Charmonium melting in the quark-gluon plasma phase of QCD

Chris Allton

Swansea University

H_2O phase diagram

QCD phase diagram

Overview

	$T = \mu = 0$	T or μ large
quarks are	confined	de-confined
accuracy of predictions:	< 5%	$\sim 20\%$
has similarities with:	atomic physics (bound states)	plasma/fluid (spectral functions)
fundamental properties:	masses & transition mx els	pressure, transport coefficients

Particle Data Book

 $\sim 1.5 \times 10^3$ pages zero pages on Quark-Gluon Plasma...

Experiments of QCD at $T \neq 0$

RHIC Experiment @ BNL

Experiments of QCD at $T \neq 0$

RHIC Experiment @ BNL

Naive: quarks and gluons virtually free

- Expt: (relatively) strongly interacting
 - Almost instantaneous equillibration
 - Low viscosity

■ *NOT* weakly coupled — very low viscosity

■ *NOT* weakly coupled — very low viscosity

■ *NOT* weakly coupled — very low viscosity

■ *NOT* weakly coupled — very low viscosity

RHIC creates the Perfect Fluid

2005 Ig-Nobel Prize for Physics awarded to the "Pitch Drop" experiment by:

Profs. Mainstone and Parnell from the University of Queensland

Pitch has viscosity 10^{11} times water's...

ig-Noble aside

2005 Ig-Nobel Prize for Physics awarded to the "Pitch Drop" experiment by:

Profs. Mainstone and Parnell from the University of Queensland

Pitch has viscosity 10^{11} times water's...

Weak coupling [Arnold, Moore and Yaffe]:

$$\eta/s \sim 1/g^4$$

i.e. predicts large η (shear viscosity)

 $\mathcal{N} = 4 \text{ SYM} \Leftrightarrow \text{AdS}_5 \times \text{S}^5$ [Son, Starinets, Policastro, Kovtun, ...]

$$\eta/s \ge \frac{1}{4\pi}$$
 $N_c, g^2 N_c \to \infty$

i.e. predicts small η

(Conjectured lower bound for all matter)

Weak coupling [Arnold, Moore and Yaffe]:

$$\eta/s \sim 1/g^4$$

i.e. predicts large η (shear viscosity)

 $\mathcal{N} = 4 \text{ SYM} \Leftrightarrow \text{AdS}_5 \times \text{S}^5$ [Son, Starinets, Policastro, Kovtun, ...]

$$\eta/s \ge \frac{1}{4\pi}$$
 $N_c, g^2 N_c \to \infty$

i.e. predicts small η

(Conjectured lower bound for all matter)

Finally string theory makes contact with nature...

transport coefficients from derivatives of spectral functions at $\omega \to 0.$

- shear viscosity η Meyer
 off-diagonal gluonic correlators
- bulk viscosity ξ
 - diagonal gluonic correlators
- electrical conductivity σ Aarts, CRA, Foley, Hands & Kim
 - vector correlators
- Diffusivity D
 - energy dependence of vector correlators

transport coefficients from derivatives of spectral functions at $\omega \to 0.$

- shear viscosity η Meyer
 off-diagonal gluonic correlators
- bulk viscosity ξ
 - diagonal gluonic correlators
- electrical conductivity *σ* Aarts, CRA, Foley, Hands & Kim
 vector correlators
- **Diffusivity** *D*
 - energy dependence of vector correlators
- $\eta, \xi, \sigma D \sim LOW ENERGY CONSTANTS$

SUMMARY SO FAR

Lattice Overview (Correlation F'ns)

Lattice Overview (Correlation F'ns)

Lattice Overview (Correlation F'ns)

Hadronic Spectrum

$$< \mathcal{O} > = f(g_0, m, \mu, L, N_f, N_{\{U\}})$$

$$< \mathcal{O} > = f(g_0, m, \mu, L, N_f, N_{\{U\}})$$

 $a pprox 0.1 \ {\rm fm}$

 $m_q \approx 50 \; {
m MeV}$

 $L \approx 3 \text{ fm}$

 $N_f = 0$, 2 or 2+1

 $N_{\{U\}} = \mathcal{O}(100)$

$$\langle \mathcal{O} \rangle = f(g_0, m, \mu, L, N_f, N_{\{U\}})$$

 $a \approx 0.1 \text{ fm} \rightarrow 0$
 $m_q \approx 50 \text{ MeV} \rightarrow \text{few MeV}$
 $L \approx 3 \text{ fm} \rightarrow \infty$
 $N_f = 0, 2 \text{ or } 2+1 \rightarrow \text{``} 2+1+1+1+1^{''}$
 $N_{\{U\}} = \mathcal{O}(100) \rightarrow \infty$

$$\langle \mathcal{O} \rangle = f(g_0, m, \mu, L, N_f, N_{\{U\}})$$

 $a \approx 0.1 \text{ fm} \rightarrow 0$
 $m_q \approx 50 \text{ MeV} \rightarrow \text{few MeV}$
 $L \approx 3 \text{ fm} \rightarrow \infty$
 $N_f = 0, 2 \text{ or } 2+1 \rightarrow \text{``} 2+1+1+1+1^{''}$
 $N_{\{U\}} = \mathcal{O}(100) \rightarrow \infty$

But ... it is systematically improvable

SUMMARY SO FAR

Do bound hadronic states persist into the "quark-gluon" plasma phase?

Spectral functions can answer this!

$$G(t, \vec{p}) = \int \rho(\omega, \vec{p}) K(t, \omega) \, d\omega$$

$$\uparrow \qquad \qquad \downarrow \qquad \checkmark$$
Euclidean
Guession Spectral
Correlator
Function
Kernel

where the (Lattice) Kernel is:

$$K(t,\omega) = \frac{\cosh[\omega(t-N_t/2)]}{\sinh[\omega/(2T)]}$$

~
$$\exp[-\omega t]$$

Example Spectral Functions

Example Spectral Functions

Example Spectral Functions

- (in)stability of hadrons
- transport coefficients
- dilepton production ...
- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!

- (in)stability of hadrons
- transport coefficients
- dilepton production ...
- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!

- (in)stability of hadrons
- transport coefficients
- dilepton production ...
- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!

- (in)stability of hadrons
- transport coefficients
- dilepton production ...
- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!

- (in)stability of hadrons
- transport coefficients
- dilepton production ...
- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!

Maximum Entropy Method

- Extraction of a spectral density from a lattice correlator is an ill-posed problem:
 - Given G(t) derive $\rho(\omega)$
 - More ω data points then t data points!
- Requires the use of Bayesian analysis Maximum Entropy Method (MEM)
 - Hatsuda et al

Two lattice studies

Dublin-Swansea

- Dynamical
- Anistropic
- Zero momentum
- Swansea
 - Quenched
 - Isotropic
 - Non-zero momentum

Lattice Parameters (Dublin-Swansea)

- Gluon Action:
 - Improved anisotropic
- Fermion Action:
 - Wilson+Hamber-Wu + stout links

Lattice Parameters (Dublin-Swansea)

Gluon Action:

- Improved anisotropic
- Fermion Action:
 - Wilson+Hamber-Wu + stout links

Light quarks	$M_{\pi}/M_{ ho}$	~ 0.5	
Anisotropy	ξ	6	
Lattice spacings	a_t	$\sim 0.025~{\rm fm}$	
	a_s	$\sim 0.15~{\rm fm}$	
Spatial Volume	N_s^3	8^3 (&12 ³)	
1/T	N_t	16	$\rightarrow T \sim 2T_c$
		24	$\rightarrow T \sim 1.3 T_c$
		32	$\rightarrow T \sim T_c$
Statistics	N_{cfg}	~ 500	

[Aarts, Oktay, Peardon, Skullerud, CRA]

Varying Temperature (Dublin-Swansea)

$$\eta_C$$
 Pseudoscalar ($am_c = 0.080$, $N_s = 8$)

Pseudoscalar

Varying Temperature (Dublin-Swansea)

$$J/\psi$$
 Vector ($am_c = 0.080$, $N_s = 8$)

Lattice Action and Parameters (Swansea) I

- Gluon Action:
 - Wilson
- Quenched
- Twisted Boundary Conditions
 - large range of momenta available
- Singularity at $\omega \sim 0$ traced to $K(\omega, t)$ and corrected

Aarts, CRA, Foley, Hands & Kim

COLD

Lattice spacings	a^{-1}	$\sim 4~{ m GeV}$
Spatial Volume	$N_s^3 \times N_t$	$48^3 \times 24$
T	$1/(aN_t)$	$T \sim 160 MeV \sim \frac{1}{2}T_c$
Statistics	N_{cfg}	~ 100

HOT

a^{-1}	$\sim 10~{\rm GeV}$
$N_s^3 \times N_t$	$64^3 \times 24$
$1/(aN_t)$	$T \sim 420 MeV \sim \frac{3}{2}T_c$
N_{cfg}	~ 100
	a^{-1} $N_s^3 \times N_t$ $1/(aN_t)$ N_{cfg}

Staggered Correlators

Staggered Correlators

$$G(t) = 2 \int \frac{d\omega}{2\pi} K(t,\omega) \left(\rho(\omega) - (-1)^t \,\widetilde{\rho}(\omega) \right)$$

 \longrightarrow Have to fit to even & odd times separately, then use

$$\rho^{\text{phys}} = \frac{1}{2} \left(\rho^{\text{even}} + \rho^{\text{odd}} \right)$$

Momentum dependence of spectral function (below T_c)

Electrical Conductivity

$$\frac{\sigma}{T} = \lim_{\omega \to 0} \frac{\rho(\omega)}{6\omega T}$$

 σ = Conductivity

Electrical Conductivity

Electrical Conductivity

Diffusivity

D obtained from the momentum dependency of $\rho_{\rm Vector}^{\rm Long}$ (at small mass)

Diffusivity [Preliminary] m/T = 0.24 Hot

 $\rho(\omega) \, / \, (T \; \omega)$

 ω / T

Diffusivity [Preliminary] m/T = 1.2 Hot

 $\rho(\omega) \,/\, (T \; \omega)$

ω/Τ

m/T = 3 Hot

 ω / T

If the correlation function has a large dynamic range then there are numerical instabilities in MEM.

$$G(t) = \int \rho(\omega) K(t,\omega) d\omega$$

where
$$K(t,\omega) = \frac{\cosh[\omega(t-N_t/2)]}{\sinh[\omega/(2T)]}$$

~ $\exp[-\omega t]$

i.e. it is *almost* a Laplace transform:

$$G(t) \sim \int \rho(\omega) \ e^{-\omega t} \ d\omega$$

Aim is to get G(t) expressed as an exact Laplace transform, then can use convolution rules:

$$G(t) \times e^{+\Omega t} = \int \rho(\omega + \Omega) e^{-\omega t} d\omega$$

$$\uparrow$$
smaller
dynamic
range

Possible Solution

$$G(t) = e^{-Mt} + e^{-M(T-t)}$$

= $e^{-MT/2}(e^{-M(t-T/2)} + e^{M(t-T/2)})$
= $e^{-MT/2}(x^i + x^{-i})$

where $x = e^{-M(t-T/2)}$ and i = t - T/2.

Define

$$\widetilde{G}(t) = e^{-MT/2} (x + x^{-1})^{i}$$

$$= e^{-MT/2} \sum_{j=0}^{i} {}^{i}C_{j} x^{2j-i}$$

$$= e^{-MT/2} \sum_{j=0}^{[i/2]} {}^{i}C_{j} (x^{2j-i} + x^{i-2j})$$

$$= \sum_{j=0}^{[i/2]} {}^{i}C_{j} G(2j-i)$$

We can now write
$$x + x^{-1} \equiv e^y \longrightarrow$$

$$\widetilde{G}(t) = e^{-MT/2}(x + x^{-1})^{i}$$

= $e^{-MT/2}e^{yi}$
 \equiv linear combination of $G(t)$

Fleming et al, Phys.Rev.D80 (2009) 074506

i.e. by defining a linear combination of G(t) correlators, the lattice kernel is transposed into a pure exponential.
SUMMARY

Happy 60th A.W.T.