
Homework Assignments for Collider Physics
Tao Han, Aug. 30−Sept. 3, 2010, BUSSTEPP, Swansea U.

A partial list of assignments accompanying the lectures.

Lecture I: Colliders and Detectors

Exercise 1.1: For a π0, µ−, or a τ− respectively, calculate its decay length if the particle

has an energy E = 10 GeV.

Exercise 1.2: An event was identified to have a µ+ and a µ− along with some missing

energy. What can you say about the kinematics of the system of the missing particles?

Consider for both an e+e− and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative errors of energy-

momentum measurements for an electron by an electromagnetic calorimetry (∆E/E) and

for a muon by tracking (∆p/p) at energies of E = 50 GeV and 500 GeV, respectively.

Exercise 1.4: A 120 GeV Higgs boson will have a production cross section of 20 pb at

the LHC. How many events per year do you expect to produce for the Higgs boson with a

designed LHC luminosity 1033/cm2/s? Do you expect it to be easy to observe and why?

Lecture II: Basic Techniques and Tools

Exercise 2.1: Assume that ma = m1 and mb = m2. Show that

t = −2p2
cm(1 − cos θ∗a1),

u = −2p2
cm(1 + cos θ∗a1) +

(m2
1 − m2

2)
2

s
,

pcm = λ1/2(s, m2
1, m

2
2)/2

√
s is the momentum magnitude in the c.m. frame.

Note: t is negative dfinite; t → 0 in the collinear limit.

Exercise 2.2: A particle of mass M decays to two particles isotropically in its rest frame.

What does the momentum distribution look like in a frame in which the particle is moving

with a speed βz? Compare the result with your expectation for the shape change for a basket

ball.
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Exercise 2.3: A particle of mass M decays to 3 particles M → abc. Show that the

phase space element can be expressed as

dPS3 =
1

27π3
M2dxadxb.

xi =
2Ei

M
, (i = a, b, c,

∑

i

xi = 2).

where the integration limits for ma = mb = mc = 0 are

0 ≤ xa ≤ 1, 1 − xa ≤ xb ≤ 1.

Exercise 2.4: Consider a three-body decay of a top quark, t → bW ∗ → b eν. Making use of

the phase space recursion relation and the narrow width approximation for the intermediate

W boson, show that the partial decay width of the top quark can be expressed as

Γ(t → bW ∗ → b eν) ≈ Γ(t → bW ) · BR(W → eν).

Exercise 2.5: Appreciate the properties (a) partial wave unitarity and (b) kinematical

threshold behavior by explicitly calculating the helicity amplitudes for

e−Le+
R → γ∗ → H−H+, e−Le+

L,R → γ∗ → µ−

Lµ+
R, H−H+ → G∗ → H−H+.

Lecture III(a): Linear Collider

Exercise 3.1: For a resonant production e+e− → V ∗ with a mass MV and total width

ΓV , derive the Breit-Wigner formula

σ(e+e− → V → X) =
4π(2j + 1)Γ(V → e+e−)Γ(V → X)

(s − M2
V )2 + Γ2

V M2
V

s

M2
V

,

Consider a beam energy spread ∆ in Gaussian distribution

dL

d
√

ŝ
=

1√
2π ∆

exp[
−(

√
ŝ −

√
s)2

2∆2
],

obtain the appropriate cross section formulas for (a) ∆ ≪ ΓV (resonance line-shape) and

(b) ∆ ≫ ΓV (narrow-width approximation).

Exercise 3.3: Derive the Weizsäcker-Williams spectrum for a photon with an energy xE

off an electron with an energy E

Pγ/e(x) ≈
α

2π

1 + (1 − x)2

x
ln

E2

m2
e
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Lecture III(b): Hadron Collider

Exercise 4.1: For a four-momentum p ≡ pµ = (E, ~p), define

ET =
√

p2
T + m2, p2

T = p2
x + p2

y, y =
1

2
ln

E + pz

E − pz

,

then show pµ = (ET cosh y, pT cos φ, pT sin φ, ET sinh y),

and,
d3~p

E
= pT dpT dφ dy = ET dET dφ dy.

Due to the random boost between the Lab-frame (O) and the c.m. frame (O′) for every

event,

y′ =
1

2
ln

E ′ + p′z
E ′ − p′z

=
1

2
ln

(1 − βcm)(E + pz)

(1 + βcm)(E − pz)
= y − ycm,

where βcm and ycm are the speed and rapidity of the c.m. frame w.r.t. the lab frame.

In the massless limit, the rapidity y defines the pseudo-rapidity:

y → η =
1

2
ln

1 + cos θ

1 − cos θ
= ln cot

θ

2
.

Exercise 4.3: Let the pp c.m. energy be S, and the two partons 1 and 2 have energy

momentum fractions x1 and x2, respectively. Then

s ≡ τS, τ = x1x2 =
s

S
. ycm =

1

2
ln

x1

x2

.

The parton energy fractions are thus given by

x1,2 =
√

τ e±y
cm.

The integration over the energy fractions can be rewritten in terms of the other two variables

as

∫

1

τ0
dx1

∫

1

τ0/x1

dx2 =
∫

1

τ0
dτ

∫

−
1

2
ln τ

1

2
ln τ

dycm.

τ0 = m2
res/S and mres the threshold for the parton final state.

Lecture IV: Kinematics

Exercise 5.1: For a two-body massless final state with an invariant mass squared s, show

that

dσ̂

dpT

=
4pT

s
√

1 − 4p2
T /s

dσ̂

d cos θ∗
.
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where pT = p sin θ∗ is the transverse momentum and θ∗ is the polar angle in the c.m. frame.

Comment on the apparent singularity at p2
T = s/4.

Exercise 5.2: Show that for the decay W− → e−ν̄e, the transverse mass has end points

0 ≤ m2
eν T ≡ (EeT + EνT )2 − (~peT + ~pνT )2 ≤ m2

eν .

Exercise 5.3: Show that if W/Z has some transverse motion, δPV , then, p′eT ∼ peT [1 +

δPV /EV ], m′2
eν T ∼ m2

eν T [1 + (δPV /EV )2], m
′2
ee = m2

ee.

Exercise 5.4: Consider a squark cascade decay to on-shell neutralinos:

q̃ → q χ̃0
2 → q ℓ+ℓ− χ̃0

1.

�~q ~�01l+q ~�02 Z l�
Show the existence of the kinematical end-points in invariant mass distributions

1st edge : Mmax(ℓℓ) = Mχ0

2

− Mχ0

1

;

2nd edge : Mmax(ℓℓj) = Mq̃ − Mχ0

1

.
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