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Opening Remarks: LHC is in mission!

Running at Ecm = 3.5 ⊕ 3.5 TeV,

he collider and detecters are all performing well!
New era in HEP and in science has just begun!
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Heavy quarks:

We are ready for new discoveries !
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I. Colliders and Detectors

(A). High-energy Colliders:

To study the deepest layers of matter,

we need the probes with highest energies.
~p

E = hν
×

~p′

Two parameters of importance:

1. The energy: ~p1

~p′1
~p2

~p′2

s ≡ (p1 + p2)
2 =

{

(E1 + E2)
2 − (~p1 + ~p2)

2,

m2
1 + m2

2 + 2(E1E2 − ~p1 · ~p2).

Ecm ≡
√

s ≈
{

2E1 ≈ 2E2 in the c.m. frame ~p1 + ~p2 = 0,√
2E1m2 in the fixed target frame ~p2 = 0.



2. The luminosity:

. . . . . . . .

Colliding beam
n1 n2

t = 1/f

L ∝ fn1n2/a,

(a some beam transverse profile) in units of #particles/cm2/s

⇒ 1033 cm−2s −1 = 1 nb−1 s−1 ≈ 10 fb−1/year.
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Colliding beam
n1 n2

t = 1/f

L ∝ fn1n2/a,

(a some beam transverse profile) in units of #particles/cm2/s

⇒ 1033 cm−2s −1 = 1 nb−1 s−1 ≈ 10 fb−1/year.

Current and future high-energy colliders:

Hadron
√

s L δE/E f #/bunch L
Colliders (TeV) (cm−2s−1) (MHz) (1010) (km)

Tevatron 1.96 2.1 × 1032 9 × 10−5 2.5 p: 27, p̄: 7.5 6.28

LHC (7) 14 (1032) 1034 0.01% 40 10.5 26.66

e+e−
√

s L δE/E f polar. L
Colliders (TeV) (cm−2s−1) (MHz) (km)

ILC 0.5−1 2.5 × 1034 0.1% 3 80,60% 14 − 33
CLIC 3−5 ∼ 1035 0.35% 1500 80,60% 33 − 53



(B). An e+e− Linear Collider

The collisions between e− and e+ have major advantages:

• The system of an electron and a positron has zero charge,

zero lepton number etc.,

=⇒ it is suitable to create new particles after e+e− annihilation.

• With symmetric beams between the electrons and positrons,

the laboratory frame is the same as the c.m. frame,

=⇒ the total c.m. energy is fully exploited to reach the highest

possible physics threshold.
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The collisions between e− and e+ have major advantages:

• The system of an electron and a positron has zero charge,

zero lepton number etc.,

=⇒ it is suitable to create new particles after e+e− annihilation.

• With symmetric beams between the electrons and positrons,

the laboratory frame is the same as the c.m. frame,

=⇒ the total c.m. energy is fully exploited to reach the highest

possible physics threshold.

• With well-understood beam properties,

=⇒ the scattering kinematics is well-constrained.

• Backgrounds low and well-undercontrol.

• It is possible to achieve high degrees of beam polarizations,

=⇒ chiral couplings and other asymmetries can be effectively explored.



Disadvantages

• Large synchrotron radiation due to acceleration,

∆E ∼ 1

R

(

E

me

)4

.

Thus, a multi-hundred GeV e+e− collider will have to be made

a linear accelerator.

• This becomes a major challenge for achieving a high luminosity

when a storage ring is not utilized;

beamsstrahlung severe.
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LHC: the new high-energy frontier

“Hard” Scattering

proton

underlying event underlying event

outgoing parton

outgoing parton

initial-state
radiation

final-state
radiation

proton

Advantages

• Higher c.m. energy, thus higher energy threshold:√
S = 14 TeV: M2

new ∼ s = x1x2S ⇒ Mnew ∼ 0.2
√

S ∼ 3 TeV.



• Higher luminosity: 1034/cm2/s ⇒ 100 fb−1/yr.

Annual yield: 1B W±; 100M tt̄; 10M W+W−; 1M H0...
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Annual yield: 1B W±; 100M tt̄; 10M W+W−; 1M H0...

• Multiple (strong, electroweak) channels:

qq̄′, gg, qg, b̄b → colored; Q = 0,±1; J = 0,1,2 states;

WW, WZ, ZZ, γγ → IW = 0,1,2; Q = 0,±1,±2; J = 0,1,2 states.

Disadvantages

• Initial state unknown:

colliding partons unknown on event-by-event basis;

parton c.m. energy unknown: E2
cm ≡ s = x1x2S;

parton c.m. frame unknown.

⇒ largely rely on final state reconstruction.

• The large rate turns to a hostile environment:

⇒ Severe backgrounds!

Our primary job !



• Path of the high-energy colliders:

The LHC opens up a new eta of HEP for the decades to come.



(D). Particle Detection:

The detector complex:

Utilize the strong and electromagnetic interactions

between detector materials and produced particles.

hadronic calorimeter

E-CAL

tracking

vertex detector

muon chambers

beam

pipe

( in B field )



What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

d = (βc τ)γ ≈ (300 µm)(
τ

10−12 s
) γ
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What we “see” as particles in the detector: (a few meters)

For a relativistic particle, the travel distance:

d = (βc τ)γ ≈ (300 µm)(
τ

10−12 s
) γ

• stable particles directly “seen”:

p, p̄, e±, γ

• quasi-stable particles of a life-time τ ≥ 10−10 s also directly “seen”:

n,Λ, K0
L, ..., µ±, π±, K±...

• a life-time τ ∼ 10−12 s may display a secondary decay vertex,

“vertex-tagged particles”:

B0,±, D0,±, τ±...

• short-lived not “directly seen”, but “reconstructable”:

π0, ρ0,±... , Z, W±, t, H...

• missing particles are weakly-interacting and neutral:

ν, χ̃0, GKK...



† For stable and quasi-stable particles of a life-time

τ ≥ 10−10 − 10−12 s, they show up as



A closer look:



A closer look:

Theorists should know:

For charged tracks : ∆p/p ∝ p,

typical resolution : ∼ p/(104 GeV).

For calorimetry : ∆E/E ∝ 1√
E

,

typical resolution : ∼ (5 − 80%)/
√

E/GeV.



† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:



† For vertex-tagged particles τ ≈ 10−12 s,

heavy flavor tagging: the secondary vertex:

Typical resolution: d0 ∼ 30 − 50 µm or so

⇒ Better have two (non-collinear) charged tracks for a secondary vertex;

Or use the “impact parameter” w.r.t. the primary vertex.

For theorists: just multiply a “tagging efficiency” ǫb ∼ 40 − 60% or so.



† For short-lived particles: τ < 10−12 s or so,

make use of final state kinematics to reconstruct the resonance.
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† For short-lived particles: τ < 10−12 s or so,

make use of final state kinematics to reconstruct the resonance.

† For missing particles:

make use of energy-momentum conservation to deduce their existence.

pi
1 + pi

2 =
obs.
∑

f

pf+pmiss.

But in hadron collisions, the longitudinal momenta unkown,

thus transverse direction only:

0 =
obs.
∑

f

~pf T+~pmiss T .

often called “missing pT” (p/T ) or “missing ET” (E/T).



What we “see” for the SM particles
(no universality − sorry!)

Leptons Vetexing Tracking ECAL HCAL Muon Cham.
e± × ~p E × ×
µ± × ~p

√ √
~p

τ± √× √
e± h±; 3h± µ±

νe, νµ, ντ × × × × ×
Quarks
u, d, s × √ √ √ ×
c → D

√ √
e± h’s µ±

b → B
√ √

e± h’s µ±

t → bW± b
√

e± b + 2 jets µ±

Gauge bosons
γ × × E × ×
g × √ √ √ ×

W± → ℓ±ν × ~p e± × µ±

→ qq̄′ × √ √
2 jets ×

Z0 → ℓ+ℓ− × ~p e± × µ±

→ qq̄ (b̄b)
√ √

2 jets ×



How to search for new particles?

Leptons
(e, µ)

Photons

Taus

Jets
Missing ET

y98014_416dPauss rd

H → WW→lνjj
H → ZZ→lljjZZH

H→WW→lνlν

H→WW→lνlν

→ → νν

H
 →

 Z
 Z

   
→

 4
 le

pt
on

s
*(

(
H γγ→

H ZZ→0

n lept.+ x

∼
g → n jets + E

M
T

→ n leptons + X
q similar∼

H
+→τν

0H, A , h0 0→ττ
(H  ) γγ→h0 0

g∼ → h + x0

χ   χ∼ ∼0 +→

*( (

W'→lν

V,ρ    →WZTC
→ lνll

Z' → ll

unpredicted

discovery

4l→

g, q →b jets + X∼ ∼

b-

Jet-tag

W
H→

lν
bb

ttH→
lν

bb+
X

––

H ll→ ττZZ→



Homework:

Exercise 1.1: For a π0, µ−, or a τ− respectively, calculate its decay

length for E = 10 GeV.

Exercise 1.2: An event was identified to have a µ+µ− pair, along with

some missing energy. What can you say about the kinematics of the system

of the missing particles? Consider both an e+e− and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative

errors of energy-momentum measurements for an electron by an

electromagnetic calorimetry (∆E/E) and for a muon by tracking (∆p/p)

at energies of E = 50 GeV and 500 GeV, respectively.

Exercise 1.4: A 120 GeV Higgs boson will have a production cross section

of 20 pb at the LHC. How many events per year do you expect to produce

for the Higgs boson with an instantaneous luminosity 1033/cm2/s?

Do you expect it to be easy to observe and why?



II. Basic Techniques

and Tools for Collider Physics

(A). Scattering cross section

For a 2 → n scattering process:

σ(ab → 1 + 2 + ...n) =
1

2s

∑

|M|2 dPSn,

dPSn ≡ (2π)4 δ4



P −
n
∑

i=1

pi



Πn
i=1

1

(2π)3
d3~pi

2Ei
,

s = (pa + pb)
2 ≡ P2 =





n
∑

i=1

pi





2

,

where
∑|M|2: dynamics (dimension 4 − 2n);

dPSn: kinematics (Lorentz invariant, dimension 2n − 4.)
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(A). Scattering cross section

For a 2 → n scattering process:

σ(ab → 1 + 2 + ...n) =
1

2s

∑

|M|2 dPSn,

dPSn ≡ (2π)4 δ4



P −
n
∑

i=1

pi



Πn
i=1

1

(2π)3
d3~pi

2Ei
,

s = (pa + pb)
2 ≡ P2 =





n
∑

i=1

pi





2

,

where
∑|M|2: dynamics (dimension 4 − 2n);

dPSn: kinematics (Lorentz invariant, dimension 2n − 4.)

For a 1 → n decay process, the partial width in the rest frame:

Γ(a → 1 + 2 + ...n) =
1

2Ma

∑

|M|2 dPSn.

τ = Γ−1
tot = (

∑

f

Γf)
−1.



(B). Phase space and kinematics ∗

One-particle Final State a + b → 1:

dPS1 ≡ (2π)
d3~p1

2E1
δ4(P − p1)

.
= π|~p1|dΩ1δ3(~P − ~p1)
.
= 2π δ(s − m2

1).

where the first and second equal signs made use of the identities:

|~p|d|~p| = EdE,
d3~p

2E
=
∫

d4p δ(p2 − m2).

∗E.Byckling, K. Kajantie: Particle Kinemaitcs (1973).
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(B). Phase space and kinematics ∗

One-particle Final State a + b → 1:

dPS1 ≡ (2π)
d3~p1

2E1
δ4(P − p1)

.
= π|~p1|dΩ1δ3(~P − ~p1)
.
= 2π δ(s − m2

1).

where the first and second equal signs made use of the identities:

|~p|d|~p| = EdE,
d3~p

2E
=
∫

d4p δ(p2 − m2).

Kinematical relations:

~P ≡ ~pa + ~pb = ~p1, Ecm
1 =

√
s in the c.m. frame,

s = (pa + pb)
2 = m2

1.

The “dimensinless phase-space volume” is s(dPS1) = 2π.

∗E.Byckling, K. Kajantie: Particle Kinemaitcs (1973).



Two-particle Final State a + b → 1 + 2:

dPS2 ≡ 1

(2π)2
δ4 (P − p1 − p2)

d3~p1

2E1

d3~p2

2E2

.
=

1

(4π)2
|~pcm

1 |√
s

dΩ1 =
1

(4π)2
|~pcm

1 |√
s

d cos θ1dφ1

=
1

4π

1

2
λ1/2

(

1,
m2

1

s
,
m2

2

s

)

dx1dx2,

d cos θ1 = 2dx1, dφ1 = 2πdx2, 0 ≤ x1,2 ≤ 1,
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dPS2 ≡ 1
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δ4 (P − p1 − p2)

d3~p1
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.
=

1

(4π)2
|~pcm

1 |√
s

dΩ1 =
1

(4π)2
|~pcm

1 |√
s

d cos θ1dφ1

=
1

4π

1

2
λ1/2

(

1,
m2

1

s
,
m2

2

s

)

dx1dx2,

d cos θ1 = 2dx1, dφ1 = 2πdx2, 0 ≤ x1,2 ≤ 1,

The magnitudes of the energy-momentum of the two particles are
fully determined by the four-momentum conservation:

|~pcm
1 | = |~pcm

2 | = λ1/2(s, m2
1, m

2
2)

2
√

s
, Ecm

1 =
s + m2

1 − m2
2

2
√

s
, Ecm

2 =
s + m2

2 − m2
1

2
√

s
,

λ(x, y, z) = (x − y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz.



Two-particle Final State a + b → 1 + 2:

dPS2 ≡ 1

(2π)2
δ4 (P − p1 − p2)

d3~p1

2E1

d3~p2

2E2

.
=

1

(4π)2
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1 |√
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dΩ1 =
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(4π)2
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1 |√
s
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=
1
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2
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s
,
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2

s

)

dx1dx2,

d cos θ1 = 2dx1, dφ1 = 2πdx2, 0 ≤ x1,2 ≤ 1,

The magnitudes of the energy-momentum of the two particles are
fully determined by the four-momentum conservation:

|~pcm
1 | = |~pcm

2 | = λ1/2(s, m2
1, m

2
2)

2
√

s
, Ecm

1 =
s + m2

1 − m2
2

2
√

s
, Ecm

2 =
s + m2

2 − m2
1

2
√

s
,

λ(x, y, z) = (x − y − z)2 − 4yz = x2 + y2 + z2 − 2xy − 2xz − 2yz.

The phase-space volume of the two-body is scaled down
with respect to that of the one-particle by a factor

dPS2

s dPS1

≈ 1

(4π)2
.

just like a “loop factor”.



Consider a 2 → 2 scattering process pa + pb → p1 + p2,

the (Lorentz invariant) Mandelstam variables are defined as

s = (pa + pb)
2 = (p1 + p2)

2 = E2
cm,

t = (pa − p1)
2 = (pb − p2)

2 = m2
a + m2

1 − 2(EaE1 − pap1 cos θa1),

u = (pa − p2)
2 = (pb − p1)

2 = m2
a + m2

2 − 2(EaE2 − pap2 cos θa2),

s + t + u = m2
a + m2

b + m2
1 + m2

2.



Consider a 2 → 2 scattering process pa + pb → p1 + p2,

the (Lorentz invariant) Mandelstam variables are defined as

s = (pa + pb)
2 = (p1 + p2)

2 = E2
cm,

t = (pa − p1)
2 = (pb − p2)

2 = m2
a + m2

1 − 2(EaE1 − pap1 cos θa1),

u = (pa − p2)
2 = (pb − p1)

2 = m2
a + m2

2 − 2(EaE2 − pap2 cos θa2),

s + t + u = m2
a + m2

b + m2
1 + m2

2.

The two-body phase space can be thus written as

dPS2 =
1

(4π)2
dt dφ1

s λ1/2
(

1, m2
a/s, m2

b /s
).



Exercise 2.1: Assume that ma = m1 and mb = m2. Show that

t = −2p2
cm(1 − cos θ∗a1),

u = −2p2
cm(1 + cos θ∗a1) +

(m2
1 − m2

2)
2

s
,

pcm = λ1/2(s, m2
1, m2

2)/2
√

s is the momentum magnitude in the c.m. frame.

Note: t is negative-definite; t → 0 in the collinear limit.

Exercise 2.2: A particle of mass M decays to two particles

isotropically in its rest frame. What does the momentum distribution

look like in a frame in which the particle is moving with a speed βz?

Compare the result with your expectation for the shape change

for a basket ball.



Three-particle Final State a + b → 1 + 2 + 3:

dPS3 ≡ 1

(2π)5
δ4 (P − p1 − p2 − p3)
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=
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The particle energy spectrum is not monochromatic.

The maximum value (the end-point) for particle 1 in c.m. frame is

Emax
1 =

s + m2
1 − (m2 + m3)

2

2
√

s
, m1 ≤ E1 ≤ Emax

1 ,

|~pmax
1 | =

λ1/2(s, m2
1, (m2 + m3)

2)

2
√

s
, 0 ≤ p1 ≤ pmax

1 .



With mi = 10, 20, 30,
√

s = 100 GeV.

More intuitive to work out the end-point for the kinetic energy,

– recall the direct neutrino mass bound in β-decay:

Kmax
1 = Emax

1 − m1 =
(
√

s − m1 − m2 − m3)(
√

s − m1 + m2 + m3)

2
√

s
.



In general, the 3-body phase space boundaries are non-trivial.

That leads to the “Dalitz Plots”.

One practically useful formula is:

Exercise 2.3: A particle of mass M decays to 3 particles M → abc.

Show that the phase space element can be expressed as

dPS3 =
1

27π3
M2dxadxb.

xi =
2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

where the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1 − xa ≤ xb ≤ 1.
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Recursion relation P → 1 + 2 + 3... + n:

p pnpn−1, n

p1 p2  . . .
pn−1

dPSn(P ; p1, ..., pn) = dPSn−1(P ; p1, ..., pn−1,n)

dPS2(pn−1,n; pn−1, pn)
dm2

n−1,n

2π
.

For instance,

dPS3 = dPS2(i)
dm2

prop

2π
dPS2(f).

This is generically true, but particularly useful

when the diagram has an s-channel particle propagation.



Breit-Wigner Resonance, the Narrow Width Approximation

An unstable particle of mass M and total width ΓV , the propagator is

R(s) =
1

(s − M2
V )2 + Γ2

V M2
V

.

Consider an intermediate state V ∗

a → bV ∗ → b p1p2.

By the reduction formula, the resonant integral reads

∫ (mmax∗ )2=(ma−mb)
2

(mmin∗ )2=(m1+m2)
2

dm2
∗ .

Variable change

tan θ =
m2∗ − M2

V

ΓV MV
,

resulting in a flat integrand over θ

∫ (mmax∗ )2

(mmin∗ )2

dm2∗
(m2∗ − M2

V )2 + Γ2
V M2

V

=
∫ θmax

θmin

dθ

ΓV MV
.
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(m1 + m2) + ΓV ≪ MV ≪ ma − ΓV ,

θmin = tan−1 (m1 + m2)
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V

ΓV MV
→ −π,

θmax = tan−1 (ma − mb)
2 − M2

V

ΓV MV
→ 0,

then the Narrow Width Approximation

1

(m2∗ − M2
V )2 + Γ2

V M2
V

≈ π

ΓV MV
δ(m2

∗ − M2
V ).

Exercise 2.4: Consider a three-body decay of a top quark,

t → bW ∗ → b eν. Making use of the phase space recursion relation

and the narrow width approximation for the intermediate W boson,

show that the partial decay width of the top quark can be expressed as

Γ(t → bW ∗ → b eν) ≈ Γ(t → bW ) · BR(W → eν).
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(C). Matrix element: The dynamics
Properties of scattering amplitudes

• Analyticity: A scattering amplitude is analytical except:

simple poles (corresponding to single particle states, bound states etc.);

branch cuts (corresponding to thresholds).

• Crossing symmetry: A scattering amplitude for a 2 → 2 process is sym-

metric among the s-, t-, u-channels.

• Unitarity:

S-matrix unitarity leads to :

−i(T − T †) = TT †



Partial wave expansion for a + b → 1 + 2:

M(s, t) = 16π
∞
∑

J=M

(2J + 1)aJ(s)dJ
µµ′(cos θ)

aJ(s) =
1

32π

∫ 1

−1
M(s, t) dJ

µµ′(cos θ)d cos θ.

where µ = sa − sb, µ′ = s1 − s2, J = max(|µ|, |µ′|).
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Partial wave expansion for a + b → 1 + 2:

M(s, t) = 16π
∞
∑

J=M

(2J + 1)aJ(s)dJ
µµ′(cos θ)

aJ(s) =
1

32π

∫ 1

−1
M(s, t) dJ

µµ′(cos θ)d cos θ.

where µ = sa − sb, µ′ = s1 − s2, J = max(|µ|, |µ′|).

By Optical Theorem: σ = 1
s ImM(θ = 0) = 16π

s

∑∞
J=M(2J + 1)|aJ(s)|2.

The partial wave amplitude have the properties:

(a). partial wave unitarity: Im(aJ) ≥ |aJ |2, or |Re(aJ)| ≤ 1/2,

(b). kinematical thresholds: aJ(s) ∝ β
li
i β

lf
f (J = L + S).

⇒ well-known behavior: σ ∝ β
2lf+1

f .

Exercise 2.5: Appreciate the properties (a) and (b) by explicitly

calculating the helicity amplitudes for

e−Le+R → γ∗ → H−H+, e−Le+L,R → γ∗ → µ−
Lµ+

R , H−H+ → G∗ → H−H+.
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(D). Calculational Tools
Traditional “Trace” Techniques:

∗ You should be good at this — QFT course!

With algebraic symbolic manipulations:

∗ REDUCE

∗ FORM

∗ MATHEMATICA, MAPLE ...

Helicity Techniques:

More suitable for direct numerical evaluations.

∗ Hagiwara-Zeppenfeld: best for massless particles... (NPB)

∗ CalCul Method (by T.T. Wu et al., Parke-Mangano: Phys. Report);

∗ New techniques in loop calculations

(by Z.Bern, L.Dixon, W. Giele, N. Glover, K.Melnikov, F. Petriello ...)

∗ “Twisters” (string theory motivated organization)

(by Britto, F.Chachazo, B.Feng, E.Witten ...)

Exercise 2.6: Calculate the squared matrix element for
∑|M(ff̄ → ZZ)|2,

in terms of s, t, u, in whatever technique you like.



Calculational packages:
check up at http://www.ippp.dur.ac.uk/montecarlo/BSM

• Monte Carlo packages for phase space integration:

(1) VEGAS by P. LePage: adaptive important-sampling MC

http://en.wikipedia.org/wiki/Monte-Carlo integration

(2) SAMPLE, RAINBOW, MISER ...

• Automated software for matrix elements:

(1) REDUCE — an interactive program designed for general algebraic

computations, including to evaluate Dirac algebra, an old-time program,

http://www.uni-koeln.de/REDUCE;

http://reduce-algebra.com.

(2) FORM by Jos Vermaseren: A program for large scale symbolic

manipulation, evaluate fermion traces automatically,

and perform loop calculations,s commercially available at

http://www.nikhef.nl/ form



(3) FeynCalc and FeynArts: Mathematica packages for algebraic

calculations in elementary particle physics.

http://www.feyncalc.org;

http://www.feynarts.de

(4) MadGraph: Helicity amplitude method for tree-level matrix elements

available upon request or

http://madgraph.hep.uiuc.edu



• Automated evaluation of cross sections:

(1) MadGraph/MadEvent and MadSUSY:

Generate Fortran codes on-line!

http://madgraph.hep.uiuc.edu

(2) CompHEP/CalHEP: computer program for calculation of elementary

particle processes in Standard Model and beyond. CompHEP has a built-in

numeric interpreter. So this version permits to make numeric calculation

without additional Fortran/C compiler. It is convenient for more or less

simple calculations.

— It allows your own construction of a Lagrangian model!

http://theory.npi.msu.su/k̃ryukov

(3) GRACE and GRACE SUSY: squared matrix elements (Japan)

http://minami-home.kek.jp

(4) AlpGen: higher-order tree-level SM matrix elements (M. Mangano ...):

http://mlm.home.cern.ch/mlm/alpgen/



(5) SHERPA (F. Krauss et al.):

Generate Fortran codes on-line! Merging with MC generators (see next).

http://www.sherpa-mc.de/

(6) Pandora by M. Peskin:

C++ based package for e+e−, including beam effects.

http://www-sldnt.slac.stanford.edu/nld/new/Docs/

Generators/PANDORA.htm

The program pandora is a general-purpose parton-level event generator

which includes beamstrahlung, initial state radiation, and full treatment

of polarization effects. (An interface to PYTHIA that produces fully

hadronized events is possible.)

• Cross sections at NLO packages:

MC(at)NLO (B. Webber et al.):

http://www.hep.phy.cam.ac.uk/theory/webber/MCatNLO/



• Numerical simulation packages:

(1) PYTHIA:

PYTHIA is a Monte Carlo program for the generation of high-energy

physics events, i.e. for the description of collisions at high energies

between e+, e−, p and p̄ in various combinations.

They contain theory and models for a number of physics aspects,

including hard and soft interactions, parton distributions, initial and

final state parton showers, multiple interactions, fragmentation and decay.

— It can be combined with MadGraph and detector simulations.

http://www.thep.lu.se/ torbjorn/Pythia.html
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physics events, i.e. for the description of collisions at high energies

between e+, e−, p and p̄ in various combinations.

They contain theory and models for a number of physics aspects,

including hard and soft interactions, parton distributions, initial and

final state parton showers, multiple interactions, fragmentation and decay.

— It can be combined with MadGraph and detector simulations.

http://www.thep.lu.se/ torbjorn/Pythia.html

(2) HERWIG

HERWIG is a Monte Carlo program which simulates pp, pp̄

interactions at high energies. It has the most sophisticated perturbative

treatments, and possible NLO QCD matrix elements in parton showing.

http://hepwww.rl.ac.uk/theory/seymour/herwig/



(3) ISAJET

ISAJET is a Monte Carlo program which simulates pp, p̄p, and ee

interactions at high energies. It is largely obsolete.

ISASUSY option is still useful.

http://www.phy.bnl.gov/ isajet



(3) ISAJET

ISAJET is a Monte Carlo program which simulates pp, p̄p, and ee

interactions at high energies. It is largely obsolete.

ISASUSY option is still useful.

http://www.phy.bnl.gov/ isajet

• “Pretty Good Simulation” (PGS):

By John Conway: A simplified detector simulation,

mainly for theorists to estimate the detector effects.

http://www.physics.ucdavis.edu/ conway/research/software/pgs/pgs.html

PGS has been adopted for running with PYTHIA and MadGraph.


