# Gluon propagation at finite temperature

Paulo Silva, Orlando Oliveira Center for Physics, University of Coimbra David Dudal, Martin Roelfs KU Leuven, campus Kortrijk Pedro Bicudo, Nuno Cardoso CFTP, IST, University of Lisbon

June 11, 2018



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

イロト イ押ト イヨト イヨト

## Outline





Gluon propagator @ finite T

- Spectral densities
- Gluon mass scales
- Z<sub>3</sub> dependence





### **QCD** Phase Diagram

- study of the phase diagram of QCD relevant e.g. for heavy ion experiments
- QCD has phase transition where quarks and gluons become deconfined for sufficiently high T
- Polyakov loop
  - order parameter for the confinement-deconfinement phase transition
  - $L = \langle L(\vec{x}) \rangle \propto e^{-F_q/T}$
  - Definition on the lattice:

$$L(\vec{x}) = \operatorname{Tr} \prod_{t=0}^{N_t-1} \mathcal{U}_4(\vec{x}, t)$$

- $T < T_c$ : L = 0 (center symmetry)
- $T > T_c$ :  $L \neq 0$  (spontaneous breaking of center symmetry) CFisUC

#### Center symmetry

- Wilson gauge action is invariant under a center transformation
- temporal links on a hyperplane  $x_4 = const$  multiplied by

$$z \in Z_3 = \{e^{-i2\pi/3}, 1, e^{i2\pi/3}\}$$

- Polyakov loop L(x) → zL(x)
  T < T<sub>c</sub>
  - local P<sub>L</sub> phase equally distributed among the three sectors

$$L = \langle L(\vec{x}) \rangle \approx 0$$

- $T > T_c$ 
  - $Z_3$  sectors not equally populated:  $L \neq 0$

G. Endrödi, C. Gattringer, H.-P. Schadler, arXiv:1401.7228 C. Gattringer, A. Schmidt, JHEP 01, 051 (2011) C. Gattringer, Phys. Lett. B 690, 179 (2010) F. M. Stokes, W. Kamleh, D. B. Leinweber, arXiv:1312.0991 CFisUC

#### **QCD Green's functions**

- In a Quantum Field Theory, knowledge of all Green's functions allows a complete description of the theory
- In QCD, propagators of fundamental fields (e.g. quark, gluon and ghost propagators) encode information about non-perturbative phenomena
  - In particular, gluon propagator encodes information about confinement/deconfinement
- Since the gluon propagator is a gauge dependent quantity, we need to choose a gauge
  - in our works: Landau gauge

イロト イポト イヨト イヨト

Spectral densities Gluon mass scales A dependence

#### Gluon propagator at finite temperature

$$\mathcal{D}^{ab}_{\mu
u}(\hat{m{q}}) = \delta^{ab} \left( \mathcal{P}^{ extsf{T}}_{\mu
u} \mathcal{D}_{ extsf{T}}(m{q}_4,ec{m{q}}) + \mathcal{P}^{ extsf{L}}_{\mu
u} \mathcal{D}_{ extsf{L}}(m{q}_4,ec{m{q}}) 
ight)$$

- Two components:
  - transverse D<sub>T</sub>
  - Iongitudinal D<sub>L</sub>

$$D_{ii}^{aa}(q) = \frac{2}{V} \left\langle \operatorname{Tr} \left[ A_i(\hat{q}) A_i^{\dagger}(\hat{q}) \right] \right\rangle = \delta^{aa} \left( P_{ii}^T D^T + P_{ii}^L D^L \right)$$
  
$$D_{44}^{aa}(q) = \frac{2}{V} \left\langle \operatorname{Tr} \left[ A_4(\hat{q}) A_4^{\dagger}(\hat{q}) \right] \right\rangle = \delta^{aa} \left( P_{44}^T D^T + P_{44}^L D^L \right)$$

• Finite temperature on the lattice:  $L_t << L_s$ 

$$T=\frac{1}{aL_t}$$



Spectral densities Gluon mass scales Z<sub>3</sub> dependence

#### Lattice setup finite T

| Temp. (MeV) | β      | Ls | $L_t$ | a [fm]  | 1/a (GeV) |
|-------------|--------|----|-------|---------|-----------|
| 121         | 6.0000 | 64 | 16    | 0.1016  | 1.943     |
| 162         | 6.0000 | 64 | 12    | 0.1016  | 1.943     |
| 194         | 6.0000 | 64 | 10    | 0.1016  | 1.943     |
| 243         | 6.0000 | 64 | 8     | 0.1016  | 1.943     |
| 260         | 6.0347 | 68 | 8     | 0.09502 | 2.0767    |
| 265         | 5.8876 | 52 | 6     | 0.1243  | 1.5881    |
| 275         | 6.0684 | 72 | 8     | 0.08974 | 2.1989    |
| 285         | 5.9266 | 56 | 6     | 0.1154  | 1.7103    |
| 290         | 6.1009 | 76 | 8     | 0.08502 | 2.3211    |
| 305         | 5.9640 | 60 | 6     | 0.1077  | 1.8324    |
| 305         | 6.1326 | 80 | 8     | 0.08077 | 2.4432    |
| 324         | 6.0000 | 64 | 6     | 0.1016  | 1.943     |
| 366         | 6.0684 | 72 | 6     | 0.08974 | 2.1989    |
| 397         | 5.8876 | 52 | 4     | 0.1243  | 1.5881    |
| 428         | 5.9266 | 56 | 4     | 0.1154  | 1.7103    |
| 458         | 5.9640 | 60 | 4     | 0.1077  | 1.8324    |
| 486         | 6.0000 | 64 | 4     | 0.1016  | 1.943     |

- Simulations: use of Chroma and PFFT libraries
- keep a constant (spatial) physical volume  $\sim (6.5 fm)^3$
- all data renormalized at µ = 4GeV
- O. Oliveira, PJS, PoS(LATTICE2012)216

Acta Phys.Polon.Supp. 5 (2012) 1039

イロト 不得 とくほ とくほう

PoS(Confinement X)045



Spectral densities Gluon mass scales Z<sub>3</sub> dependence

# Surface plots ( $q_4 = 0$ )



#### Transverse component



Spectral densities Gluon mass scales A dependence

#### **Gluon propagator @** finite T ( $q_4 > 0$ )



smaller D in the infrared  $\rightarrow$  larger mass scales

Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

< □ > < 同

CFisUC

▶ < Ξ

э.

Spectral densities Gluon mass scales Za dependence

## **Gluon propagator @** finite T ( $q_4 > 0$ )



Spectral densities Gluon mass scales Za dependence

## **Gluon propagator @** finite T ( $q_4 > 0$ )



Spectral densities Gluon mass scales Za dependence

# **Gluon propagator @** finite T ( $q_4 > 0$ )



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

★ ∃ > ★ ∃

Spectral densities Gluon mass scales Z<sub>3</sub> dependence

### O(4) scaling



Spectral densities Gluon mass scales Z<sub>3</sub> dependence

# O(4) scaling



small violation for a few temperatures below  $T_c$ 

Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

イロト イポト イヨト イヨト

 Introduction and Motivation
 Spectral densities

 Gluon propagator @ finite T
 Gluon mass scales

 Conclusions and Outlook
 Z<sub>3</sub> dependence

# O(4) scaling



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

<ロト <回ト < 注ト < 注)

 Introduction and Motivation
 Spectral densities

 Gluon propagator @ finite T
 Gluon mass scales

 Conclusions and Outlook
 Z<sub>3</sub> dependence

# O(4) scaling



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

<ロト <回ト < 注ト < 注)

 Introduction and Motivation
 Spectral densities

 Gluon propagator @ finite T
 Gluon mass scales

 Conclusions and Outlook
 Z<sub>3</sub> dependence

#### **Dependence on** $q_4$



Spectral densities Gluon mass scales  $Z_3$  dependence

## Outline



Gluon propagator @ finite T
 Spectral densities

- Gluon mass scales
- Z<sub>3</sub> dependence





Spectral densities Gluon mass scales  $Z_3$  dependence

## **Spectral density**

 Euclidean momentum-space propagator of a (scalar) physical degree of freedom

$$\mathcal{G}({\it p}^2)\equiv \langle \mathcal{O}({\it p})\mathcal{O}(-{\it p})
angle$$

• Källén-Lehmann spectral representation

$$\mathcal{G}(p^2) = \int_0^\infty \mathrm{d}\mu rac{
ho(\mu)}{p^2 + \mu}\,, \qquad ext{with } 
ho(\mu) \geq 0 ext{ for } \mu \geq 0\,.$$

 spectral density contains information on the masses of physical states described by the operator O

$$\rho(\mu) = \sum_{\ell} \delta(\mu - m_{\ell}^2) |\langle 0|\mathcal{O}|\ell_0\rangle|^2 ,$$

Spectral densities Gluon mass scales  $Z_3$  dependence

#### **Spectral density: motivation**

- Main goal: compute the spectral density of gluons and other (un)physical degrees of freedom
  - important for e.g. DSE/BSE spectrum studies (Minkowski space)
  - spectral density is not strictly positive
  - traditional Maximum Entropy Method does not allow negative spectral densities

D. Dudal, O. Oliveira, PJS, PRD 89 (2014) 014010

イロト イポト イヨト イヨト

Spectral densities Gluon mass scales Z<sub>3</sub> dependence

# **Spectral density**

- $\mathcal{G} = \mathcal{L}^2 \hat{\rho} = \mathcal{L} \mathcal{L}^* \hat{\rho}$  where  $(\mathcal{L}f)(t) \equiv \int_0^\infty ds e^{-st} f(s)$  is a Laplace transform
- inversion of Laplace transform: ill-posed problem
- Way out: Tikhonov regularization
  - ill-posed problem  $y = \mathcal{K}x$
  - minimize  $||\mathcal{K}\mathbf{x} \mathbf{y}|| + \lambda ||\mathbf{x}||^2$ 
    - $\lambda > 0$  is a regularization parameter
  - $x^{\lambda}$  is the unique solution of the normal equation

$$\mathcal{K}^*\mathcal{K}\mathbf{x}^{\lambda} + \lambda\mathbf{x}^{\lambda} = \mathcal{K}^*\mathbf{y}$$

the operator  $\mathcal{K}^*\mathcal{K}+\lambda$  is strictly positive, hence invertible

- Morozov discrepancy principle: choose  $\overline{\lambda}$  s.t.  $||\mathcal{K}x^{\overline{\lambda}} y^{\delta}|| = \delta$ 
  - δ: "noise of input data"
  - A unique solution  $x^{\overline{\lambda},\delta}$  exists

イロト 不得 とくほ とくほう

Spectral densities Gluon mass scales  $Z_3$  dependence

# Getting gluon spectral density

 $D = \mathcal{L}^2 \rho$ 

- setting  $D_i \equiv D(p_i^2)$ ; *N* data points
- minimization of

$$\mathcal{J}_{\lambda} = \sum_{i=1}^{N} \left[ \int_{\mu_0}^{+\infty} \mathrm{d}\mu \frac{\rho(\mu)}{p_i^2 + \mu} - D_i \right]^2 + \lambda \int_{\mu_0}^{+\infty} \mathrm{d}\mu \ \rho^2(\mu)$$

Inear perturbation of ρ: vanishing of

$$\sum_{i=1}^{N} \underbrace{\left[ \int_{\mu_0}^{+\infty} \mathrm{d}\nu \frac{\rho(\nu)}{p_i^2 + \nu} - D_i \right]}_{\equiv c_i} \frac{1}{p_i^2 + \mu} + \lambda \rho(\mu) = 0 \ (\mu \ge \mu_0)$$

D. Dudal, O. Oliveira, PJS, PRD 89 (2014) 014010

イロト イボト イヨト イヨト



Spectral densities Gluon mass scales  $Z_3$  dependence

## Getting gluon spectral density

#### Källén-Lehmann inverse given by

$$\rho_{\lambda}(\mu) = -\frac{1}{\lambda} \sum_{i=1}^{N} \frac{c_i}{p_i^2 + \mu} \theta(\mu - \mu_0),$$

• linear system for coefficients  $c_i$ :  $\lambda^{-1}\mathcal{M}c + c = -D$ 

$$\mathcal{M}_{ij} = \int_{\mu_0}^{+\infty} \mathrm{d}\nu \frac{1}{p_i^2 + \nu} \frac{1}{p_j^2 + \nu} = \frac{\ln \frac{p_j^2 + \mu_0}{p_i^2 + \mu_0}}{p_j^2 - p_i^2}.$$

Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

イロト イ押ト イヨト イヨト

Spectral densities Gluon mass scales  $Z_3$  dependence

# Getting gluon spectral density

#### Reconstructed propagator:

$$D^{reconstructed}(p^{2}) = \int_{\mu_{0}}^{+\infty} \mathrm{d}\mu \frac{\rho_{\lambda}(\mu)}{p^{2} + \mu} = -\frac{1}{\lambda} \sum_{i=1}^{N} \frac{c_{i} \ln \frac{p^{2} + \mu_{0}}{p_{i}^{2} + \mu_{0}}}{p^{2} - p_{i}^{2}}.$$



Spectral densities Gluon mass scales  $Z_3$  dependence

#### Spectral density at finite temperature

$$\mathcal{D}(oldsymbol{q}_4,oldsymbol{ec{q}}) = \int_0^\infty \mathrm{d}\mu rac{
ho(\mu,oldsymbol{ec{q}})}{oldsymbol{q}_4^2+\mu}$$

- Problem: small number of Matsubara frequencies
- How does the inversion look like when we consider just a few data points?
- Preliminary results just for  $\vec{p} = (1, 0, 0)$

ヘロト ヘ帰 ト ヘヨト ヘヨト

Spectral densities Gluon mass scales  $Z_3$  dependence

#### Spectral density — test T=0



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

イロト イポト イヨト イヨト

Spectral densities Gluon mass scales  $Z_3$  dependence

## Tranverse component, T=121 MeV







Spectral densities Gluon mass scales  $Z_3$  dependence

## Transverse component, T=243 MeV







Spectral densities Gluon mass scales  $Z_3$  dependence

## Transverse component, T=275 MeV







Spectral densities Gluon mass scales  $Z_3$  dependence

## Transverse component, T=290 MeV







Spectral densities Gluon mass scales  $Z_3$  dependence

## Transverse component, T=305 MeV







Spectral densities Gluon mass scales Z<sub>3</sub> dependence

## Longitudinal component, T=121 MeV





э.



Spectral densities Gluon mass scales  $Z_3$  dependence

## Longitudinal component, T=243 MeV







Spectral densities Gluon mass scales Z<sub>3</sub> dependence

## Longitudinal component, T=260 MeV







Spectral densities Gluon mass scales  $Z_3$  dependence

# Longitudinal component, T=275 MeV







Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

Spectral densities Gluon mass scales Z<sub>3</sub> dependence

# Longitudinal component, T=290 MeV







Spectral densities Gluon mass scales  $Z_3$  dependence

## Longitudinal component, T=305 MeV







Introduction and Motivation Spectral densities Gluon propagator @ finite T Conclusions and Outlook **Infrared cut-offs** Longitudinal Transverse 0.4 100 H р<sup>12</sup> [GeV] 0,1 0,2 0,0 0.5 200 250

IR cut-off is sensitive to the phase transition

T [GeV]

T [GeV]

▶ < Ξ

Spectral densities Gluon mass scales  $Z_3$  dependence

## Outline



Gluon propagator @ finite T
 Spectral densities
 Gluon mass scales

Z<sub>3</sub> dependence





Spectral densities Gluon mass scales  $Z_3$  dependence

# Why gluon mass?



• At T = 0 we have colour screening and flux tubes,

J. M. Cornwall, Phys. Rev. D 26, 1453 (1982) N. Cardoso, P. Bicudo, Phys. Rev. D 87, 034504 (2013) N. Cardoso, M. Cardoso, P. Bicudo [arXiv:1302.3633 [hep-lat]]

#### at large T Debye screening,

M. Doring, K. Hubner, O. Kaczmarek, and F. Karsch, Phys. Rev. D 75, 054504 (2007)
 M. Bluhm, B. Kampfer and K. Redlich, Phys. Rev. C 84, 025201 (2011)

• at  $T_c$  a mass scale in the  $\pi$  and K multiplicities in heavy ions

P. Bicudo, F. Giacosa, E. Seel Phys.Rev. C86, 034907 (2012) CFisUC

イロト イポト イヨト イヨト

Spectral densities Gluon mass scales  $Z_3$  dependence

#### Gluon mass at finite T



PJS, O. Oliveira, P. Bicudo, N. Cardoso, Phys.Rev. D89 (2014) 074503



イロト 不得 とくほ とくほう

Spectral densities Gluon mass scales  $Z_3$  dependence

#### Gluon mass at finite T

for a better IR ansatz, we fit
 D<sub>i</sub> using a Yukawa fit with
 mass M

$$D_i(p^2) = \frac{Z}{p^2 + m^2}$$

and look for the largest fitting range  $p_{max}$ 

- this fits quite well D<sub>L</sub>
- the Yukawa does not fit D<sub>T</sub>

#### Fits of the longitudinal propagator

| T   | p <sub>max</sub> | $Z_L$     | ML         | $\chi^2/d.o.f.$ |
|-----|------------------|-----------|------------|-----------------|
| 121 | 0.467            | 4.28(16)  | 0.468(13)  | 1.91            |
| 162 | 0.570            | 4.252(89) | 0.3695(73) | 1.66            |
| 194 | 0.330            | 5.84(50)  | 0.381(22)  | 0.72            |
| 243 | 0.330            | 8.07(67)  | 0.374(21)  | 0.27            |
| 260 | 0.271            | 8.73(86)  | 0.371(25)  | 0.03            |
| 265 | 0.332            | 7.34(45)  | 0.301(14)  | 1.03            |
| 275 | 0.635            | 3.294(65) | 0.4386(83) | 1.64            |
| 285 | 0.542            | 3.12(12)  | 0.548(16)  | 0.76            |
| 290 | 0.690            | 2.705(50) | 0.5095(85) | 1.40            |
| 305 | 0.606            | 2.737(80) | 0.5900(32) | 1.30            |
| 324 | 0.870            | 2.168(24) | 0.5656(63) | 1.36            |
| 366 | 0.716            | 2.242(55) | 0.708(13)  | 1.80            |
| 397 | 0.896            | 2.058(34) | 0.795(11)  | 1.03            |
| 428 | 1.112            | 1.927(24) | 0.8220(89) | 1.30            |
| 458 | 0.935            | 1.967(37) | 0.905(13)  | 1.45            |
| 486 | 1.214            | 1.847(24) | 0.9285(97) | 1.55            |

Paulo Silva

COST THOR Working Group I Meeting — Lisboa 2018

・ロト ・ 日本 ・ 日本 ・ 日本

ъ

Spectral densities Gluon mass scales  $Z_3$  dependence

#### Gluon mass at finite T



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

Spectral densities Gluon mass scales Z<sub>3</sub> dependence

## Outline



# Gluon propagator @ finite T

- Spectral densities
- Gluon mass scales
- Z<sub>3</sub> dependence





Spectral densities Gluon mass scales  $Z_3$  dependence

## $Z_3$ dependence

- $D_L$  and  $D_T$  show quite different behaviours with T
- Usually, the propagator is computed such that arg(P<sub>L</sub>) < π/3 (Z<sub>3</sub> sector 0)

Paulo Silva

what happens in the other sectors?

PJS, O. Oliveira, PRD 93 (2016) 114509

#### $Z_3$ dependence



 for each configuration, 3 gauge fixings after a  $Z_3$ transformation

 $\mathcal{U}_4'(\vec{x}, t=0) = z \mathcal{U}_4(\vec{x}, t=0)$ 

configurations classified according to  $\langle L \rangle = |L|e^{i\theta}$ 

 $\theta = \begin{cases} -\pi < \theta \le -\frac{\pi}{3}, & \text{Sector -1}, \\ -\frac{\pi}{3} < \theta \le \frac{\pi}{3}, & \text{Sector 0}, \\ \frac{\pi}{3} < \theta \le \pi, & \text{Sector 1} \end{cases}$ 

・ロト ・ 日本 ・ 日本 ・ 日本

CFisUC

Spectral densities Gluon mass scales  $Z_3$  dependence

# Typical result at high T (324 MeV)



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

イロト イポト イヨト イヨ

Spectral densities Gluon mass scales  $Z_3$  dependence

# What happens near $T_c$ ?

- spatial physical volume  $\sim (6.5 {\rm fm})^3$
- 100 configs per ensemble

#### Coarse lattices $a \sim 0.12 fm$

| Temp. | $L_s^3 \times L_t$ | $\beta$ | а      | Lsa  |
|-------|--------------------|---------|--------|------|
| (MeV) |                    |         | (fm)   | (fm) |
| 265.9 | $54^3 	imes 6$     | 5.890   | 0.1237 | 6.68 |
| 266.4 | $54^3 	imes 6$     | 5.891   | 0.1235 | 6.67 |
| 266.9 | $54^3 	imes 6$     | 5.892   | 0.1232 | 6.65 |
| 267.4 | $54^3 	imes 6$     | 5.893   | 0.1230 | 6.64 |
| 268.0 | $54^3 	imes 6$     | 5.8941  | 0.1227 | 6.63 |
| 268.5 | $54^3 	imes 6$     | 5.895   | 0.1225 | 6.62 |
| 269.0 | $54^3 	imes 6$     | 5.896   | 0.1223 | 6.60 |
| 269.5 | $54^3 	imes 6$     | 5.897   | 0.1220 | 6.59 |
| 270.0 | $54^3 	imes 6$     | 5.898   | 0.1218 | 6.58 |
| 271.0 | $54^3 	imes 6$     | 5.900   | 0.1213 | 6.55 |
| 272.1 | $54^3 	imes 6$     | 5.902   | 0.1209 | 6.53 |
| 273.1 | $54^3 	imes 6$     | 5.904   | 0.1204 | 6.50 |

| Fine lattices $a \sim 0.09 fm$ |                    |       |         |      |
|--------------------------------|--------------------|-------|---------|------|
| Temp.                          | $L_s^3 \times L_t$ | β     | а       | Lsa  |
| (MeV)                          | 0                  |       | (fm)    | (fm) |
| 269.2                          | $72^3 	imes 8$     | 6.056 | 0.09163 | 6.60 |
| 270.1                          | $72^3 	imes 8$     | 6.058 | 0.09132 | 6.58 |
| 271.0                          | $72^3 	imes 8$     | 6.060 | 0.09101 | 6.55 |
| 271.5                          | $72^3 	imes 8$     | 6.061 | 0.09086 | 6.54 |
| 271.9                          | $72^3 	imes 8$     | 6.062 | 0.09071 | 6.53 |
| 272.4                          | $72^3 	imes 8$     | 6.063 | 0.09055 | 6.52 |
| 272.9                          | $72^3 	imes 8$     | 6.064 | 0.09040 | 6.51 |
| 273.3                          | $72^3 	imes 8$     | 6.065 | 0.09025 | 6.50 |
| 273.8                          | $72^3 	imes 8$     | 6.066 | 0.09010 | 6.49 |
| _                              |                    |       |         |      |

COST THOR Working Group I Meeting - Lisboa 2018

・ロト ・ 日本 ・ 日本 ・ 日本

э

Paulo Silva

Spectral densities Gluon mass scales  $Z_3$  dependence

#### How-to

Conical cut for momenta above 1GeV; all data below 1GeV

Renormalization:

$$D_{L,T}(\mu^2) = Z_R D_{L,T}^{Lat}(\mu^2) = 1/\mu^2$$

- Renormalization scale:  $\mu = 4 \text{ GeV}$
- $D_L$  and  $D_T$  renormalized independently
  - within each Z(3) sector,  $Z_R^{(L)}$  and  $Z_R^{(T)}$  agree within errors
- each Z<sub>3</sub> sector is renormalized independently
  - $Z_R$  do not differ between the different Z(3) sectors



イロト イ押ト イヨト イヨト

Spectral densities Gluon mass scales  $Z_3$  dependence

## Coarse lattices, below $T_c$



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

ヘロト ヘ戸ト ヘヨト ヘヨ

Spectral densities Gluon mass scales  $Z_3$  dependence

## Fine lattices, below $T_c$



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

ヘロト ヘ戸ト ヘヨト ヘヨ

Spectral densities Gluon mass scales  $Z_3$  dependence

## Coarse lattices, above $T_c$



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

→ Ξ → → Ξ

Spectral densities Gluon mass scales  $Z_3$  dependence

## Fine lattices, above $T_c$



Paulo Silva COST THOR Working Group I Meeting — Lisboa 2018

★ Ξ → ★ Ξ

Spectral densities Gluon mass scales  $Z_3$  dependence

#### **Polyakov loop history**







Spectral densities Gluon mass scales  $Z_3$  dependence

#### **Polyakov loop history**





イロト イポト イヨト イヨ

CFisUC

Spectral densities Gluon mass scales  $Z_3$  dependence

# Removing configurations in wrong phase

#### **Coarse lattices**







CFisUC



→ E > < E</p>

## **Conclusions and Outlook**

- Extensive study of the gluon propagator at finite temperature
  - spectral densities
  - Mass scales
  - Z<sub>3</sub> dependence
- Outlook:
  - Spectral density computation ongoing
  - understand physics of different Z<sub>3</sub> sectors
  - lattice simulations with dynamical quarks







PJS supported by FCT grant SFRH/BPD/109971/2015.

イロト イ押ト イヨト イヨト

