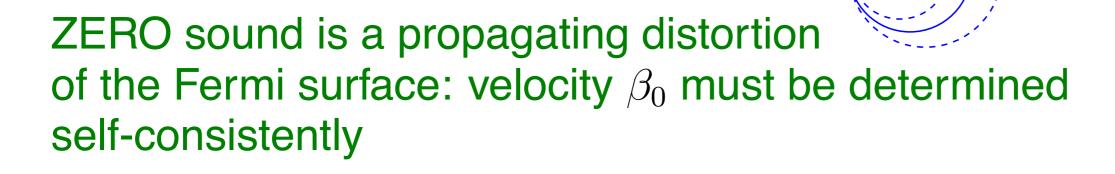
A massless vector excitation?

longitudinal

Sounds Unfamiliar?

In the Fermi liquid framework a possible explanation is a *collective excitation* thought to become important as $T \rightarrow 0$: *Zero Sound*





Basic idea: dominant low energy excitations are *quasiparticles* carrying same quantum numbers as fundamental particles

Quasiparticle energy:
$$\varepsilon_{\vec{k}}$$
 Width: $\sim (\varepsilon_{\vec{k}} - \mu)^2$

Equilibrium distribution:
$$n_{\vec{k}} = \left(\exp(\frac{\varepsilon_{\vec{k}} - \mu}{T}) + 1\right)^{-1}$$

For T
$$\rightarrow$$
0 $\varepsilon_{\vec{k}} \simeq \mu + \beta_F(|\vec{k}| - k_F)$

The heart of Landau's approach is the variation of $\varepsilon_{\vec{k}}$ under small departures from equilibrium:

$$\delta \varepsilon_{\vec{k}} = \int \frac{d^2 \vec{k'}}{(2\pi)^2} \mathcal{F}_{\vec{k}, \vec{k'}} \delta n_{\vec{k'}}$$

The Fermi Liquid the 2-particle for

raction is related to scattering amplitude

$$\mathcal{F}_{ec{k},\sigma,ec{k}',\sigma'} = -\mathcal{M}_{ec{k},\sigma,ec{k}',\sigma'}$$



k'

attractive vanishes in chiral limit

Exchange repulsive naturally $O(1/N_f)$

$$\mathcal{F}_{\vec{k},\vec{k}'} = \frac{g^2}{4N_f} \left[1 - \frac{\vec{k}.\vec{k}'}{\varepsilon_{\vec{k}}\varepsilon_{\vec{k}'}} \right] D_{\sigma}(\varepsilon_{\vec{k}} - \varepsilon_{\vec{k}'}, \vec{k} - \vec{k}')$$

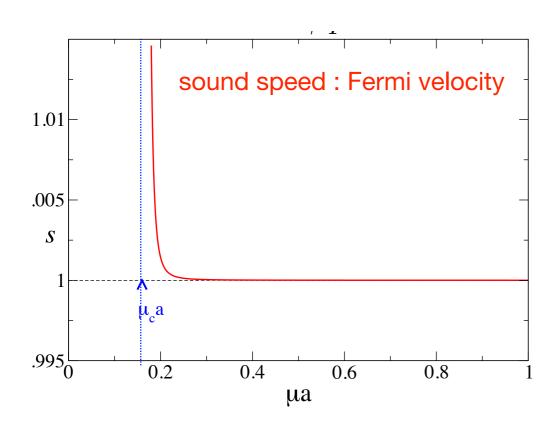
$$= \frac{\pi\mu}{N_f M_{\sigma}^2(\mu)} (1 - \cos\theta)$$

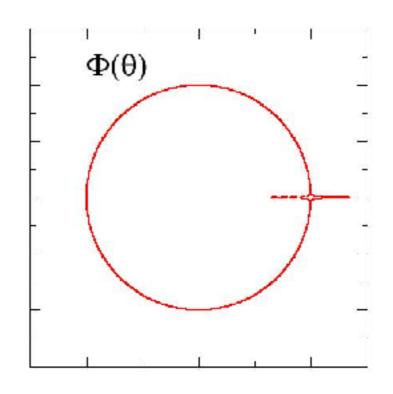
Since at Fermi surface $\varepsilon_{\vec{k}} - \varepsilon_{\vec{k'}} \simeq 0$ we can take the static limit of D_{σ} .

Boltzmann equation in collisionless limit:

$$\frac{s - \cos \theta}{\cos \theta} \Phi(\theta) = \frac{\mu \mathfrak{g}}{4\pi^2} \oint_{\theta'} \mathcal{F}_{\theta,\theta'} \Phi(\theta') = G \int \frac{d\theta'}{2\pi} [R - \cos(\theta - \theta')] \Phi(\theta')$$

for GN model
$$G\simeq \frac{\mathfrak{g}\mu}{8N_f(\mu-\mu_c)}$$
, $R=\frac{2+G}{2-G}$, $s\equiv \frac{\beta_0}{\beta_F}$.





A solution with s>1 exists for almost all $\mu>\mu_c$

 $\Phi(\theta)$ highly peaked in the forward direction

The NJL Model

Effective description of soft pions interacting with

nucleoi

nstituent quarks

 \mathcal{L}_{NJL}

$$\bar{\psi}(\not\partial + m + \mu\gamma_0)\psi - \frac{g^2}{2}[(\bar{\psi}\psi)^2 - (\bar{\psi}\gamma_5\vec{\tau}\psi)^2]$$

$$\bar{\psi}(\partial + m + \mu\gamma_0 + \sigma + i\gamma_5\vec{\pi}.\vec{\tau})\psi + \frac{2}{g^2}(\sigma^2 + \vec{\pi}.\vec{\pi})$$

Introdu

 $SU(2)_L$

Dynam

Scalar

 \Rightarrow diquis supe

opsin indices so full global symmetry is $(2)_R \otimes U(1)_B$

 χ SB for $g^2 > g_c^2 \Rightarrow$ isotriplet Goldstone $ec{\pi}$

alar diquark $\psi^{tr}C\gamma_5\otimes au_2\otimes A^{color}\psi$ breaks U(1) $_B$

condensation signals high density ground state

The NJ

del informs phenomenology of colour superconductivity

Model is renormalisable in 2+1d so GN analysis holds

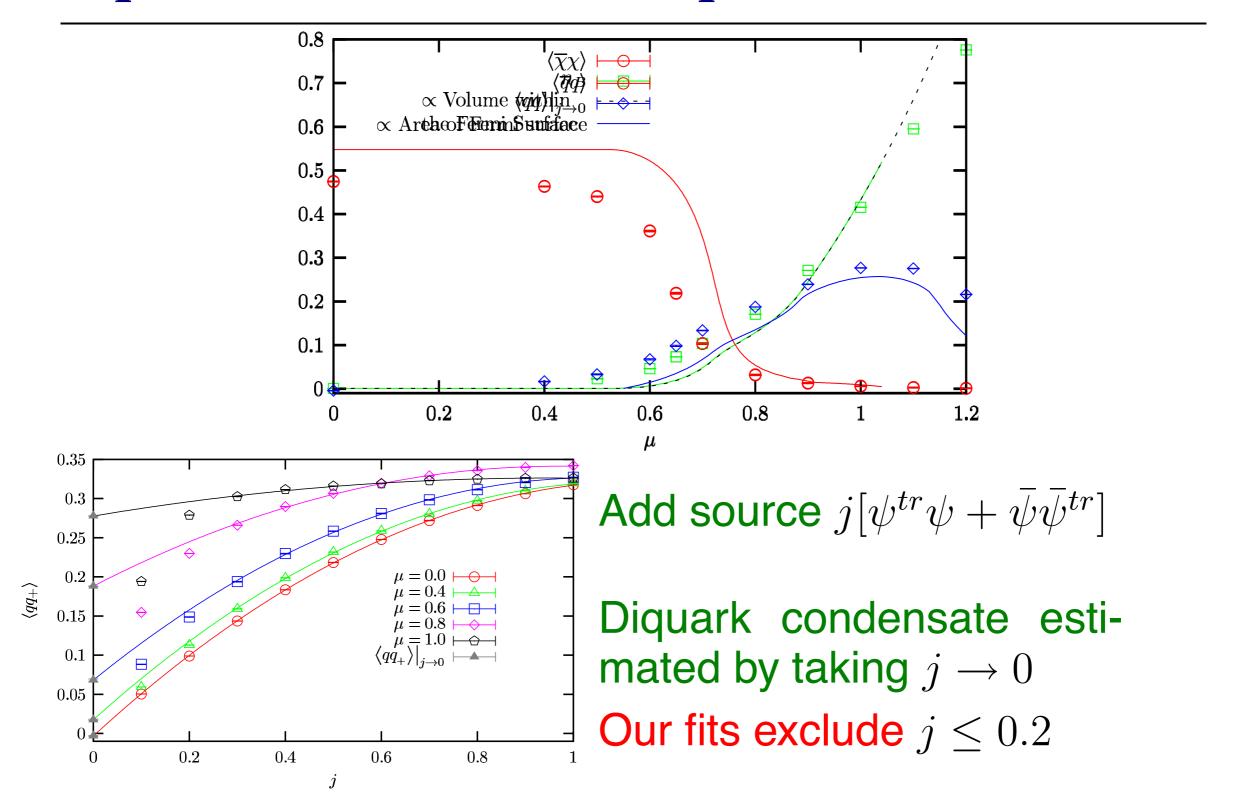
In 3+1d, an explicit cutoff is required. We follow the large- N_f (Hartree) approach of Klevansky (1992) and match lattice parameters to low energy phenomenology:

Phenomenological	Lattice Parameters	
Observables fitted	extracted	
$\Sigma_0 = 400 \mathrm{MeV}$	ma = 0.006	
$f_{\pi}=93 \mathrm{MeV}$	$1/g^2 = 0.495$	
$m_\pi=138 { m MeV}$	$a^{-1} = 720 \mathrm{MeV} \; ^{\mathrm{Barely}}$	a field theory!

The lattice regularisation preserves

 $SU(2)_L \otimes SU(2)_R \otimes U(1)_B$

Equation of State and Diquark Condensation



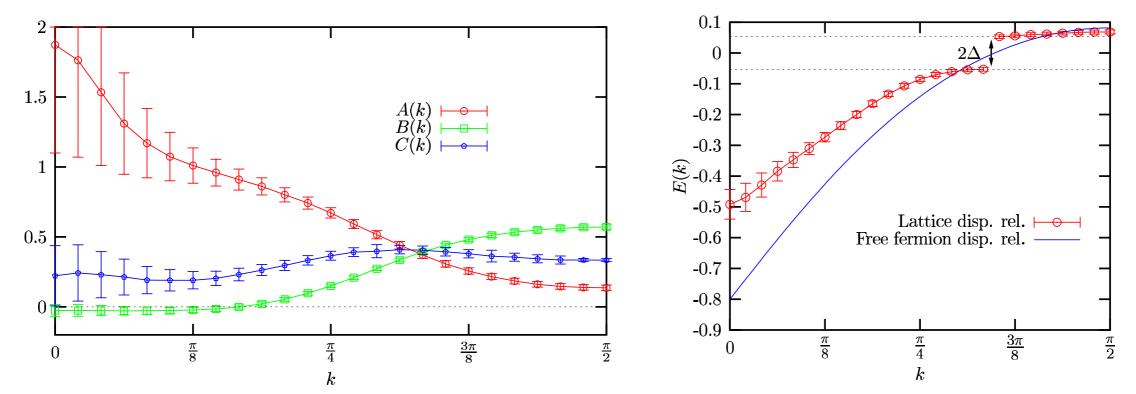
The Superfluid Gap

Quasiparticle propagator:

$$\langle \psi_u(0)\bar{\psi}_u(t)\rangle = Ae^{-Et} + Be^{-E(L_t - t)}$$

$$\langle \psi_u(0)\psi_d(t)\rangle = C(e^{-Et} - e^{-E(L_t - t)})$$

Results from $96 \times 12^2 \times L_t$, $\mu a = 0.8$ extrapolated to $L_t \to \infty$ (ie. $T \to 0$) then $j \to 0$



The gap at the Fermi surface signals superfluidity

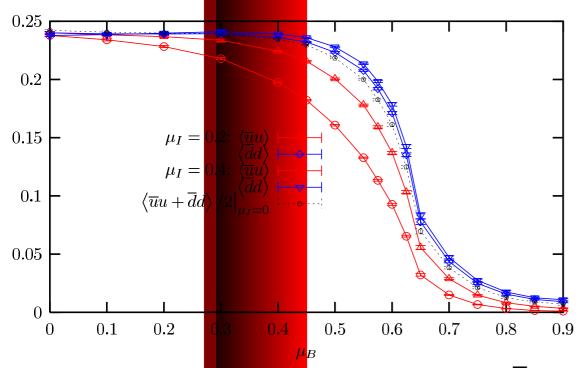
- Near trans
- $\Delta/\Sigma_0 \simeq 0$ in agreeme
- $\Delta/T_c=1$. explains wh

 $\Delta \sim$ const, $\langle \psi \psi
angle \sim \Delta \mu^2$

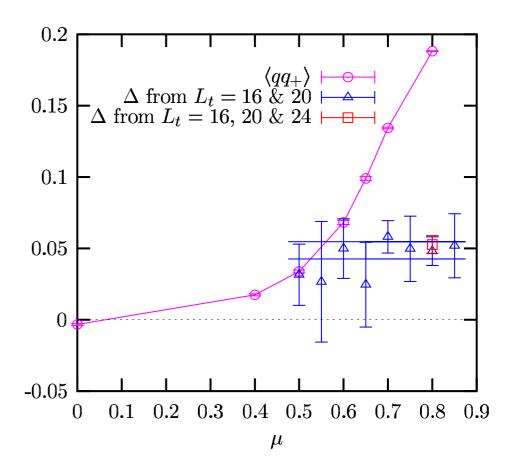
 $\Delta \simeq 60 \text{MeV}$ self-consistent approaches

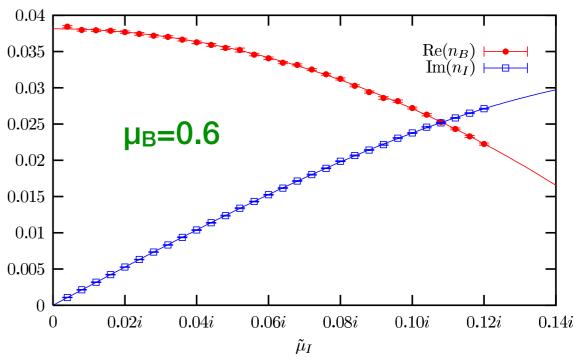
 $CS) \Rightarrow L_{tc} \sim 35$ 0 limit is problematic

Study of $\mu_I = (\mu_u - \mu_d) \neq 0$; reintroduces a sign problem!

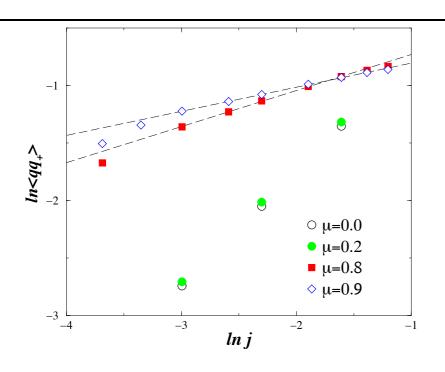


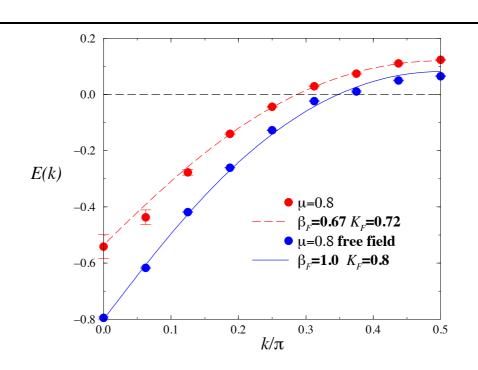
partially quenched study of $\langle \overline{u}u \rangle$ vs $\langle \overline{d}d \rangle$ SJH, DN Walters NPhys.Proc.Suppl. 140 532





baryon and isospin densities via imaginary µ_I





Condensate vanishes as $\langle \psi \psi \rangle \propto j^{\frac{1}{\delta}}$

No gap at Fermi surface

High density phase $\mu > \mu_c$ is *critical*, rather like the low-T phase of the 2d XY model Kosterlitz & Thouless (1973)

$$\delta = \delta(\mu) \simeq 3 - 5$$

Cf. 2d XY model $\delta \geq 15$

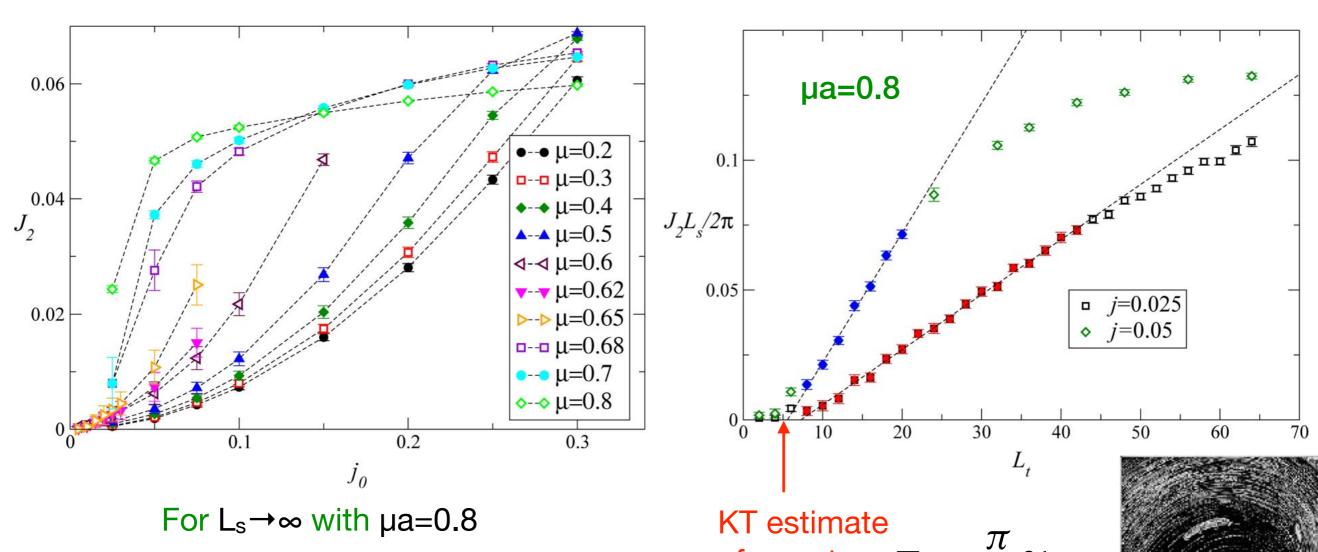
New universality class due to massless fermions

No long-range ordering, but phase coherence

$$\langle \psi \psi(0) \psi \psi(r) \rangle \propto r^{-\eta(\mu)} \Rightarrow$$
 Thin Film Superfluidity

Use a twisted source $j(x) = j_0 e^{i\theta(x)}$ with θ periodic so $\nabla \theta = 2\pi/L$

Expect $\vec{J_s}=\langle \bar{\psi} \vec{\gamma} \psi \rangle = \frac{2\pi}{L} \Upsilon$ as $j_0 \to 0$ where Υ is the *helicity modulus*



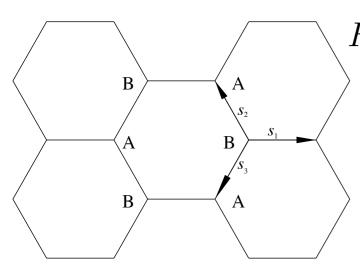
 $\Upsilon/\Sigma = 0.200(2)$

SJH, AS Sehra PLB637 229

KT estimate for vortex
$$T_c = \frac{\pi}{2} \Upsilon$$
 unbinding

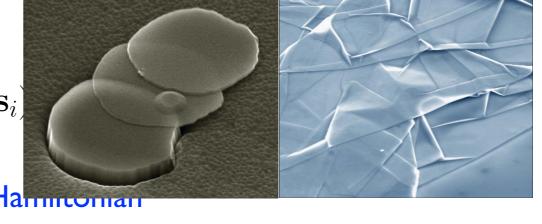
supports superfluidity hypothesis

Relativity in Graphene



$$H = -t \sum_{\mathbf{r} \in \mathbf{B}} \sum_{i=1}^{3} b^{\dagger}(\mathbf{r}) a(\mathbf{r} + \mathbf{s}_i)$$

"tight-binding" Harmonian



describes hopping of electrons in π -orbitals from A to B sublattices and vice versa

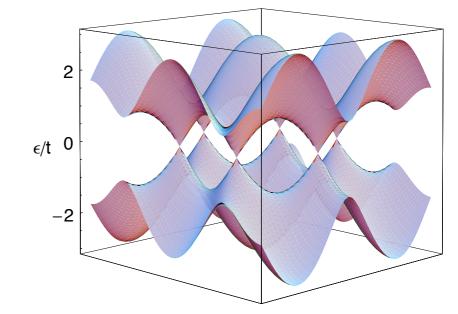
Define modified operators $a_{\pm}(\vec{p}) = a(\vec{K}_{\pm} + \vec{p})$

yielding a "4-spinor"
$$\Psi = (b_+, a_+, a_-, b_-)^{tr}$$

$$H \simeq v_F \sum_{\vec{p}} \Psi^\dagger(\vec{p}) \begin{pmatrix} p_y - i p_x \\ -p_y + i p_x \end{pmatrix} \Psi(\vec{p})$$

$$= v_F \sum_{\vec{p}} \Psi^\dagger(\vec{p}) \vec{\alpha}.\vec{p} \Psi(\vec{p})$$

$$= v_F \sum_{\vec{p}} \Psi^\dagger(\vec{p}) \vec{\alpha}.\vec{p} \Psi(\vec{p})$$



with velocity
$$v_F = rac{3}{2}tl pprox rac{1}{300}c$$

$$= v_F \sum_{\vec{p}} \Psi^{\dagger}(\vec{p}) \vec{\alpha} . \vec{p} \Psi(\vec{p})$$

For monolayer graphene the number of flavors N_f = 2

(2 C atoms/cell × 2 Dirac points/zone × 2 spins = 2 flavors × 4 spinor)

Bilayer effective theory

W Armour, SJH, CG Strouthos PRD87 065010

$$\mathcal{L} = (\bar{\psi}, \bar{\phi}) \begin{pmatrix} D[A; \mu] + m & ij \\ -ij & D[A; -\mu] - m \end{pmatrix} \begin{pmatrix} \psi \\ \phi \end{pmatrix} + \frac{1}{2g^2} A^2$$

$$\equiv \bar{\Psi} \mathcal{M} \Psi. + \frac{1}{2g^2} A^2$$

Bias voltage μ couples to layer fields ψ , ϕ with opposite sign (Cf. isospin chemical potential in QCD)

Intra-layer $(\psi\psi)$ and inter-layer $(\psi\phi)$ interactions have same strength "Gap parameters" m,j are IR regulators

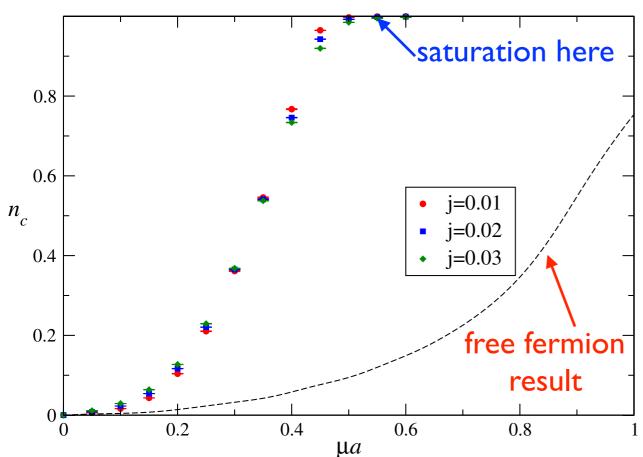
"Covariant" derivative $D^{\dagger}[A;\mu] = -D[A;-\mu]$. inherited from gauge theory

$$\det \mathcal{M} = \det[(D+m)^{\dagger}(D+m)+j^2] > 0$$
 No sign problem!

Case B

lattice sizes 32³, 48³ (g²a)⁻¹ = 0.4 \Rightarrow close to QCP on chirally symmetric side

Carrier Density



$$n_c \equiv \frac{\partial \ln Z}{\partial \mu} = \langle \bar{\psi} D_0 \psi \rangle - \langle \bar{\phi} D_0 \phi \rangle.$$

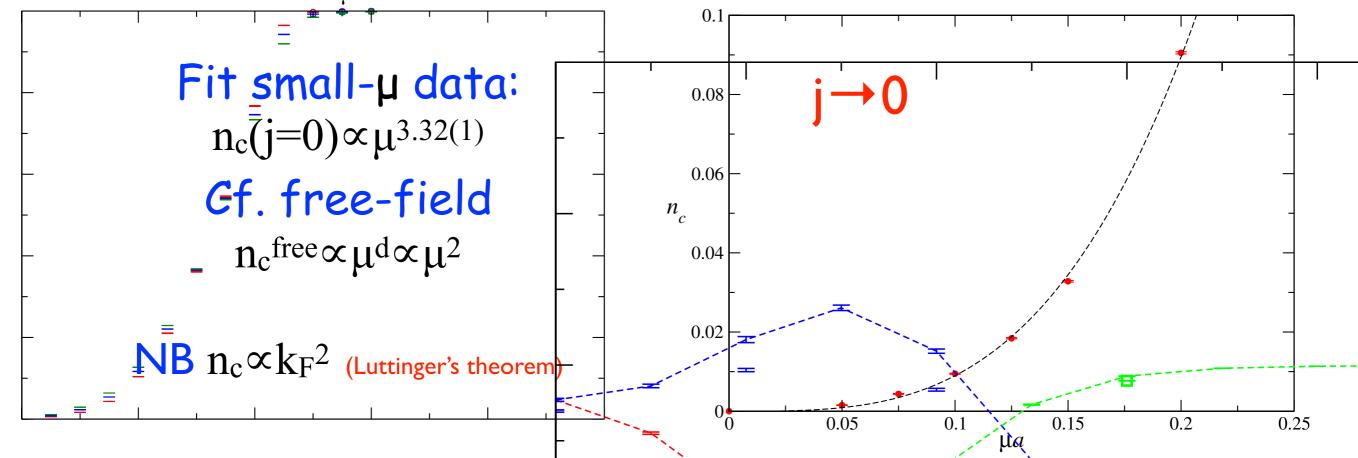
Observe premature saturation (ie. one fermion per site) at $\mu a \approx 0.5$

(other lattice models typically saturate at $\mu a \ge 1$)

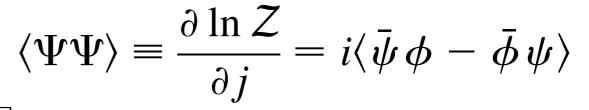
$$\Rightarrow \mu a_t \approx E_F a_t < k_F a_s$$

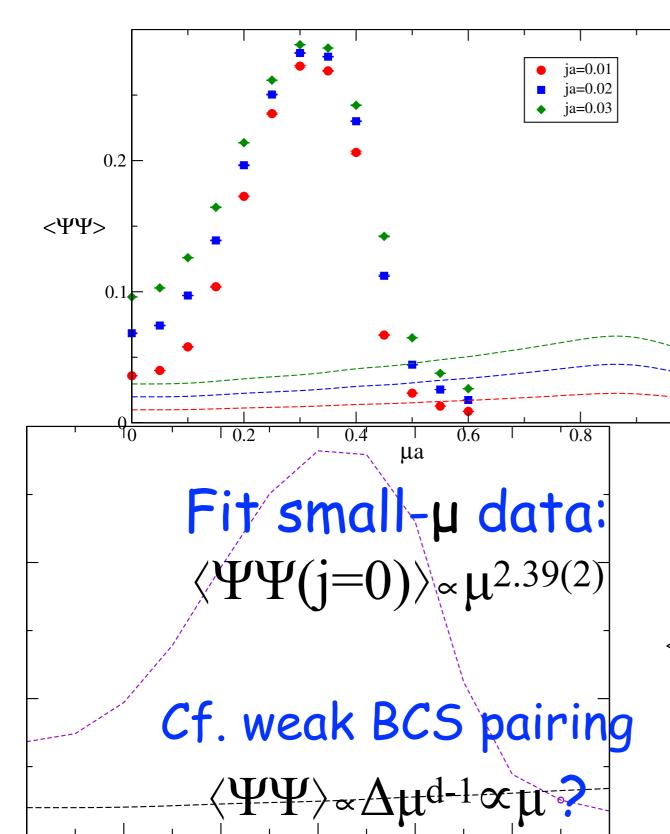
no discernable onset $\mu_o > 0$

$$n_c^{\text{free}}(\mu) \ll n_c^{\text{free}}(k_F) \approx n_c(\mu)$$



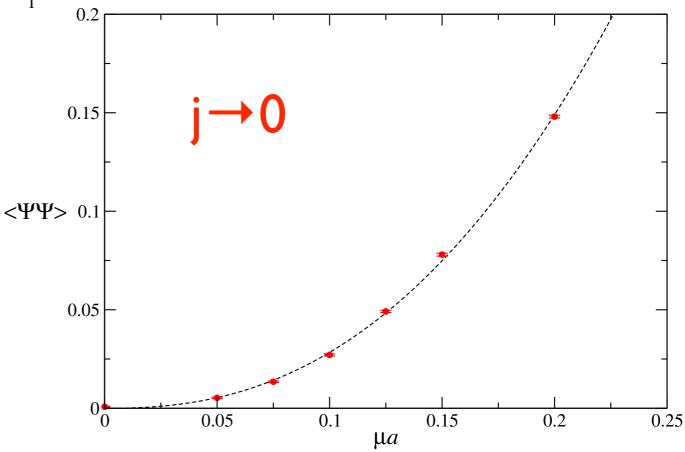
Exciton Condensate





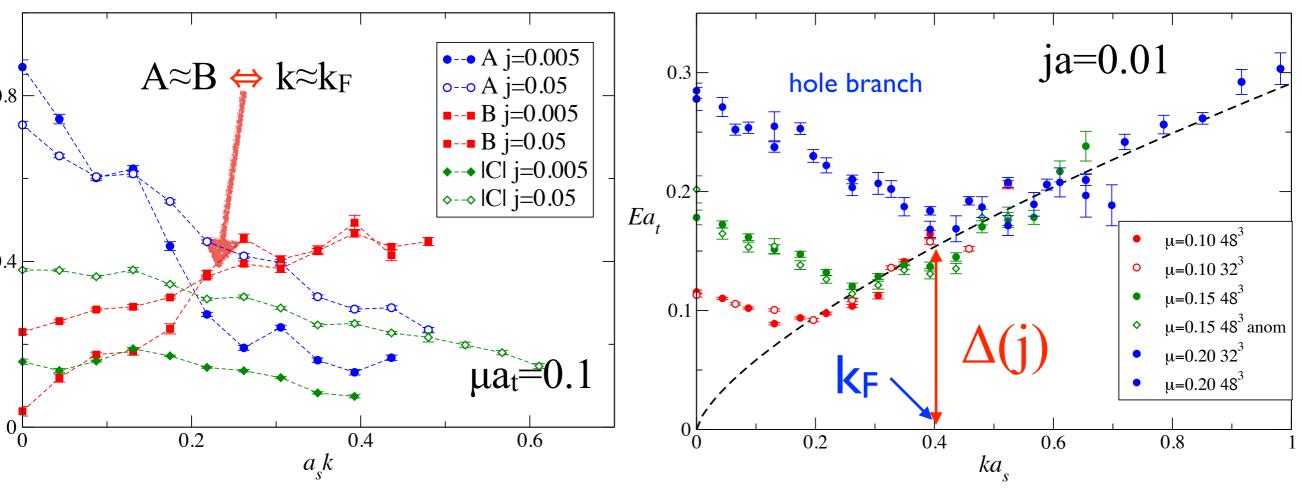
rapid rise with μ to exceed free-field value; then peak at μa≈0.3; then fall to zero at saturation

Exciton (ie superfluid) condensation, with no discernable onset $\mu_o > 0$



Quasiparticle Dispersion

$<\Psi(k)\overline{\Psi}(k)>\sim e^{-E(k)t}$

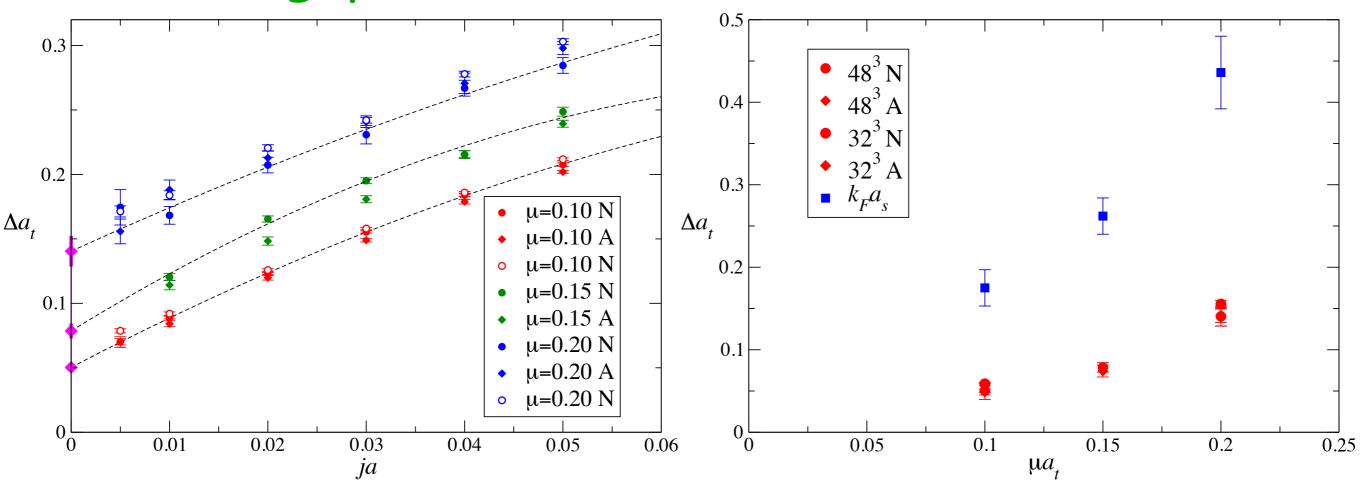


Normal
$$C_N(\vec{k},t) = \langle \psi(\vec{k},t) \bar{\psi}(\vec{k},t) \rangle = A e^{-E_N t} + B e^{-E_N (L_t - t)};$$
 Anomalous $C_A(\vec{k},t) = \langle \psi(\vec{k},t) \bar{\phi}(\vec{k},t) \rangle = C[e^{-E_A t} - e^{-E_A (L_t - t)}].$

Amplitudes A, B, C show crossover from holes to particles

Dispersions E(k) show k_F varying with μ with $k_F a_s > \mu a_t$

And the gap Δ ?....



Again, consistent with a gapped Fermi surface with $\Delta/\mu=O(1)$

Both Δ and k_F scale superlinearly with μ

This is a *much* more strongly correlated system than the GN model!

Summary

Simple models support rich behaviour once $\mu \neq 0$ which can be exposed with orthodox simulation techniques

- in-medium modification of interactions
- Friedel oscillations
- sound
- Fermi surface pairing
- thin-film superfluidity
- strongly-correlated superfluidity

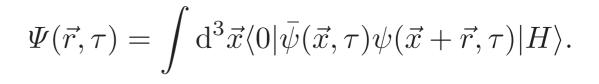
Left hanging:

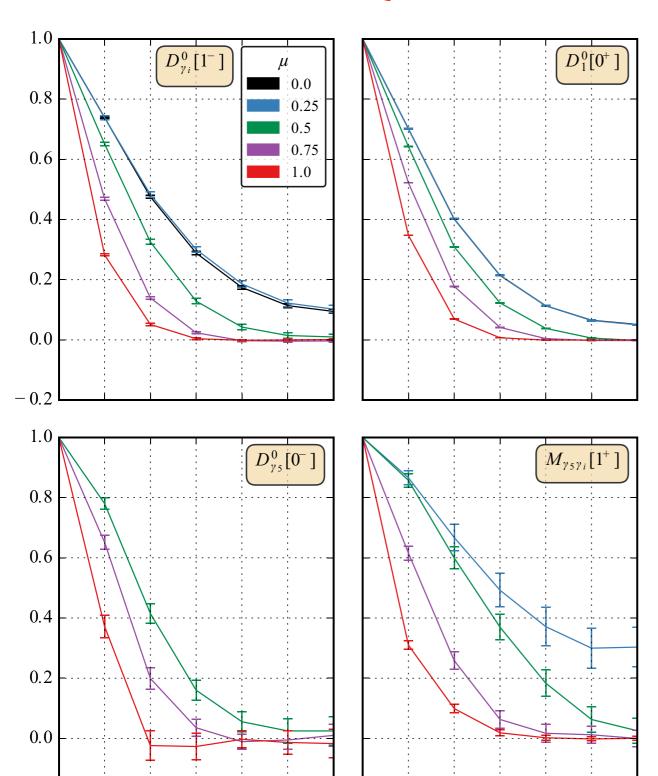
how can we identify a Fermi surface in a gauge theory?

what extra physics does the Sign Problem "buy" for us? superconductivity through pairing?

There is life beyond the Sign Problem!

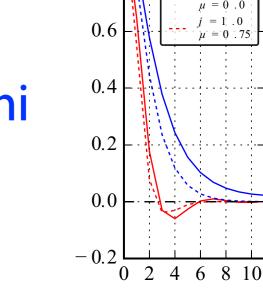
Hadron Wavefunctions in Two Color QC₂D





both meson and diquark channels

no Friedel oscillations, indicating a blurred Fermi surface?



free field

results

 \Leftrightarrow

superfluid gap $\Delta > 0$?

A Amato, P Giudice & SJH, EPJA51 39

r

-0.2