Collider Phenomenology — From basic knowledge to new physics searches

Tao Han University of Wisconsin – Madison BUSSTEPP 2010 Univ. of Swansea, Aug. 23–Sept. 3, 2010

Lecture I: Colliders and Detectors

Lecture I: Colliders and Detectors

Lecture II: Basics Techniques and Tools

Lecture I: Colliders and Detectors Lecture II: Basics Techniques and Tools Lecture III: (a). An e^+e^- Linear Collider (b). Perturbative QCD at Hadron Colliders (c). Hadron Colliders Physics

Lecture I: Colliders and Detectors Lecture II: Basics Techniques and Tools Lecture III: (a). An e^+e^- Linear Collider (b). Perturbative QCD at Hadron Colliders (c). Hadron Colliders Physics Lecture IV: From Kinematics to Dynamics

Lecture I: Colliders and Detectors Lecture II: Basics Techniques and Tools Lecture III: (a). An e^+e^- Linear Collider (b). Perturbative QCD at Hadron Colliders (c). Hadron Colliders Physics Lecture IV: From Kinematics to Dynamics

Lecture V: Search for New Physics at Hadron Colliders

Lecture I: Colliders and Detectors Lecture II: Basics Techniques and Tools Lecture III: (a). An e^+e^- Linear Collider (b). Perturbative QCD at Hadron Colliders (c). Hadron Colliders Physics Lecture IV: From Kinematics to Dynamics

Lecture V: Search for New Physics at Hadron Colliders

Main reference: TASI 04 Lecture notes hep-ph/0508097, plus the other related lectures in this school.

III(c). Hadron Collider Physics

(A). New HEP frontier: the LHC Major discoveries and excitement ahead ...

ATLAS (90m underground) CMS

(New mission started in March 2010.)

LHC Event rates for various SM processes:

 $10^{34}/\text{cm}^2/\text{s} \Rightarrow 100 \text{ fb}^{-1}/\text{yr}.$ Annual yield # of events = $\sigma \times L_{int}$: 10B W^{\pm} ; 100M $t\bar{t}$; 10M W^+W^- ; 1M $H^0...$ Great potential to open a new chapter of HEP!

(a) Total hadronic cross section: Non-perturbative. The order of magnitude estimate:

 $\sigma_{pp} = \pi r_{eff}^2 \approx \pi/m_\pi^2 \sim 120 \ \mathrm{mb}.$

(a) Total hadronic cross section: Non-perturbative. The order of magnitude estimate:

$$\sigma_{pp}=\pi r_{eff}^2pprox \pi/m_\pi^2\sim$$
 120 mb.

Energy-dependence?

$$\sigma(pp) \begin{cases} \approx 21.7 \ (\frac{s}{\text{GeV}^2})^{0.0808} & \text{Empirical relation} \\ < \frac{\pi}{m_{\pi}^2} \ \ln^2 \frac{s}{s_0} & \text{Froissart bound.} \end{cases}$$

(a) Total hadronic cross section: Non-perturbative. The order of magnitude estimate:

$$\sigma_{pp}=\pi r_{eff}^2pprox \pi/m_\pi^2\sim$$
 120 mb.

Energy-dependence?

$$\sigma(pp) \begin{cases} \approx 21.7 \ (\frac{s}{\text{GeV}^2})^{0.0808} & \text{Empirical relation} \\ < \frac{\pi}{m_{\pi}^2} \ \ln^2 \frac{s}{s_0} & \text{Froissart bound.} \end{cases}$$

(b) Perturbative hadronic cross section:

 $\sigma_{pp}(S) = \int dx_1 dx_2 P_1(x_1, Q^2) P_2(x_2, Q^2) \ \hat{\sigma}_{parton}(s).$

(a) Total hadronic cross section: Non-perturbative. The order of magnitude estimate:

$$\sigma_{pp}=\pi r_{eff}^2pprox \pi/m_\pi^2\sim$$
 120 mb.

Energy-dependence?

 $\sigma(pp) \begin{cases} \approx 21.7 \ (\frac{s}{\text{GeV}^2})^{0.0808} & \text{Empirical relation} \\ < \frac{\pi}{m_{\pi}^2} \ \ln^2 \frac{s}{s_0} & \text{Froissart bound.} \end{cases}$

(b) Perturbative hadronic cross section:

 $\sigma_{pp}(S) = \int dx_1 dx_2 P_1(x_1, Q^2) P_2(x_2, Q^2) \ \hat{\sigma}_{parton}(s).$

Accurate (higher orders) partonic cross sections σ_{parton}(s).
Parton distributions functions to the extreme (density): Q² ~ (a few TeV)², x ~ 10⁻³ - 10⁻⁶. Experimental challenges:

- The large rate turns to a hostile environment:
 - \approx 1 billion event/sec: impossible read-off !
 - \approx 1 interesting event per 1,000,000: selection (triggering).

Experimental challenges:

• The large rate turns to a hostile environment:

- \approx 1 billion event/sec: impossible read-off !
- \approx 1 interesting event per 1,000,000: selection (triggering).

 ≈ 25 overlapping events/bunch crossing:

Triggering thresholds:

	ATLAS	
Objects	η	$p_T~({\sf GeV})$
μ inclusive	2.4	6 (20)
e/photon inclusive	2.5	17 (26)
Two e 's or two photons	2.5	12 (15)
1-jet inclusive	3.2	180 (290)
3 jets	3.2	75 (130)
4 jets	3.2	55 (90)
au/hadrons	2.5	43 (65)
$\not\!$	4.9	100
Jets+ $ ot\!\!\!/ E_T$	3.2, 4.9	50,50 (100,100)

 $(\eta = 2.5 \Rightarrow 10^\circ; \qquad \eta = 5 \Rightarrow 0.8^\circ.)$

Triggering thresholds:

	ATLAS	
Objects	η	$p_T~({\sf GeV})$
μ inclusive	2.4	6 (20)
e/photon inclusive	2.5	17 (26)
Two e 's or two photons	2.5	12 (15)
1-jet inclusive	3.2	180 (290)
3 jets	3.2	75 (130)
4 jets	3.2	55 (90)
au/hadrons	2.5	43 (65)
$\not\!$	4.9	100
Jets+ $ ot\!\!\!/ E_T$	3.2, 4.9	50,50 (100,100)

 $(\eta = 2.5 \Rightarrow 10^{\circ}; \qquad \eta = 5 \Rightarrow 0.8^{\circ}.)$

With optimal triggering and kinematical selections:

(B). Special kinematics for hadron colliders

Hadron momenta: $P_A = (E_A, 0, 0, p_A), \quad P_B = (E_A, 0, 0, -p_A),$ The parton momenta: $p_1 = x_1 P_A, \quad p_2 = x_2 P_B.$

Then the parton c.m. frame moves randomly, even by event:

$$\beta_{cm} = \frac{x_1 - x_2}{x_1 + x_2}, \text{ or :}$$

$$y_{cm} = \frac{1}{2} \ln \frac{1 + \beta_{cm}}{1 - \beta_{cm}} = \frac{1}{2} \ln \frac{x_1}{x_2}, \quad (-\infty < y_{cm} < \infty).$$

(B). Special kinematics for hadron colliders

Hadron momenta: $P_A = (E_A, 0, 0, p_A), P_B = (E_A, 0, 0, -p_A),$ The parton momenta: $p_1 = x_1 P_A, p_2 = x_2 P_B.$

Then the parton c.m. frame moves randomly, even by event:

$$\beta_{cm} = \frac{x_1 - x_2}{x_1 + x_2}, \text{ or :}$$

$$y_{cm} = \frac{1}{2} \ln \frac{1 + \beta_{cm}}{1 - \beta_{cm}} = \frac{1}{2} \ln \frac{x_1}{x_2}, \quad (-\infty < y_{cm} < \infty).$$

The four-momentum vector transforms as

$$\begin{pmatrix} E'\\ p'_z \end{pmatrix} = \begin{pmatrix} \gamma & -\gamma & \beta_{cm} \\ -\gamma & \beta_{cm} & \gamma \end{pmatrix} \begin{pmatrix} E\\ p_z \end{pmatrix}$$
$$= \begin{pmatrix} \cosh y_{cm} & -\sinh y_{cm} \\ -\sinh y_{cm} & \cosh y_{cm} \end{pmatrix} \begin{pmatrix} E\\ p_z \end{pmatrix}.$$

This is often called the "boost".

One wishes to design final-state kinematics invariant under the boost: For a four-momentum $p \equiv p^{\mu} = (E, \vec{p})$,

$$E_T = \sqrt{p_T^2 + m^2}, \quad y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z},$$

$$p^{\mu} = (E_T \cosh y, \ p_T \sin \phi, \ p_T \cos \phi, \ E_T \sinh y),$$

$$\frac{d^3 \vec{p}}{E} = p_T dp_T d\phi \ dy = E_T dE_T d\phi \ dy.$$

One wishes to design final-state kinematics invariant under the boost: For a four-momentum $p \equiv p^{\mu} = (E, \vec{p})$,

$$E_T = \sqrt{p_T^2 + m^2}, \quad y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z},$$

$$p^{\mu} = (E_T \cosh y, \ p_T \sin \phi, \ p_T \cos \phi, \ E_T \sinh y),$$

$$\frac{d^3 \vec{p}}{E} = p_T dp_T d\phi \ dy = E_T dE_T d\phi \ dy.$$

Due to random boost between Lab-frame/c.m. frame event-by-event,

$$y' = \frac{1}{2} \ln \frac{E' + p'_z}{E' - p'_z} = \frac{1}{2} \ln \frac{(1 - \beta_{cm})(E + p_z)}{(1 + \beta_{cm})(E - p_z)} = y - y_{cm}.$$

One wishes to design final-state kinematics invariant under the boost: For a four-momentum $p \equiv p^{\mu} = (E, \vec{p})$,

$$E_T = \sqrt{p_T^2 + m^2}, \quad y = \frac{1}{2} \ln \frac{E + p_z}{E - p_z},$$

$$p^{\mu} = (E_T \cosh y, \ p_T \sin \phi, \ p_T \cos \phi, \ E_T \sinh y),$$

$$\frac{d^3 \vec{p}}{E} = p_T dp_T d\phi \ dy = E_T dE_T d\phi \ dy.$$

Due to random boost between Lab-frame/c.m. frame event-by-event,

$$y' = \frac{1}{2} \ln \frac{E' + p'_z}{E' - p'_z} = \frac{1}{2} \ln \frac{(1 - \beta_{cm})(E + p_z)}{(1 + \beta_{cm})(E - p_z)} = y - y_{cm}.$$

In the massless limit, rapidity \rightarrow pseudo-rapidity:

$$y \to \eta = \frac{1}{2} \ln \frac{1 + \cos \theta}{1 - \cos \theta} = \ln \cot \frac{\theta}{2}.$$

Exercise 4.1: Verify all the above equations.

The "Lego" plot:

A CDF di-jet event on a lego plot in the $\eta - \phi$ plane.

The "Lego" plot:

A CDF di-jet event on a lego plot in the $\eta - \phi$ plane.

 $\phi, \Delta y = y_2 - y_1$ is boost-invariant. Thus the "separation" between two particles in an event $\Delta R = \sqrt{\Delta \phi^2 + \Delta y^2}$ is boost-invariant, and lead to the "cone definition" of a jet.

(C). Hadron collider status:

The Tevatron rocks, and the LHC delivers !

(C). Hadron collider status:

The Tevatron rocks, and the LHC delivers !

At the Tevatron Run II:

Peak luminosity record high $\approx 2 \times 10^{32} \text{ cm}^{-2} \text{ s}^{-1}$;

Integrated luminosity 5 $fb^{-1}/expt$, still with potential for discovery.

(C). Hadron collider status:

The Tevatron rocks, and the LHC delivers !

At the Tevatron Run II:

Peak luminosity record high $\approx 2 \times 10^{32}$ cm⁻² s⁻¹; Integrated luminosity 5 fb⁻¹/expt, still with potential for discovery.

At the LHC:

 $E_{cm} = 7$ TeV, integrated luminosity 1.5 pb⁻¹, leading the HEP frontier.

ATLAS Z re-discovery:

- **Z** Selection
- Two oppositely charged leptons (e/μ).
- Same lepton selection as W analysis except medium electrons.
- Invariant mass $66 < m_Z < 116$ GeV.

ATLAS Z re-discovery:

W Selection

- Tight electron.
- Muon with $p_T > 20 \text{ GeV}.$
- Muon isolation
- $\sum p_T^{trk}/p_T^{\mu} < 0.2$ $\Delta R < 0.4$
- $E_T > 25$ GeV.
- $m_T > 40 \text{ GeV}.$

$$m_T = \sqrt{2p_T^\ell p_T^\nu (1 - \cos(\Delta \phi_{\ell,\nu}))}$$

Entries / 5 GeV

10

10

104

103

102

10

Entries / 5 GeV

W Selection

- Tight electron.
- Muon with $p_T > 20 \text{ GeV}.$
- Muon isolation
- $\sum p_T^{trk}/p_T^{\mu} < 0.2$ $\Delta R < 0.4$

Entries / 5 GeV

· F- > 25 CoV/

 $\mathsf{CDF}\ W$ events.

CMS 1-jet in different rapidities:

CMS 1-jet in different rapidities: D0 1-jet in rapidity ranges:

LHC QCD results went BEYOND the Tevatron !

CMS W+jets and top events

CDF W+jets and top

CDF W+jets and top

LHC top studies catching up !

ATLAS \mathbb{E}_T distribution:

CDF $\not\!\!\!E_T$ at high end:

ATLAS \mathbb{E}_T distribution:

CDF $\not\!\!\!E_T$ at high end:

LHC E_T results rapidly improving !

ATLAS \mathbb{E}_T distribution:

CDF $\not\!\!\!E_T$ at high end:

LHC E_T results rapidly improving !

LHC achieved the first crucial step: The Standard Model rediscovered !

... And have gone on to the physics BSM :

400 GeV $< M_{q*}(jj) < 1.26$ TeV excluded. First BSM physics search, beyond the Tevatron reach !

... And have gone on to the physics BSM :

400 GeV $< M_{q*}(jj) < 1.26$ TeV excluded. First BSM physics search, beyond the Tevatron reach !

Anxiously waiting for the new excitement ...

IV. From Kinematics to Dynamics

(A). Characteristic observables: Crucial for uncovering new dynamics.

IV. From Kinematics to Dynamics

(A). Characteristic observables: Crucial for uncovering new dynamics.

Selective experimental events → Characteristic kinematical observables (spatial, time, momentaum phase space) → Dynamical parameters (masses, couplings)

IV. From Kinematics to Dynamics

(A). Characteristic observables: Crucial for uncovering new dynamics.

Selective experimental events Characteristic kinematical observables (spatial, time, momentaum phase space) Dynamical parameters (masses, couplings)

Energy momentum observables \implies mass parameters Angular observables \implies nature of couplings; Production rates, decay branchings/lifetimes \implies interaction strengths.

(B). Kinematical features:

(a). *s*-channel singularity: bump search we do best.

• invariant mass of two-body $R \rightarrow ab$: $m_{ab}^2 = (p_a + p_b)^2 = M_R^2$. combined with the two-body Jacobian peak in transverse momentum:

$$\frac{d\hat{\sigma}}{dm_{ee}^2 \ dp_{eT}^2} \propto \frac{\Gamma_Z M_Z}{(m_{ee}^2 - M_Z^2)^2 + \Gamma_Z^2 M_Z^2} \ \frac{1}{m_{ee}^2 \sqrt{1 - 4p_{eT}^2/m_{ee}^2}}$$

(B). Kinematical features:

(a). *s*-channel singularity: bump search we do best.

• invariant mass of two-body $R \rightarrow ab$: $m_{ab}^2 = (p_a + p_b)^2 = M_R^2$. combined with the two-body Jacobian peak in transverse momentum:

• "transverse" mass of two-body $W^- \rightarrow e^- \overline{\nu}_e$:

$$m_{e\nu T}^{2} = (E_{eT} + E_{\nu T})^{2} - (\vec{p}_{eT} + \vec{p}_{\nu T})^{2}$$

= $2E_{eT}E_{T}^{miss}(1 - \cos\phi) \le m_{e\nu}^{2}$.

If $p_T(W) = 0$, then $m_{e\nu} T = 2E_{eT} = 2E_T^{miss}$.

Exercise 5.1: For a two-body final state kinematics, show that

$$\frac{d\hat{\sigma}}{dp_{eT}} = \frac{4p_{eT}}{s\sqrt{1 - 4p_{eT}^2/s}} \frac{d\hat{\sigma}}{d\cos\theta^*}.$$

where $p_{eT} = p_e \sin \theta^*$ is the transverse momentum and θ^* is the polar angle in the c.m. frame. Comment on the apparent singularity at $p_{eT}^2 = s/4$.

Exercise 5.2: Show that for an on-shell decay $W^-
ightarrow e^- ar{
u}_e$:

$$m_{e\nu}^2 T \equiv (E_{eT} + E_{\nu T})^2 - (\vec{p}_{eT} + \vec{p}_{\nu T})^2 \le m_{e\nu}^2.$$

Exercise 5.3: Show that if W/Z has some transverse motion, δP_V , then: $p'_{eT} \sim p_{eT} \ [1 + \delta P_V/M_V],$ $m'^2_{e\nu} \ _T \sim m^2_{e\nu} \ _T \ [1 - (\delta P_V/M_V)^2],$ $m'^2_{ee} = m^2_{ee}.$ • $H^0 \to W^+ W^- \to j_1 j_2 \ e^- \bar{\nu}_e$: cluster transverse mass (I): $m_{WW\ T}^2 = (E_{W_1T} + E_{W_2T})^2 - (\vec{p}_{jjT} + \vec{p}_{eT} + \vec{p}_T^{\ miss})^2$ $= (\sqrt{p_{jjT}^2 + M_W^2} + \sqrt{p_{e\nu T}^2 + M_W^2})^2 - (\vec{p}_{jjT} + \vec{p}_{eT} + \vec{p}_T^{\ miss})^2 \le M_H^2$. where $\vec{p}_T^{\ miss} \equiv \vec{p}_T = -\sum_{obs} \ \vec{p}_T^{\ obs}$.

• $H^0 \rightarrow W^+ W^- \rightarrow j_1 j_2 e^- \overline{\nu}_e$: cluster transverse mass (I): $m_{WWT}^2 = (E_{W_1T} + E_{W_2T})^2 - (\vec{p}_{jjT} + \vec{p}_{eT} + \vec{p}_T^{miss})^2$ $= (\sqrt{p_{jjT}^2 + M_W^2 + \sqrt{p_{e\nu T}^2 + M_W^2}})^2 - (\vec{p}_{jjT} + \vec{p}_{eT} + \vec{p}_T^{miss})^2 \le M_H^2.$ where $\vec{p}_T^{miss} \equiv \vec{p}_T = -\sum_{obs} \vec{p}_T^{obs}$. • $H^0 \to W^+ W^- \to e^+ \nu_e \ e^- \overline{\nu}_e$: "effecive" transverse mass: $m_{eff T}^2 = (E_{e1T} + E_{e2T} + E_T^{miss})^2 - (\vec{p}_{e1T} + \vec{p}_{e2T} + \vec{p}_T^{miss})^2$ $m_{eff\ T} \approx E_{e1T} + E_{e2T} + E_T^{miss}$

• $H^0 \rightarrow W^+ W^- \rightarrow j_1 j_2 e^- \overline{\nu}_e$: cluster transverse mass (I): $m_{WWT}^2 = (E_{W_1T} + E_{W_2T})^2 - (\vec{p}_{jjT} + \vec{p}_{eT} + \vec{p}_T^{miss})^2$ $= (\sqrt{p_{jjT}^2 + M_W^2 + \sqrt{p_{e\nu T}^2 + M_W^2}})^2 - (\vec{p}_{jjT} + \vec{p}_{eT} + \vec{p}_T^{miss})^2 \le M_H^2.$ where $\vec{p}_T^{miss} \equiv \vec{p}_T = -\sum_{obs} \vec{p}_T^{obs}$. • $H^0 \rightarrow W^+ W^- \rightarrow e^+ \nu_e \ e^- \overline{\nu}_e$: • ℓ_2 "effective" transverse mass: $m_{eff\ T}^2 = (E_{e1T} + E_{e2T} + E_T^{miss})^2 - (\vec{p}_{e1T} + \vec{p}_{e2T} + \vec{p}_T^{miss})^2$ $m_{eff\ T} \approx E_{e1T} + E_{e2T} + E_T^{miss}$ cluster transverse mass (II): $m_{WW C}^2 = \left(\sqrt{p_{T,\ell\ell}^2 + M_{\ell\ell}^2} + p_T\right)^2 - (\vec{p}_{T,\ell\ell} + \vec{p}_T)^2$

 $m_{WW C} \approx \sqrt{p_{T,\ell\ell}^2 + M_{\ell\ell}^2 + p_T}$

 M_{WW} invariant mass (WW fully reconstructable): ----- $M_{WW, T}$ transverse mass (one missing particle ν): ----- $M_{eff, T}$ effetive trans. mass (two missing particles): ----- $M_{WW, C}$ cluster trans. mass (two missing particles): -----

 M_{WW} invariant mass (WW fully reconstructable): - - - - - - - $M_{WW, T}$ transverse mass (one missing particle ν): ------ $M_{eff, T}$ effetive trans. mass (two missing particles): - - - - - - - $M_{WW, C}$ cluster trans. mass (two missing particles): ------

YOU design an optimal variable/observable for the search.

• cluster transverse mass (III):

$$H^0 \to \tau^+ \tau^- \to \mu^+ \ \bar{\nu}_\tau \ \nu_\mu, \quad \rho^- \ \nu_\tau$$

A lot more complicated with (many) more $\nu's$?

• cluster transverse mass (III):

$$H^0 \to \tau^+ \tau^- \to \mu^+ \ \bar{\nu}_\tau \ \nu_\mu, \quad \rho^- \ \nu_\tau$$

A lot more complicated with (many) more $\nu's$?

Not really!

 $\tau^+\tau^-$ ultra-relativistic, the final states from a τ decay highly collimated:

$$heta pprox \gamma_{ au}^{-1} = m_{ au}/E_{ au} = 2m_{ au}/m_{H} pprox 1.5^{\circ} \quad (m_{H} = 120 \,\, {
m GeV}).$$

We can thus take

$$\vec{p}_{\tau^+} = \vec{p}_{\mu^+} + \vec{p}_{+}^{\nu's}, \quad \vec{p}_{+}^{\nu's} \approx c_+ \vec{p}_{\mu^+}.$$

$$\vec{p}_{\tau^-} = \vec{p}_{\rho^-} + \vec{p}_{-}^{\nu's}, \quad \vec{p}_{-}^{\nu's} \approx c_- \vec{p}_{\rho^-}.$$

where c_{\pm} are proportionality constants, to be determined.

• cluster transverse mass (III):

$$H^0 \to \tau^+ \tau^- \to \mu^+ \ \bar{\nu}_\tau \ \nu_\mu, \quad \rho^- \ \nu_\tau$$

A lot more complicated with (many) more $\nu's$?

Not really!

 $\tau^+\tau^-$ ultra-relativistic, the final states from a τ decay highly collimated:

$$heta pprox \gamma_{ au}^{-1} = m_{ au}/E_{ au} = 2m_{ au}/m_{H} pprox 1.5^{\circ} \quad (m_{H} = 120 \,\, {
m GeV}).$$

We can thus take

$$\vec{p}_{\tau^{+}} = \vec{p}_{\mu^{+}} + \vec{p}_{+}^{\nu's}, \quad \vec{p}_{+}^{\nu's} \approx c_{+}\vec{p}_{\mu^{+}},$$
$$\vec{p}_{\tau^{-}} = \vec{p}_{\rho^{-}} + \vec{p}_{-}^{\nu's}, \quad \vec{p}_{-}^{\nu's} \approx c_{-}\vec{p}_{\rho^{-}}.$$

where c_{\pm} are proportionality constants, to be determined. This is applicable to any decays of fast-moving particles, like

$$T \to Wb \to \ell \nu, \ b.$$

Experimental measurements: $p_{\rho^-}, p_{\mu^+}, p_T$:

$$c_{+}(p_{\mu^{+}})_{x} + c_{-}(p_{\rho^{-}})_{x} = (\not p_{T})_{x}, c_{+}(p_{\mu^{+}})_{y} + c_{-}(p_{\rho^{-}})_{y} = (\not p_{T})_{y}.$$

Unique solutions for c_{\pm} exist if

$$(p_{\mu^+})_x/(p_{\mu^+})_y \neq (p_{\rho^-})_x/(p_{\rho^-})_y.$$

Physically, the τ^+ and τ^- should form a finite angle, or the Higgs should have a non-zero transverse momentum. Experimental measurements: $p_{\rho^-}, p_{\mu^+}, p_T$:

$$c_{+}(p_{\mu^{+}})_{x} + c_{-}(p_{\rho^{-}})_{x} = (\not p_{T})_{x},$$

$$c_{+}(p_{\mu^{+}})_{y} + c_{-}(p_{\rho^{-}})_{y} = (\not p_{T})_{y}.$$

Unique solutions for c_{\pm} exist if

$$(p_{\mu^+})_x/(p_{\mu^+})_y \neq (p_{\rho^-})_x/(p_{\rho^-})_y.$$

Physically, the τ^+ and τ^- should form a finite angle, or the Higgs should have a non-zero transverse momentum.

(b). Two-body versus three-body kinematics

• Energy end-point and mass edges:

utilizing the "two-body kinematics" Consider a simple case:

 $e^+e^- \to \tilde{\mu}_R^+ \ \tilde{\mu}_R^$ with two – body decays : $\tilde{\mu}_R^+ \to \mu^+ \tilde{\chi}_0, \quad \tilde{\mu}_R^- \to \mu^- \tilde{\chi}_0.$ In the $\tilde{\mu}_R^+$ -rest frame: $E_{\mu}^0 = \frac{M_{\tilde{\mu}_R}^2 - m_{\chi}^2}{2M_{\tilde{\mu}_R}}$.

In the Lab-frame:

$$\begin{split} (1-\beta)\gamma E^0_\mu &\leq E^{lab}_\mu \leq (1+\beta)\gamma E^0_\mu \\ \text{with } \beta &= \left(1-4M^2_{\tilde{\mu}_R}/s\right)^{1/2}, \ \gamma &= (1-\beta)^{-1/2}. \\ \text{Energy end-point: } E^{lab}_\mu \Rightarrow M^2_{\tilde{\mu}_R} - m^2_\chi. \\ \text{Mass edge: } m^{max}_{\mu^+\mu^-} &= \sqrt{s} - 2m_\chi. \end{split}$$

(b). Two-body versus three-body kinematics

• Energy end-point and mass edges:

utilizing the "two-body kinematics" Consider a simple case:

 $\begin{array}{l} e^+e^- \to \tilde{\mu}_R^+ \ \tilde{\mu}_R^- \\ \text{with two-body decays}: \ \tilde{\mu}_R^+ \to \mu^+ \tilde{\chi}_0, \ \tilde{\mu}_R^- \to \mu^- \tilde{\chi}_0. \end{array}$ In the $\tilde{\mu}_R^+$ -rest frame: $E_{\mu}^0 = \frac{M_{\tilde{\mu}_R}^2 - m_{\chi}^2}{2M_{\tilde{\mu}_R}}$.

In the Lab-frame:

$$\begin{array}{l} (1-\beta)\gamma E^0_\mu \leq E^{lab}_\mu \leq (1+\beta)\gamma E^0_\mu \\ \text{with } \beta = \left(1 - 4M^2_{\tilde{\mu}_R}/s\right)^{1/2}, \ \gamma = (1-\beta)^{-1/2}. \\ \text{Energy end-point: } E^{lab}_\mu \Rightarrow M^2_{\tilde{\mu}_R} - m^2_\chi. \\ \text{Mass edge: } m^{max}_{\mu^+\mu^-} = \sqrt{s} - 2m_\chi. \end{array}$$

Same idea can be applied to hadron colliders ...

Consider a squark cascade decay:

1st edge: $M^{max}(\ell \ell) \approx M_{\chi_2^0} - M_{\chi_1^0};$ 2nd edge: $M^{max}(\ell \ell j) \approx M_{\tilde{q}} - M_{\chi_1^0}.$

(c). *t*-channel singularity: splitting.

• Gauge boson radiation off a fermion:

The familiar Weizsäcker-Williams approximation

$$\sigma(fa \to f'X) \approx \int dx \ dp_T^2 \ P_{\gamma/f}(x, p_T^2) \ \sigma(\gamma a \to X),$$
$$P_{\gamma/e}(x, p_T^2) = \frac{\alpha}{2\pi} \frac{1 + (1-x)^2}{x} (\frac{1}{p_T^2})|_{m_e}^E.$$

(c). *t*-channel singularity: splitting.

• Gauge boson radiation off a fermion:

The familiar Weizsäcker-Williams approximation

$$\sigma(fa \to f'X) \approx \int dx \ dp_T^2 \ P_{\gamma/f}(x, p_T^2) \ \sigma(\gamma a \to X),$$

$$P_{\gamma/e}(x, p_T^2) = \frac{\alpha}{2\pi} \frac{1 + (1 - x)^2}{x} (\frac{1}{p_T^2})|_{m_e}^E.$$

† The kernel is the same as $q \rightarrow qg^* \Rightarrow$ generic for parton splitting; † The high energy enhancement $dp_T^2/p_T^2 \rightarrow \ln(E/m_e)$ reflects the collinear behavior. • Generalize to massive gauge bosons:

$$P_{V/f}^{T}(x, p_{T}^{2}) = \frac{g_{V}^{2} + g_{A}^{2}}{8\pi^{2}} \frac{1 + (1 - x)^{2}}{x} \frac{p_{T}^{2}}{(p_{T}^{2} + (1 - x)M_{V}^{2})^{2}},$$

$$P_{V/f}^{L}(x, p_{T}^{2}) = \frac{g_{V}^{2} + g_{A}^{2}}{4\pi^{2}} \frac{1 - x}{x} \frac{(1 - x)M_{V}^{2}}{(p_{T}^{2} + (1 - x)M_{V}^{2})^{2}}.$$

• Generalize to massive gauge bosons:

$$P_{V/f}^{T}(x, p_{T}^{2}) = \frac{g_{V}^{2} + g_{A}^{2}}{8\pi^{2}} \frac{1 + (1 - x)^{2}}{x} \frac{p_{T}^{2}}{(p_{T}^{2} + (1 - x)M_{V}^{2})^{2}},$$

$$P_{V/f}^{L}(x, p_{T}^{2}) = \frac{g_{V}^{2} + g_{A}^{2}}{4\pi^{2}} \frac{1 - x}{x} \frac{(1 - x)M_{V}^{2}}{(p_{T}^{2} + (1 - x)M_{V}^{2})^{2}}.$$

Special kinematics for massive gauge boson fusion processes: For the accompanying jets,

At low- p_{jT} ,

$$\begin{array}{c} p_{jT}^2 \approx (1-x)M_V^2 \\ E_j \sim (1-x)E_q \end{array} \right\} forward \ jet \ tagging \end{array}$$

At high- p_{jT} ,

$$\frac{\frac{d\sigma(V_T)}{dp_{jT}^2} \propto 1/p_{jT}^2}{\frac{d\sigma(V_L)}{dp_{jT}^2} \propto 1/p_{jT}^4} \begin{cases} central \ jet \ vetoing \end{cases}$$

has become important tools for Higgs searches, single-top signal etc.

(C). Charge forward-backward asymmetry A_{FB} :

The coupling vertex of a vector boson V_{μ} to an arbitrary fermion pair f

 $i \sum_{\tau}^{L,R} g_{\tau}^{f} \gamma^{\mu} P_{\tau} \longrightarrow$ crucial to probe chiral structures.

The parton-level forward-backward asymmetry is defined as

$$A_{FB}^{i,f} \equiv \frac{N_F - N_B}{N_F + N_B} = \frac{3}{4} \mathcal{A}_i \mathcal{A}_f,$$
$$\mathcal{A}_f = \frac{(g_L^f)^2 - (g_R^f)^2}{(g_L^f)^2 + (g_R^f)^2}.$$

where $N_F(N_B)$ is the number of events in the forward (backward) direction defined in the parton c.m. frame relative to the initial-state fermion $\vec{p_i}$.

At hadronic level:

$$A_{FB}^{\mathsf{LHC}} = \frac{\int dx_1 \sum_q A_{FB}^{q,f} \left(P_q(x_1) P_{\overline{q}}(x_2) - P_{\overline{q}}(x_1) P_q(x_2) \right) \operatorname{sign}(x_1 - x_2)}{\int dx_1 \sum_q \left(P_q(x_1) P_{\overline{q}}(x_2) + P_{\overline{q}}(x_1) P_q(x_2) \right)}.$$

At hadronic level:

$$A_{FB}^{\mathsf{LHC}} = \frac{\int dx_1 \sum_q A_{FB}^{q,f} \left(P_q(x_1) P_{\overline{q}}(x_2) - P_{\overline{q}}(x_1) P_q(x_2) \right) \operatorname{sign}(x_1 - x_2)}{\int dx_1 \sum_q \left(P_q(x_1) P_{\overline{q}}(x_2) + P_{\overline{q}}(x_1) P_q(x_2) \right)}.$$

Perfectly fine for Z/Z'-type:

In $p\bar{p}$ collisions, \vec{p}_{proton} is the direction of \vec{p}_{quark} .

In pp collisions, however, what is the direction of \vec{p}_{quark} ?

At hadronic level:

$$A_{FB}^{\mathsf{LHC}} = \frac{\int dx_1 \sum_q A_{FB}^{q,f} \left(P_q(x_1) P_{\overline{q}}(x_2) - P_{\overline{q}}(x_1) P_q(x_2) \right) \operatorname{sign}(x_1 - x_2)}{\int dx_1 \sum_q \left(P_q(x_1) P_{\overline{q}}(x_2) + P_{\overline{q}}(x_1) P_q(x_2) \right)}.$$

Perfectly fine for Z/Z'-type:

In $p\bar{p}$ collisions, \vec{p}_{proton} is the direction of \vec{p}_{quark} .

In *pp* collisions, however, what is the direction of \vec{p}_{quark} ? It is the boost-direction of $\ell^+\ell^-$.

How about $W^{\pm}/W'^{\pm}(\ell^{\pm}\nu)$ -type?

In $p\bar{p}$ collisions, \vec{p}_{proton} is the direction of \vec{p}_{quark} , AND ℓ^+ (ℓ^-) along the direction with \bar{q} (q) \Rightarrow OK at the Tevatron,
How about $W^{\pm}/W'^{\pm}(\ell^{\pm}\nu)$ -type?

In $p\bar{p}$ collisions, \vec{p}_{proton} is the direction of \vec{p}_{quark} , AND ℓ^+ (ℓ^-) along the direction with \bar{q} (q) \Rightarrow OK at the Tevatron,

But: (1). cann't get the boost-direction of $\ell^{\pm}\nu$ system; (2). Looking at ℓ^{\pm} alone, no insight for W_L or W_R !

How about $W^{\pm}/W'^{\pm}(\ell^{\pm}\nu)$ -type?

In $p\bar{p}$ collisions, \vec{p}_{proton} is the direction of \vec{p}_{quark} , AND ℓ^+ (ℓ^-) along the direction with \bar{q} (q) \Rightarrow OK at the Tevatron,

But: (1). cann't get the boost-direction of $\ell^{\pm}\nu$ system; (2). Looking at ℓ^{\pm} alone, no insight for W_L or W_R !

In $p\bar{p}$ collisions: (1). a reconstructable system; (2). with spin correlation: Only tops: $W' \to t\bar{b} \to \ell^{\pm}\nu \ \bar{b}$:

(D). CP asymmetries A_{CP} :

To non-ambiguously identify CP-violation effects, one must rely on CP-odd variables.

(D). CP asymmetries A_{CP} :

To non-ambiguously identify CP-violation effects, one must rely on CP-odd variables.

Definition: A_{CP} vanishes if CP-violation interactions do not exist (for the relevant particles involved).

This is meant to be in contrast to an observable: that'd be *modified* by the presence of CP-violation, but is *not zero* when CP-violation is absent.

e.g.
$$M_{(\chi^{\pm} \chi^{0})}, \sigma(H^{0}, A^{0}), \dots$$

(D). CP asymmetries A_{CP} :

To non-ambiguously identify CP-violation effects, one must rely on CP-odd variables.

Definition: A_{CP} vanishes if CP-violation interactions do not exist (for the relevant particles involved).

This is meant to be in contrast to an observable: that'd be *modified* by the presence of CP-violation, but is *not zero* when CP-violation is absent.

e.g.
$$M_{(\chi^{\pm} \chi^{0})}, \sigma(H^{0}, A^{0}), \dots$$

Two ways:

a). Compare the rates between a process and its CP-conjugate process:

$$\frac{R(i \to f) - R(\overline{i} \to \overline{f})}{R(i \to f) + R(\overline{i} \to \overline{f})}, \quad \text{e.g.} \quad \frac{\Gamma(t \to W^+ q) - \Gamma(\overline{t} \to W^- \overline{q})}{\Gamma(t \to W^+ q) + \Gamma(\overline{t} \to W^- \overline{q})}.$$

b). Construct a CP-odd kinematical variable for an initially CP-eigenstate:

$$\mathcal{M} \sim M_1 + M_2 \sin \theta,$$

$$A_{CP} = \sigma^F - \sigma^B = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta$$

b). Construct a CP-odd kinematical variable for an initially CP-eigenstate:

$$\mathcal{M} \sim M_1 + M_2 \sin \theta,$$

$$A_{CP} = \sigma^F - \sigma^B = \int_0^1 \frac{d\sigma}{d\cos\theta} d\cos\theta - \int_{-1}^0 \frac{d\sigma}{d\cos\theta} d\cos\theta$$

E.g. 1: $H \to Z(p_1)Z^*(p_2) \to e^+(q_1)e^-(q_2), \ \mu^+\mu^-$

 $\Gamma^{\mu\nu}(p_1, p_2) = i\frac{2}{v} h[a \ M_Z^2 g^{\mu\nu} + b \ (p_1^{\mu} p_2^{\nu} - p_1 \cdot p_2 g^{\mu\nu}) + \tilde{b} \ \epsilon^{\mu\nu\rho\sigma} p_{1\rho} p_{2\sigma}]$ $a = 1, \ b = \tilde{b} = 0$ for SM. In general, $a, \ b, \ \tilde{b}$ complex form factors, describing new physics at a higher scale. For $H \to Z(p_1)Z^*(p_2) \to e^+(q_1)e^-(q_2), \ \mu^+\mu^-$, define:

$$O_{CP} \sim (\vec{p}_1 - \vec{p}_2) \cdot (\vec{q}_1 \times \vec{q}_2),$$

or $\cos \theta = \frac{(\vec{p}_1 - \vec{p}_2) \cdot (\vec{q}_1 \times \vec{q}_2)}{|\vec{p}_1 - \vec{p}_2| |\vec{q}_1 \times \vec{q}_2)|}.$

For $H \to Z(p_1)Z^*(p_2) \to e^+(q_1)e^-(q_2), \ \mu^+\mu^-$, define: $O_{CP} \sim (\vec{p}_1 - \vec{p}_2) \cdot (\vec{q}_1 \times \vec{q}_2),$ or $\cos \theta = \frac{(\vec{p}_1 - \vec{p}_2) \cdot (\vec{q}_1 \times \vec{q}_2)}{|\vec{p}_1 - \vec{p}_2||\vec{q}_1 \times \vec{q}_2)|}.$ E.g. 2: $H \to t(p_t)\overline{t}(p_{\overline{t}}) \to e^+(q_1)\nu_1 b_1, \ e^-(q_2)\nu_2 b_2.$ $-\frac{m_t}{v}\overline{t}(a + b\gamma^5)t \ H$ $O_{CP} \sim (\vec{p}_t - \vec{p}_{\overline{t}}) \cdot (\vec{p}_{e^+} \times \vec{p}_{e^-}).$

thus define an asymmetry angle.