Collider Phenomenology
— From basic knowledge
to new physics searches

Tao Han
University of Wisconsin – Madison
BUSSTEPP 2010
Univ. of Swansea, Aug. 23–Sept. 3, 2010
Outline:

Lecture I: Colliders and Detectors
Outline:

Lecture I: Colliders and Detectors

Lecture II: Basics Techniques and Tools
Outline:

Lecture I: Colliders and Detectors

Lecture II: Basics Techniques and Tools

Lecture III: (a). An $e^+e^-$ Linear Collider
(b). Perturbative QCD at Hadron Colliders
(c). Hadron Colliders Physics
Outline:

Lecture I: Colliders and Detectors

Lecture II: Basics Techniques and Tools

Lecture III: (a). An $e^+e^-$ Linear Collider
               (b). Perturbative QCD at Hadron Colliders
               (c). Hadron Colliders Physics

Lecture IV: From Kinematics to Dynamics
Outline:

Lecture I: Colliders and Detectors

Lecture II: Basics Techniques and Tools

Lecture III: (a). An $e^+e^-$ Linear Collider
(b). Perturbative QCD at Hadron Colliders
(c). Hadron Colliders Physics

Lecture IV: From Kinematics to Dynamics

Lecture V: Search for New Physics at Hadron Colliders
Outline:

Lecture I: Colliders and Detectors

Lecture II: Basics Techniques and Tools

Lecture III: (a). An $e^+e^-$ Linear Collider  
(b). Perturbative QCD at Hadron Colliders  
(c). Hadron Colliders Physics

Lecture IV: From Kinematics to Dynamics

Lecture V: Search for New Physics at Hadron Colliders

Main reference: TASI 04 Lecture notes  
hep-ph/0508097,  
plus the other related lectures in this school.
Opening Remarks: LHC is in mission!
Opening Remarks: LHC is in mission!

Running at $E_{cm} = 3.5 \oplus 3.5$ TeV,
he collider and detectors are all performing well!
New era in HEP and in science has just begun!
SM particles have been re-discovered!
SM particles have been re-discovered!

EW gauge bosons:
SM particles have been re-discovered!

EW gauge bosons:
Heavy quarks:
Heavy quarks:

We are ready for new discoveries!
I. Colliders and Detectors

(A). High-energy Colliders:

To study the deepest layers of matter, we need the probes with highest energies.
I. Colliders and Detectors

(A). High-energy Colliders:

To study the deepest layers of matter, we need the probes with highest energies.

Two parameters of importance:

1. The energy:

\[ s \equiv (p_1 + p_2)^2 = \begin{cases} 
(E_1 + E_2)^2 - (\vec{p}_1 + \vec{p}_2)^2, \\
m_1^2 + m_2^2 + 2(E_1 E_2 - \vec{p}_1 \cdot \vec{p}_2). 
\end{cases} \]

\[ E_{cm} \equiv \sqrt{s} \approx \begin{cases} 
2E_1 \approx 2E_2, & \text{in the c.m. frame } \vec{p}_1 + \vec{p}_2 = 0, \\
\sqrt{2E_1 m_2}, & \text{in the fixed target frame } \vec{p}_2 = 0. 
\end{cases} \]
2. The luminosity:

\[ \mathcal{L} \propto f n_1 n_2 / a, \]

(a some beam transverse profile) in units of \#particles/cm^2/s

\[ \Rightarrow 10^{33} \text{ cm}^{-2}\text{s}^{-1} = 1 \text{ nb}^{-1} \text{ s}^{-1} \approx 10 \text{ fb}^{-1}/\text{year}. \]
2. The luminosity:

Colliding beam

\[ \mathcal{L} \propto f n_1 n_2 / a, \]

(a some beam transverse profile) in units of \#particles/cm\(^2\)/s
\[ \Rightarrow 10^{33} \text{ cm}^{-2}\text{s}^{-1} = 1 \text{ nb}^{-1} \text{s}^{-1} \approx 10 \text{ fb}^{-1}/\text{year}. \]

Current and future high-energy colliders:

<table>
<thead>
<tr>
<th>Hadron Colliders</th>
<th>( \sqrt{s} ) (TeV)</th>
<th>( \mathcal{L} ) (cm(^{-2})s(^{-1}))</th>
<th>( \delta E/E )</th>
<th>( f ) (MHz)</th>
<th>#/bunch ((10^{10}))</th>
<th>L (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron</td>
<td>1.96</td>
<td>( 2.1 \times 10^{32} )</td>
<td>( 9 \times 10^{-5} )</td>
<td>2.5</td>
<td>( p: 27 ), ( \bar{p}: 7.5 )</td>
<td>6.28</td>
</tr>
<tr>
<td>LHC</td>
<td>(7) 14</td>
<td>( (10^{32}) ) ( \times 10^{34} )</td>
<td>0.01%</td>
<td>40</td>
<td>10.5</td>
<td>26.66</td>
</tr>
</tbody>
</table>
2. The luminosity:

Colliding beam

\[
\begin{array}{c}
\begin{array}{cc}
\text{\ldots \ldots} & \text{\ldots \ldots} \\
\text{\ldots \ldots} & \text{\ldots \ldots} \\
\end{array}
\end{array}
\]

\[
t = \frac{1}{f}
\]

\[
\mathcal{L} \propto fn_1n_2/a,
\]

(a some beam transverse profile) in units of \#particles/cm^2/s

\[
\Rightarrow 10^{33} \text{ cm}^{-2}\text{s}^{-1} = 1 \text{ nb}^{-1} \text{s}^{-1} \approx 10 \text{ fb}^{-1}/\text{year}.
\]

Current and future high-energy colliders:

<table>
<thead>
<tr>
<th>Hadron Colliders</th>
<th>(\sqrt{s}) (TeV)</th>
<th>(\mathcal{L}) (cm(^{-2})s(^{-1}))</th>
<th>(\delta E/E)</th>
<th>(f) (MHz)</th>
<th>#/bunch ((10^{10}))</th>
<th>(L) (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tevatron</td>
<td>1.96</td>
<td>(2.1 \times 10^{32})</td>
<td>(9 \times 10^{-5})</td>
<td>2.5</td>
<td>(p: 27, \bar{p}: 7.5)</td>
<td>6.28</td>
</tr>
<tr>
<td>LHC</td>
<td>(7) 14</td>
<td>((10^{32}) 10^{34})</td>
<td>0.01%</td>
<td>40</td>
<td>10.5</td>
<td>26.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>(e^+e^-) Colliders</th>
<th>(\sqrt{s}) (TeV)</th>
<th>(\mathcal{L}) (cm(^{-2})s(^{-1}))</th>
<th>(\delta E/E)</th>
<th>(f) (MHz)</th>
<th>polar.</th>
<th>(L) (km)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ILC</td>
<td>0.5–1</td>
<td>(2.5 \times 10^{34})</td>
<td>0.1%</td>
<td>3</td>
<td>80, 60%</td>
<td>14 – 33</td>
</tr>
<tr>
<td>CLIC</td>
<td>3 – 5</td>
<td>(\sim 10^{35})</td>
<td>0.35%</td>
<td>1500</td>
<td>80, 60%</td>
<td>33 – 53</td>
</tr>
</tbody>
</table>
(B). An $e^+e^-$ Linear Collider

The collisions between $e^-$ and $e^+$ have major advantages:

- The system of an electron and a positron has zero charge, zero lepton number etc.,
  $\implies$ it is suitable to create new particles after $e^+e^-$ annihilation.
- With symmetric beams between the electrons and positrons, the laboratory frame is the same as the c.m. frame,
  $\implies$ the total c.m. energy is fully exploited to reach the highest possible physics threshold.
(B). An $e^+e^-$ Linear Collider

The collisions between $e^-$ and $e^+$ have major advantages:

- The system of an electron and a positron has zero charge, zero lepton number etc.,
  $\Rightarrow$ it is suitable to **create new particles** after $e^+e^-$ annihilation.
- With symmetric beams between the electrons and positrons, the laboratory frame is the same as the c.m. frame,
  $\Rightarrow$ the **total c.m. energy** is fully exploited to reach the highest possible physics threshold.

- With well-understood beam properties,
  $\Rightarrow$ the **scattering kinematics** is well-constrained.
- **Backgrounds low** and well-undercontrol.
- It is possible to achieve high degrees of **beam polarizations,**
  $\Rightarrow$ chiral couplings and other asymmetries can be effectively explored.
Disadvantages

• Large synchrotron radiation due to acceleration,

\[ \Delta E \sim \frac{1}{R} \left( \frac{E}{m_e} \right)^4. \]

Thus, a multi-hundred GeV $e^+e^-$ collider will have to be made a linear accelerator.

• This becomes a major challenge for achieving a high luminosity when a storage ring is not utilized; beamsstrahlung severe.
(C). Hadron Colliders

LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event

initial-state radiation

final-state radiation

proton

underlying event

outgoing parton

outgoing parton
(C). Hadron Colliders
LHC: the new high-energy frontier

"Hard" Scattering

Advantages

- Higher c.m. energy, thus higher energy threshold:
  \[ \sqrt{S} = 14 \ \text{TeV}: \quad M_{new}^2 \sim s = x_1 x_2 S \quad \Rightarrow \quad M_{new} \sim 0.2 \sqrt{S} \sim 3 \ \text{TeV}. \]
• Higher luminosity: $10^{34}/\text{cm}^2/\text{s} \Rightarrow 100 \text{ fb}^{-1}/\text{yr.}$

  Annual yield: 1B $W^\pm$; 100M $t\bar{t}$; 10M $W^+W^-$; 1M $H^0$...
• Higher luminosity: $10^{34}/\text{cm}^2/\text{s} \Rightarrow 100 \text{ fb}^{-1}/\text{yr}$.
  Annual yield: $1\text{B } W^\pm$; $100\text{M } t\bar{t}$; $10\text{M } W^+W^-$; $1\text{M } H^0$...
• Multiple (strong, electroweak) channels:
  $q\bar{q}', gg, qg, b\bar{b} \rightarrow \text{colored}; \ Q = 0, \pm 1; \ J = 0, 1, 2 \text{ states};$
  $WW, WZ, ZZ, \gamma\gamma \rightarrow I_W = 0, 1, 2; \ Q = 0, \pm 1, \pm 2; \ J = 0, 1, 2 \text{ states}.$
• Higher luminosity: \(10^{34}/\text{cm}^2/\text{s} \Rightarrow 100 \text{ fb}^{-1}/\text{yr.}\)
  Annual yield: \(1\text{B} W^\pm; 100\text{M} t\bar{t}; 10\text{M} W^+W^-; 1\text{M} H^0\ldots\)
• Multiple (strong, electroweak) channels:
  \(qq', gg, gq, b\bar{b} \rightarrow \text{colored}; \quad Q = 0, \pm 1; \quad J = 0, 1, 2 \text{ states};\)
  \(WW, WZ, ZZ, \gamma\gamma \rightarrow I_W = 0, 1, 2; \quad Q = 0, \pm 1, \pm 2; \quad J = 0, 1, 2 \text{ states}.\)

**Disadvantages**

• Initial state unknown:
  colliding partons unknown on event-by-event basis;
  parton c.m. energy unknown: \(E_{cm}^2 \equiv s = x_1x_2S;\)
  parton c.m. frame unknown.
  \(\Rightarrow\) largely rely on final state reconstruction.
• Higher luminosity: $10^{34}/\text{cm}^2/\text{s} \Rightarrow 100 \text{ fb}^{-1}/\text{yr.}$
  
  Annual yield: $1\text{B } W^\pm; \ 100\text{M } t\bar{t}; \ 10\text{M } W^+W^-; \ 1\text{M } H^0 ...$

• Multiple (strong, electroweak) channels:
  
  $qq', gg, qg, b\bar{b} \rightarrow \text{colored}; \ Q = 0, \pm 1; \ J = 0, 1, 2 \text{ states};$
  $WW, WZ, ZZ, \gamma\gamma \rightarrow I_W = 0, 1, 2; \ Q = 0, \pm 1, \pm 2; \ J = 0, 1, 2 \text{ states}.$

Disadvantages

• Initial state unknown:
  
  colliding partons unknown on event-by-event basis;
  parton c.m. energy unknown: $E_{cm}^2 \equiv s = x_1 x_2 S$;
  parton c.m. frame unknown.

  $\Rightarrow$ largely rely on final state reconstruction.

• The large rate turns to a hostile environment:
  
  $\Rightarrow$ Severe backgrounds!
• Higher luminosity: $10^{34}/\text{cm}^2/\text{s} \Rightarrow 100 \text{ fb}^{-1}/\text{yr}$.
  Annual yield: 1B $W^{\pm}$; 100M $t\bar{t}$; 10M $W^+W^-$; 1M $H^0$...

• Multiple (strong, electroweak) channels:
  $qq'$, $gg$, $qg$, $b\bar{b} \rightarrow$ colored; $Q = 0, \pm 1$; $J = 0, 1, 2$ states;
  $WW$, $WZ$, $ZZ$, $\gamma\gamma \rightarrow I_{W} = 0, 1, 2$; $Q = 0, \pm 1, \pm 2$; $J = 0, 1, 2$ states.

**Disadvantages**

• Initial state unknown:
  colliding partons unknown on event-by-event basis;
  parton c.m. energy unknown: $E_{cm}^2 \equiv s = x_1x_2S$;
  parton c.m. frame unknown.
  $\Rightarrow$ largely rely on final state reconstruction.

• The large rate turns to a hostile environment:
  $\Rightarrow$ Severe backgrounds!

**Our primary job!**
Path of the high-energy colliders:

The LHC opens up a new era of HEP for the decades to come.
(D). Particle Detection:

The detector complex:
Utilize the **strong and electromagnetic interactions** between detector materials and produced particles.
What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

\[ d = (\beta c \tau) \gamma \approx (300 \ \mu m) \left( \frac{\tau}{10^{-12} \ s} \right) \gamma \]
What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

\[ d = (\beta c \tau)\gamma \approx (300 \ \mu m)\left(\frac{\tau}{10^{-12} \ s}\right) \gamma \]

- **stable particles** directly “seen”:
  \( p, \bar{p}, e^{\pm}, \gamma \)

- **quasi-stable particles** of a life-time \( \tau \geq 10^{-10} \ s \) also directly “seen”:
  \( n, \Lambda, K^{0}_{L}, \ldots, \mu^{\pm}, \pi^{\pm}, K^{\pm} \ldots \)
What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

\[ d = (\beta c \tau)\gamma \approx (300 \ \mu m)\left(\frac{\tau}{10^{-12} \text{ s}}\right) \gamma \]

• stable particles directly “seen”:
  \[ p, \bar{p}, e^\pm, \gamma \]

• quasi-stable particles of a life-time \( \tau \geq 10^{-10} \text{ s} \) also directly “seen”:
  \[ n, \Lambda, K^0_L, ..., \mu^\pm, \pi^\pm, K^\pm ... \]

• a life-time \( \tau \sim 10^{-12} \text{ s} \) may display a secondary decay vertex, “vertex-tagged particles”:
  \[ B^{0,\pm}, D^{0,\pm}, \tau^\pm ... \]
What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

\[ d = (\beta c \tau) \gamma \approx (300 \ \mu m) \left( \frac{\tau}{10^{-12} \ s} \right) \gamma \]

- **stable particles** directly “seen”:
  \[ p, \ \bar{p}, \ e^\pm, \ \gamma \]

- **quasi-stable particles** of a life-time \( \tau \geq 10^{-10} \ s \) also directly “seen”:
  \[ n, \Lambda, K^0_L, ... , \mu^\pm, \pi^\pm, K^\pm ... \]

- A life-time \( \tau \sim 10^{-12} \ s \) may display a secondary decay vertex, “vertex-tagged particles”:
  \[ B^{0,\pm}, \ D^{0,\pm}, \ \tau^{\pm} ... \]

- **short-lived** not “directly seen”, but “reconstructable”:
  \[ \pi^0, \ \rho^{0,\pm} ... , \ Z, W^{\pm}, t, H ... \]

- **missing particles** are weakly-interacting and neutral:
  \[ \nu, \ \tilde{\chi}^0, G_{KK} ... \]
† For stable and quasi-stable particles of a life-time $\tau \geq 10^{-10} - 10^{-12}$ s, they show up as
A closer look:
A closer look:

Theorists should know:

For charged tracks: $\Delta p/p \propto p$,
  typical resolution: $\sim p/(10^4 \text{ GeV})$.

For calorimetry: $\Delta E/E \propto \frac{1}{\sqrt{E}}$,
  typical resolution: $\sim (5 - 80\%)/\sqrt{E}/\text{GeV}$. 
† For vertex-tagged particles $\tau \approx 10^{-12} \text{ s}$, heavy flavor tagging: the secondary vertex:
† For vertex-tagged particles $\tau \approx 10^{-12}$ s, heavy flavor tagging: the secondary vertex:

Typical resolution: $d_0 \sim 30 - 50$ $\mu$m or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;
Or use the “impact parameter” w.r.t. the primary vertex.
For theorists: just multiply a “tagging efficiency” $\epsilon_b \sim 40 - 60\%$ or so.
† For short-lived particles: $\tau < 10^{-12}$ s or so, make use of final state kinematics to reconstruct the resonance.
† For short-lived particles: \( \tau < 10^{-12} \) s or so, make use of final state kinematics to reconstruct the resonance.

† For missing particles: make use of energy-momentum conservation to deduce their existence.

\[
p_i^1 + p_i^2 = \sum_{f} p_f + p_{\text{miss}}.
\]
† For short-lived particles: \( \tau < 10^{-12} \) s or so, make use of final state kinematics to reconstruct the resonance.

† For missing particles: make use of energy-momentum conservation to deduce their existence.

\[
p_1^i + p_2^i = \sum_{f}^{\text{obs.}} p_f + p_{\text{miss}}.
\]

But in hadron collisions, the longitudinal momenta unknown, thus transverse direction only:

\[
0 = \sum_{f}^{\text{obs.}} \vec{p}_f + \vec{p}_{\text{miss}} T.
\]

often called “missing \( p_T \)” (\( \phi_T \)) or “missing \( E_T \)” (\( E_T \)).
What we “see” for the SM particles
(no universality – sorry!)

<table>
<thead>
<tr>
<th>Leptons</th>
<th>Vetoing</th>
<th>Tracking</th>
<th>ECAL</th>
<th>HCAL</th>
<th>Muon Cham.</th>
</tr>
</thead>
<tbody>
<tr>
<td>$e^\pm$</td>
<td>$\times$</td>
<td></td>
<td>$E$</td>
<td>$\times$</td>
<td>$\times$</td>
</tr>
<tr>
<td>$\mu^\pm$</td>
<td>$\times$</td>
<td></td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
</tr>
<tr>
<td>$\tau^\pm$</td>
<td>$\sqrt{\times}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$h^\pm$; $3h^\pm$</td>
<td>$\mu^\pm$</td>
<td></td>
</tr>
<tr>
<td>$\nu_e, \nu_\mu, \nu_\tau$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$\times$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Quarks</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$u, d, s$</td>
<td>$\times$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\times$</td>
</tr>
<tr>
<td>$c \to D$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$e^\pm$</td>
<td>$h$’s</td>
<td>$\mu^\pm$</td>
</tr>
<tr>
<td>$b \to B$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$e^\pm$</td>
<td>$h$’s</td>
<td>$\mu$</td>
</tr>
<tr>
<td>$t \to bW^\pm$</td>
<td>$b$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$e^\pm$</td>
<td>$b + 2$ jets</td>
<td>$\mu$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gauge bosons</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma$</td>
<td>$\times$</td>
<td>$\times$</td>
<td>$E$</td>
<td>$\times$</td>
<td>$\times$</td>
</tr>
<tr>
<td>$g$</td>
<td>$\times$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\times$</td>
</tr>
<tr>
<td>$W^\pm \to \ell^\pm \nu$</td>
<td>$\times$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\times$</td>
<td>$\mu^\pm$</td>
</tr>
<tr>
<td>$\to q\bar{q}'$</td>
<td>$\times$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$2$ jets</td>
<td>$\times$</td>
</tr>
<tr>
<td>$Z^0 \to \ell^+ \ell^-$</td>
<td>$\times$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$2$ jets</td>
<td>$\mu^\pm$</td>
</tr>
<tr>
<td>$\to q\bar{q}$</td>
<td>(bb)</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$\sqrt{\varepsilon}$</td>
<td>$2$ jets</td>
<td>$\times$</td>
</tr>
</tbody>
</table>
How to search for new particles?
Homework:

Exercise 1.1: For a $\pi^0$, $\mu^-$, or a $\tau^-$ respectively, calculate its decay length for $E = 10$ GeV.

Exercise 1.2: An event was identified to have a $\mu^+\mu^-$ pair, along with some missing energy. What can you say about the kinematics of the system of the missing particles? Consider both an $e^+e^-$ and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative errors of energy-momentum measurements for an electron by an electromagnetic calorimetry ($\Delta E/E$) and for a muon by tracking ($\Delta p/p$) at energies of $E = 50$ GeV and 500 GeV, respectively.

Exercise 1.4: A 120 GeV Higgs boson will have a production cross section of 20 pb at the LHC. How many events per year do you expect to produce for the Higgs boson with an instantaneous luminosity $10^{33}$/cm$^2$/s? Do you expect it to be easy to observe and why?
II. Basic Techniques
and Tools for Collider Physics

(A). Scattering cross section

For a $2 \to n$ scattering process:

$$\sigma(ab \to 1 + 2 + \ldots n) = \frac{1}{2s} \sum |\mathcal{M}|^2 \ dPS_n,$$

$$dPS_n \equiv (2\pi)^4 \delta^4 \left( P - \sum_{i=1}^{n} p_i \right) \prod_{i=1}^{n} \frac{1}{(2\pi)^3} \frac{d^3 \vec{p}_i}{2E_i},$$

$$s = (p_a + p_b)^2 \equiv P^2 = \left( \sum_{i=1}^{n} p_i \right)^2,$$

where $\sum |\mathcal{M}|^2$: dynamics (dimension $4 - 2n$);

$dPS_n$: kinematics (Lorentz invariant, dimension $2n - 4$.)
II. Basic Techniques and Tools for Collider Physics

(A). Scattering cross section

For a $2 \rightarrow n$ scattering process:

$$\sigma(ab \rightarrow 1 + 2 + ...n) = \frac{1}{2s} \sum |M|^2 \, dPS_n,$$

$$dPS_n \equiv (2\pi)^4 \, \delta^4 \left( P - \sum_{i=1}^{n} p_i \right) \prod_{i=1}^{n} \frac{1}{(2\pi)^3} \frac{d^3 \vec{p}_i}{2E_i},$$

$$s = (p_a + p_b)^2 \equiv P^2 = \left( \sum_{i=1}^{n} p_i \right)^2,$$

where $\sum |M|^2$: dynamics (dimension $4 - 2n$);

$dPS_n$: kinematics (Lorentz invariant, dimension $2n - 4$.)

For a $1 \rightarrow n$ decay process, the partial width in the rest frame:

$$\Gamma(a \rightarrow 1 + 2 + ...n) = \frac{1}{2M_a} \sum |M|^2 \, dPS_n.$$

$$\tau = \Gamma_{tot}^{-1} = (\sum_{f} \Gamma_f)^{-1}.$$
One-particle Final State $a + b \rightarrow 1$:

$$dPS_1 \equiv (2\pi) \frac{d^3 \vec{p}_1}{2E_1} \delta^4(P - p_1)$$

$$\equiv \pi|\vec{p}_1|d\Omega_1 \delta^3(\vec{P} - \vec{p}_1)$$

$$\equiv 2\pi \delta(s - m_1^2).$$

where the first and second equal signs made use of the identities:

$$|\vec{p}|d|\vec{p}| = EdE, \quad \frac{d^3 \vec{p}}{2E} = \int d^4 p \ \delta(p^2 - m^2).$$

(B). Phase space and kinematics

One-particle Final State $a + b \rightarrow 1$:

$$dPS_1 \equiv (2\pi) \frac{d^3 \vec{p}_1}{2E_1} \delta^4(P - p_1)$$
$$= \pi |\vec{p}_1| d\Omega_1 \delta^3(\vec{P} - \vec{p}_1)$$
$$= 2\pi \delta(s - m_1^2).$$

where the first and second equal signs made use of the identities:

$$|\vec{p}|d|\vec{p}| = EdE, \quad \frac{d^3 \vec{p}}{2E} = \int d^4p \delta(p^2 - m^2).$$

Kinematical relations:

$$\vec{P} \equiv \vec{p}_a + \vec{p}_b = \vec{p}_1, \quad E_{1{cm}} = \sqrt{s} \text{ in the c.m. frame,}$$
$$s = (p_a + p_b)^2 = m_1^2.$$
(B). Phase space and kinematics

One-particle Final State $a + b \rightarrow 1$:

$$dPS_1 \equiv (2\pi) \frac{d^3 \vec{p}_1}{2E_1} \delta^4(P - p_1)$$

$$\equiv \pi |\vec{p}_1| d\Omega_1 \delta^3(\vec{P} - \vec{p}_1)$$

$$\equiv 2\pi \delta(s - m_1^2).$$

where the first and second equal signs made use of the identities:

$$|\vec{p}| d|\vec{p}| = EdE, \quad \frac{d^3 \vec{p}}{2E} = \int d^4p \ \delta(p^2 - m^2).$$

Kinematical relations:

$$\vec{P} \equiv \vec{p}_a + \vec{p}_b = \vec{p}_1, \quad E_{1}^{cm} = \sqrt{s} \text{ in the c.m. frame},$$

$$s = (p_a + p_b)^2 = m_1^2.$$  

The “dimensionless phase-space volume” is $s(dPS_1) = 2\pi$.

Two-particle Final State $a + b \rightarrow 1 + 2$:

\[
dPS_2 \equiv \frac{1}{(2\pi)^2} \delta^4(P - p_1 - p_2) \frac{d^3\vec{p}_1 d^3\vec{p}_2}{2E_1 2E_2} \\
= \frac{1}{(4\pi)^2} \frac{|\vec{p}_{cm}^1|}{\sqrt{s}} \, d\Omega_1 = \frac{1}{(4\pi)^2} \frac{|\vec{p}_{cm}^1|}{\sqrt{s}} \, d\cos \theta_1 d\phi_1 \\
= \frac{1}{4\pi^2} \frac{1}{2} \lambda^{1/2} \left(1, \frac{m_1}{s}, \frac{m_2}{s}\right) dx_1 dx_2, \\
d\cos \theta_1 = 2dx_1, \quad d\phi_1 = 2\pi dx_2, \quad 0 \leq x_{1,2} \leq 1,
\]
Two-particle Final State $a + b \rightarrow 1 + 2$:

$$dPS_2 \equiv \frac{1}{(2\pi)^2} \delta^4(P - p_1 - p_2) \frac{d^3\vec{p}_1 d^3\vec{p}_2}{2E_1 2E_2}$$

$$= \frac{1}{(4\pi)^2} \frac{|\vec{p}_{cm}|}{\sqrt{s}} d\Omega_1 = \frac{1}{(4\pi)^2} \frac{|\vec{p}_{cm}|}{\sqrt{s}} d\cos\theta_1 d\phi_1$$

$$= \frac{1}{4\pi^2} \lambda^{1/2} \left(1, \frac{m_1^2}{s}, \frac{m_2^2}{s}\right) dx_1 dx_2,$$

$$d\cos\theta_1 = 2dx_1, \quad d\phi_1 = 2\pi dx_2, \quad 0 \leq x_1, 2 \leq 1,$$

The magnitudes of the energy-momentum of the two particles are fully determined by the four-momentum conservation:

$$|\vec{p}_{cm}^1| = |\vec{p}_{cm}^2| = \frac{\lambda^{1/2}(s, m_1^2, m_2^2)}{2\sqrt{s}}, \quad E_{cm}^1 = \frac{s + m_1^2 - m_2^2}{2\sqrt{s}}, \quad E_{cm}^2 = \frac{s + m_2^2 - m_1^2}{2\sqrt{s}},$$

$$\lambda(x, y, z) = (x - y - z)^2 - 4yz = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz.$$
Two-particle Final State $a + b \rightarrow 1 + 2$:

$$dPS_2 \equiv \frac{1}{(2\pi)^2} \delta^4 (P - p_1 - p_2) \frac{d^3\vec{p}_1 \, d^3\vec{p}_2}{2E_1 \, 2E_2}$$

$$= \frac{1}{(4\pi)^2} \frac{|\vec{p}_1^{\text{cm}}|}{\sqrt{s}} \, d\Omega_1 = \frac{1}{(4\pi)^2} \frac{|\vec{p}_1^{\text{cm}}|}{\sqrt{s}} \, d\cos \theta_1 d\phi_1$$

$$= \frac{1}{4\pi^2} \lambda^{1/2} \left(1, \frac{m_1^2}{s}, \frac{m_2^2}{s}\right) dx_1 dx_2,$$

$$d\cos \theta_1 = 2dx_1, \quad d\phi_1 = 2\pi dx_2, \quad 0 \leq x_1, x_2 \leq 1,$$

The magnitudes of the energy-momentum of the two particles are fully determined by the four-momentum conservation:

$$|\vec{p}_1^{\text{cm}}| = |\vec{p}_2^{\text{cm}}| = \frac{\lambda^{1/2}(s, m_1^2, m_2^2)}{2\sqrt{s}}, \quad E_1^{\text{cm}} = \frac{s + m_1^2 - m_2^2}{2\sqrt{s}}, \quad E_2^{\text{cm}} = \frac{s + m_2^2 - m_1^2}{2\sqrt{s}},$$

$$\lambda(x, y, z) = (x - y - z)^2 - 4yz = x^2 + y^2 + z^2 - 2xy - 2xz - 2yz.$$  

The phase-space volume of the two-body is scaled down with respect to that of the one-particle by a factor

$$\frac{dPS_2}{s \, dPS_1} \approx \frac{1}{(4\pi)^2},$$

just like a “loop factor”. 
Consider a $2 \rightarrow 2$ scattering process $p_a + p_b \rightarrow p_1 + p_2$, the (Lorentz invariant) Mandelstam variables are defined as

\[ s = (p_a + p_b)^2 = (p_1 + p_2)^2 = E_{cm}^2, \]
\[ t = (p_a - p_1)^2 = (p_b - p_2)^2 = m_a^2 + m_1^2 - 2(E_a E_1 - p_a p_1 \cos \theta_{a_1}), \]
\[ u = (p_a - p_2)^2 = (p_b - p_1)^2 = m_a^2 + m_2^2 - 2(E_a E_2 - p_a p_2 \cos \theta_{a_2}), \]
\[ s + t + u = m_a^2 + m_b^2 + m_1^2 + m_2^2. \]
Consider a $2 \to 2$ scattering process $p_a + p_b \to p_1 + p_2$, 

the (Lorentz invariant) Mandelstam variables are defined as

\[
\begin{align*}
    s &= (p_a + p_b)^2 = (p_1 + p_2)^2 = E_{cm}^2, \\
    t &= (p_a - p_1)^2 = (p_b - p_2)^2 = m_a^2 + m_1^2 - 2(E_a E_1 - p_a p_1 \cos \theta_{a1}), \\
    u &= (p_a - p_2)^2 = (p_b - p_1)^2 = m_a^2 + m_2^2 - 2(E_a E_2 - p_a p_2 \cos \theta_{a2}), \\
    s + t + u &= m_a^2 + m_b^2 + m_1^2 + m_2^2.
\end{align*}
\]

The two-body phase space can be thus written as

\[
dPS_2 = \frac{1}{(4\pi)^2} \frac{dt \ d\phi_1}{s^{3/2} (1, m_a^2/s, m_b^2/s)}.
\]
Exercise 2.1: Assume that $m_a = m_1$ and $m_b = m_2$. Show that

$$t = -2p_{cm}^2(1 - \cos \theta_{a1}^*),$$

$$u = -2p_{cm}^2(1 + \cos \theta_{a1}^*) + \frac{(m_1^2 - m_2^2)^2}{s},$$

$p_{cm} = \lambda^{1/2}(s, m_1^2, m_2^2)/2\sqrt{s}$ is the momentum magnitude in the c.m. frame. Note: $t$ is negative-definite; $t \to 0$ in the collinear limit.

Exercise 2.2: A particle of mass $M$ decays to two particles isotropically in its rest frame. What does the momentum distribution look like in a frame in which the particle is moving with a speed $\beta_z$? Compare the result with your expectation for the shape change for a basket ball.
Three-particle Final State $a + b \rightarrow 1 + 2 + 3$:

$$dPS_3 \equiv \frac{1}{(2\pi)^5} \delta^4 (P - p_1 - p_2 - p_3) \frac{d^3 \vec{p}_1 \; d^3 \vec{p}_2 \; d^3 \vec{p}_3}{2E_1 \; 2E_2 \; 2E_3}$$

$$= \frac{|\vec{p}_1|^2 \; d|\vec{p}_1| \; d\Omega_1}{(2\pi)^3} \; \frac{1}{2E_1} \; \frac{1}{(4\pi)^2} \; \frac{|\vec{p}_2^{(23)}|}{m_{23}} \; d\Omega_2$$

$$= \frac{1}{(4\pi)^3} \; \lambda^{1/2} \left( 1, \frac{m_2^2}{m_{23}^2}, \frac{m_3^2}{m_{23}^2} \right) \; 2|\vec{p}_1| \; dE_1 \; dx_2 dx_3 dx_4 dx_5.$$ 

dcos $\theta_{1,2} = 2dx_{2,4}, \; d\phi_{1,2} = 2\pi dx_{3,5}, \; 0 \leq x_{2,3,4,5} \leq 1,$

$$|\vec{p}_1^{cm}|^2 = |\vec{p}_2^{cm} + \vec{p}_3^{cm}|^2 = (E_1^{cm})^2 - m_1^2,$$

$$m_{23}^2 = s - 2\sqrt{s}E_1^{cm} + m_1^2, \; \; |\vec{p}_2^{23}| = |\vec{p}_3^{23}| = \frac{\lambda^{1/2}(m_{23}^2, m_2^2, m_3^2)}{2m_{23}}.$$
Three-particle Final State \( a + b \rightarrow 1 + 2 + 3 \):

\[
dPS_3 \equiv \frac{1}{(2\pi)^5} \delta^4 (P - p_1 - p_2 - p_3) \frac{d^3 \vec{p}_1 d^3 \vec{p}_2 d^3 \vec{p}_3}{2E_1 2E_2 2E_3}
\]

\[
= \frac{|\vec{p}_1|^2}{(2\pi)^3} \frac{d|\vec{p}_1|}{2E_1} \frac{d\Omega_1}{(4\pi)^2} \frac{1}{m_{23}} \frac{|\vec{p}_2^{(23)}|^2}{d\Omega_2}
\]

\[
= \frac{1}{(4\pi)^3} \lambda^{1/2} \left( 1, \frac{m_2^2}{m_{23}^2}, \frac{m_3^2}{m_{23}^2} \right) \ 2|\vec{p}_1| \ dE_1 \ dx_2dx_3dx_4dx_5.
\]

\[
d \cos \theta_{1,2} = 2dx_{2,4}, \quad d\phi_{1,2} = 2\pi dx_{3,5}, \quad 0 \leq x_{2,3,4,5} \leq 1,
\]

\[
|\vec{p}^{cm}_1|^2 = |\vec{p}^{cm}_2 + \vec{p}^{cm}_3|^2 = (E^{cm}_1)^2 - m_1^2,
\]

\[
m_{23}^2 = s - 2\sqrt{s}E^{cm}_1 + m_1^2, \quad |\vec{p}_2^{23}| = |\vec{p}_3^{23}| = \frac{\lambda^{1/2}(m_{23}^2, m_2^2, m_3^2)}{2m_{23}},
\]

The particle energy spectrum is not monochromatic. The maximum value (the end-point) for particle 1 in c.m. frame is

\[
E_{1}^{max} = \frac{s + m_1^2 - (m_2 + m_3)^2}{2\sqrt{s}}, \quad m_1 \leq E_1 \leq E_{1}^{max},
\]

\[
|\vec{p}_1^{max}| = \frac{\lambda^{1/2}(s, m_1^2, (m_2 + m_3)^2)}{2\sqrt{s}}, \quad 0 \leq p_1 \leq p_1^{max}.
\]
With $m_i = 10, 20, 30, \sqrt{s} = 100$ GeV.

More intuitive to work out the end-point for the kinetic energy, – recall the direct neutrino mass bound in $\beta$-decay:

$$K^\text{max}_1 = E^\text{max}_1 - m_1 = \frac{(\sqrt{s} - m_1 - m_2 - m_3)(\sqrt{s} - m_1 + m_2 + m_3)}{2\sqrt{s}}.$$
In general, the 3-body phase space boundaries are non-trivial. That leads to the “Dalitz Plots”.

One practically useful formula is:

Exercise 2.3: A particle of mass $M$ decays to 3 particles $M \rightarrow abc$. Show that the phase space element can be expressed as

$$dPS_3 = \frac{1}{2^7\pi^3} M^2 dx_adx_b.$$  

$$x_i = \frac{2E_i}{M}, \quad (i = a, b, c, \sum_i x_i = 2).$$

where the integration limits for $m_a = m_b = m_c = 0$ are

$$0 \leq x_a \leq 1, \quad 1 - x_a \leq x_b \leq 1.$$
Recursion relation $P \rightarrow 1 + 2 + 3 \ldots + n$: 

\[ p \rightarrow p_1 \rightarrow p_2 \cdots \rightarrow p_{n-1} \rightarrow p_n \]
Recursion relation $P \rightarrow 1 + 2 + 3 \ldots + n$:

\[ dPS_n(P; p_1, \ldots, p_n) = dPS_{n-1}(P; p_1, \ldots, p_{n-1}, p_n) \frac{dm_{n-1,n}^2}{2\pi}. \]

For instance,

\[ dPS_3 = dPS_2(i) \frac{dm_{prop}^2}{2\pi} dPS_2(f). \]

This is generically true, but particularly useful when the diagram has an $s$-channel particle propagation.
Breit-Wigner Resonance, the Narrow Width Approximation

An unstable particle of mass $M$ and total width $\Gamma_V$, the propagator is

$$R(s) = \frac{1}{(s - M_V^2)^2 + \frac{\Gamma_V^2}{V} M_V^2}.$$ 

Consider an intermediate state $V^*$

$$a \to b V^* \to b \ p_1 p_2.$$ 

By the reduction formula, the resonant integral reads

$$\int (m_{\text{max}}^*)^2 = (m_a - m_b)^2 \quad dm_{\text{max}}^*,$$

$$\int (m_{\text{min}}^*)^2 = (m_1 + m_2)^2 \quad dm_{\text{min}}^*.$$ 

Variable change

$$\tan \theta = \frac{m_{\text{max}}^* - M_V^2}{\Gamma_V M_V},$$

resulting in a flat integrand over $\theta$

$$\int (m_{\text{max}}^*)^2 \quad \frac{dm_{\text{max}}^*}{(m_{\text{max}}^* - M_V^2)^2 + \frac{\Gamma_V^2}{V} M_V^2} = \int_{\theta_{\text{min}}}^{\theta_{\text{max}}} \frac{d\theta}{\Gamma_V M_V}.$$
In the limit

\[(m_1 + m_2) + \Gamma_V \ll M_V \ll m_a - \Gamma_V,\]

\[
\theta_{\text{min}} = \tan^{-1} \left( \frac{(m_1 + m_2)^2 - M_V^2}{\Gamma_V M_V} \right) \to -\pi,
\]

\[
\theta_{\text{max}} = \tan^{-1} \left( \frac{(m_a - m_b)^2 - M_V^2}{\Gamma_V M_V} \right) \to 0,
\]

then the Narrow Width Approximation

\[
\frac{1}{(m_*^2 - M_V^2)^2 + \Gamma_V^2 M_V^2} \approx \frac{\pi}{\Gamma_V M_V} \delta(m_*^2 - M_V^2).
\]
In the limit

\[(m_1 + m_2) + \Gamma_V \ll M_V \ll m_a - \Gamma_V,\]

\[\theta_{\text{min}} = \tan^{-1} \left( \frac{(m_1 + m_2)^2 - M_V^2}{\Gamma_V M_V} \right) \approx -\pi,\]

\[\theta_{\text{max}} = \tan^{-1} \left( \frac{(m_a - m_b)^2 - M_V^2}{\Gamma_V M_V} \right) \approx 0,\]

then the Narrow Width Approximation

\[\frac{1}{(m_*^2 - M_V^2)^2 + \Gamma_V^2 M_V^2} \approx \frac{\pi}{\Gamma_V M_V} \delta(m_*^2 - M_V^2).\]

Exercise 2.4: Consider a three-body decay of a top quark, \(t \rightarrow bW^* \rightarrow b \ e \nu\). Making use of the phase space recursion relation and the narrow width approximation for the intermediate \(W\) boson, show that the partial decay width of the top quark can be expressed as

\[\Gamma(t \rightarrow bW^* \rightarrow b \ e \nu) \approx \Gamma(t \rightarrow bW) \cdot BR(W \rightarrow e \nu).\]
Matrix element: The dynamics
Properties of scattering amplitudes
Matrix element: The dynamics
Properties of scattering amplitudes

- **Analyticity:** A scattering amplitude is analytical except:
  - simple poles (corresponding to single particle states, bound states etc.);
  - branch cuts (corresponding to thresholds).
Matrix element: The dynamics
Properties of scattering amplitudes

- **Analyticity:** A scattering amplitude is analytical except:
  simple poles (corresponding to single particle states, bound states etc.);
  branch cuts (corresponding to thresholds).

- **Crossing symmetry:** A scattering amplitude for a $2 \to 2$ process is symmetric among the $s$-, $t$-, $u$-channels.
Matrix element: The dynamics
Properties of scattering amplitudes

- **Analyticity:** A scattering amplitude is analytical except:
  - simple poles (corresponding to single particle states, bound states etc.);
  - branch cuts (corresponding to thresholds).

- **Crossing symmetry:** A scattering amplitude for a $2 \rightarrow 2$ process is symmetric among the $s$, $t$, $u$-channels.

- **Unitarity:**
  S-matrix unitarity leads to:

  \[-i(T - T^\dagger) = TT^\dagger\]
Partial wave expansion for $a + b \rightarrow 1 + 2$:

$$\mathcal{M}(s, t) = 16\pi \sum_{J=M}^{\infty} (2J + 1)a_J(s)d^J_{\mu\mu'}(\cos \theta)$$

$$a_J(s) = \frac{1}{32\pi} \int_{-1}^{1} \mathcal{M}(s, t) d^J_{\mu\mu'}(\cos \theta) d\cos \theta.$$  

where $\mu = s_a - s_b$, $\mu' = s_1 - s_2$, $J = \max(|\mu|, |\mu'|)$. 
Partial wave expansion for $a + b \rightarrow 1 + 2$:

$$\mathcal{M}(s, t) = 16\pi \sum_{J=M}^{\infty} (2J + 1) a_J(s) d_J^{\mu\mu'}(\cos \theta)$$

$$a_J(s) = \frac{1}{32\pi} \int_{-1}^{1} \mathcal{M}(s, t) d_J^{\mu\mu'}(\cos \theta) d \cos \theta.$$ 

where $\mu = s_a - s_b$, $\mu' = s_1 - s_2$, $J = \max(|\mu|, |\mu'|)$.

By Optical Theorem: $\sigma = \frac{1}{s} \text{Im} \mathcal{M}(\theta = 0) = \frac{16\pi}{s} \sum_{J=M}^{\infty} (2J + 1) |a_J(s)|^2$. 
Partial wave expansion for $a + b \rightarrow 1 + 2$:

$$
\mathcal{M}(s, t) = 16\pi \sum_{J=M}^{\infty} (2J + 1)a_J(s)d_{\mu\mu'}^J(\cos \theta)
$$

$$
a_J(s) = \frac{1}{32\pi} \int_{-1}^{1} \mathcal{M}(s, t) \ d_{\mu\mu'}^J(\cos \theta) \ d \cos \theta.
$$

where $\mu = s_a - s_b$, $\mu' = s_1 - s_2$, $J = \max(|\mu|, |\mu'|)$.

By Optical Theorem: $\sigma = \frac{1}{s}\text{Im}\mathcal{M}(\theta = 0) = \frac{16\pi}{s} \sum_{J=M}^{\infty} (2J + 1)|a_J(s)|^2$.

The partial wave amplitude have the properties:

(a). partial wave unitarity: $\text{Im}(a_J) \geq |a_J|^2$, or $|\text{Re}(a_J)| \leq 1/2$,

(b). kinematical thresholds: $a_J(s) \propto \beta_i^l \beta_f^l$ ($J = L + S$).
Partial wave expansion for $a + b \to 1 + 2$:

$$\mathcal{M}(s, t) = 16\pi \sum_{J=0}^{\infty} (2J + 1)a_J(s)d^{J}_{\mu\mu'}(\cos \theta)$$

$$a_J(s) = \frac{1}{32\pi} \int_{-1}^{1} \mathcal{M}(s, t) d^{J}_{\mu\mu'}(\cos \theta) d\cos \theta.$$

where $\mu = s_a - s_b$, $\mu' = s_1 - s_2$, $J = \max(|\mu|, |\mu'|)$.

By Optical Theorem: $\sigma = \frac{1}{s} \text{Im}\mathcal{M}(\theta = 0) = \frac{16\pi}{s} \sum_{J=M}^{\infty} (2J + 1)|a_J(s)|^2$.

The partial wave amplitude have the properties:

(a). partial wave unitarity: $\text{Im}(a_J) \geq |a_J|^2$, or $|\text{Re}(a_J)| \leq 1/2$,

(b). kinematical thresholds: $a_J(s) \propto \beta_i^l \beta_f^l$ ($J = L + S$).

$\Rightarrow$ well-known behavior: $\sigma \propto \beta_f^{2l_f+1}$. 
Partial wave expansion for $a + b \to 1 + 2$:

$$
\mathcal{M}(s,t) = 16\pi \sum_{J=M}^{\infty} (2J + 1)a_J(s)d_J^{\mu\mu'}(\cos \theta)
$$

$$
a_J(s) = \frac{1}{32\pi} \int_{-1}^{1} \mathcal{M}(s,t) \ d_J^{\mu\mu'}(\cos \theta) d\cos \theta.
$$

where $\mu = s_a - s_b$, $\mu' = s_1 - s_2$, $J = \max(|\mu|,|\mu'|)$.

By Optical Theorem: $\sigma = \frac{1}{s} \text{Im}\mathcal{M}(\theta = 0) = \frac{16\pi}{s} \sum_{J=M}^{\infty} (2J + 1)|a_J(s)|^2$.

The partial wave amplitude have the properties:

(a). partial wave unitarity: $\text{Im}(a_J) \geq |a_J|^2$, or $|\text{Re}(a_J)| \leq 1/2$,

(b). kinematical thresholds: $a_J(s) \propto \beta_i^{1l} \beta_f^{1f}$ ($J = L + S$).

$\Rightarrow$ well-known behavior: $\sigma \propto \beta_f^{2l+1}$.

Exercise 2.5: Appreciate the properties (a) and (b) by explicitly calculating the helicity amplitudes for

$$
e_L e_R^+ \to \gamma^* \to H^- H^+,$$  
$$e_L e_L^+, e_L e_R^+ \to \gamma^* \to \mu^- \mu^+,$$  
$$H^- H^+ \to G^* \to H^- H^+.$$
(D). Calculational Tools
Traditional “Trace” Techniques:

* You should be good at this — QFT course!

With algebraic symbolic manipulations:

* REDUCE
* FORM
* MATHEMATICA, MAPLE ...
(D). Calculational Tools

Traditional “Trace” Techniques:

* You should be good at this — QFT course!

With algebraic symbolic manipulations:

* REDUCE
* FORM
* MATHEMATICA, MAPLE ...

Helicity Techniques:

More suitable for direct numerical evaluations.

* Hagiwara-Zeppenfeld: best for massless particles... (NPB)
* CalCul Method (by T.T. Wu et al., Parke-Mangano: Phys. Report);
* New techniques in loop calculations
  (by Z.Bern, L.Dixon, W. Giele, N. Glover, K.Melnikov, F. Petriello ...)
* “Twisters” (string theory motivated organization)
  (by Britto, F.Chachazo, B.Feng, E.Witten ...)
(D). Calculational Tools
Traditional “Trace” Techniques:

* You should be good at this — QFT course!

With algebraic symbolic manipulations:

* REDUCE
* FORM
* MATHEMATICA, MAPLE ...

Helicity Techniques:

More suitable for direct numerical evaluations.

* Hagiwara-Zeppenfeld: best for massless particles... (NPB)
* CalCul Method (by T.T. Wu et al., Parke-Mangano: Phys. Report);
* New techniques in loop calculations
  (by Z.Bern, L.Dixon, W. Giele, N. Glover, K.Melnikov, F. Petriello ...)
* “Twisters” (string theory motivated organization)
  (by Britto, F.Chachazo, B.Feng, E.Witten ...)

Exercise 2.6: Calculate the squared matrix element for \( \sum |M(f\bar{f} \rightarrow ZZ)|^2 \), in terms of \( s, t, u \), in whatever technique you like.
Calculational packages:
check up at http://www.ippp.dur.ac.uk/montecarlo/BSM

- Monte Carlo packages for phase space integration:
  1. VEGAS by P. LePage: adaptive important-sampling MC
     http://en.wikipedia.org/wiki/Monte-Carlo_integration
  2. SAMPLE, RAINBOW, MISER ...

- Automated software for matrix elements:
  1. REDUCE — an interactive program designed for general algebraic computations, including to evaluate Dirac algebra, an old-time program, http://www.uni-koeln.de/REDUCE; http://reduce-algebra.com.
  2. FORM by Jos Vermaseren: A program for large scale symbolic manipulation, evaluate fermion traces automatically, and perform loop calculations, commercially available at http://www.nikhef.nl/ form
(3) FeynCalc and FeynArts: Mathematica packages for algebraic calculations in elementary particle physics.
http://www.feyncalc.org;
http://www.feynarts.de

(4) MadGraph: Helicity amplitude method for tree-level matrix elements available upon request or
http://madgraph.hep.uiuc.edu
Automated evaluation of cross sections:

1. MadGraph/MadEvent and MadSUSY: Generate Fortran codes on-line!
   [http://madgraph.hep.uiuc.edu](http://madgraph.hep.uiuc.edu)

2. CompHEP/CalHEP: computer program for calculation of elementary particle processes in Standard Model and beyond. CompHEP has a built-in numeric interpreter. So this version permits to make numeric calculation without additional Fortran/C compiler. It is convenient for more or less simple calculations.
   — It allows your own construction of a Lagrangian model!
   [http://theory.npi.msu.su/~kryukov](http://theory.npi.msu.su/~kryukov)

3. GRACE and GRACE SUSY: squared matrix elements (Japan)
   [http://minami-home.kek.jp](http://minami-home.kek.jp)

(5) SHERPA (F. Krauss et al.): Generate Fortran codes on-line! Merging with MC generators (see next).
http://www.sherpa-mc.de/

(6) Pandora by M. Peskin: C++ based package for $e^+e^-$, including beam effects.

The program pandora is a general-purpose parton-level event generator which includes beamstrahlung, initial state radiation, and full treatment of polarization effects. (An interface to PYTHIA that produces fully hadronized events is possible.)

- **Cross sections at NLO packages:**
MC(at)NLO (B. Webber et al.):
http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/
• **Numerical simulation packages:**

1. **PYTHIA:**

PYTHIA is a Monte Carlo program for the generation of high-energy physics events, i.e. for the description of collisions at high energies between $e^+, e^-, p$ and $\bar{p}$ in various combinations.

They contain theory and models for a number of physics aspects, including hard and soft interactions, parton distributions, initial and final state parton showers, multiple interactions, fragmentation and decay.

— It can be combined with MadGraph and detector simulations.

http://www.thep.lu.se/torbjorn/Pythia.html
• Numerical simulation packages:

(1) PYTHIA:
PYTHIA is a Monte Carlo program for the generation of high-energy physics events, i.e. for the description of collisions at high energies between $e^+, e^-, p$ and $\bar{p}$ in various combinations. They contain theory and models for a number of physics aspects, including hard and soft interactions, parton distributions, initial and final state parton showers, multiple interactions, fragmentation and decay.

— It can be combined with MadGraph and detector simulations.
http://www.thep.lu.se/torbjorn/Pythia.html

(2) HERWIG
HERWIG is a Monte Carlo program which simulates $pp, p\bar{p}$ interactions at high energies. It has the most sophisticated perturbative treatments, and possible NLO QCD matrix elements in parton showing.
http://hepwww.rl.ac.uk/theory/seymour/herwig/
(3) ISAJET
ISAJET is a Monte Carlo program which simulates $pp, \bar{p}p$, and $ee$ interactions at high energies. It is largely obsolete. ISASUSY option is still useful.
http://www.phy.bnl.gov/ isajet
(3) ISAJET
ISAJET is a Monte Carlo program which simulates $pp, \bar{p}p$, and $ee$ interactions at high energies. It is largely obsolete. ISASUSY option is still useful.
http://www.phy.bnl.gov/isajet

- “Pretty Good Simulation” (PGS):
By John Conway: A simplified detector simulation, mainly for theorists to estimate the detector effects.

PGS has been adopted for running with PYTHIA and MadGraph.