Homework Assignments for Collider Physics

Tao Han, Aug. 30-Sept. 3, 2010, BUSSTEPP, Swansea U.

A partial list of assignments accompanying the lectures.

Lecture I: Colliders and Detectors

Exercise 1.1: For a π^{0}, μ^{-}, or a τ^{-}respectively, calculate its decay length if the particle has an energy $E=10 \mathrm{GeV}$.

Exercise 1.2: An event was identified to have a μ^{+}and a μ^{-}along with some missing energy. What can you say about the kinematics of the system of the missing particles? Consider for both an $e^{+} e^{-}$and a hadron collider.

Exercise 1.3: Electron and muon measurements: Estimate the relative errors of energymomentum measurements for an electron by an electromagnetic calorimetry $(\Delta E / E)$ and for a muon by tracking $(\Delta p / p)$ at energies of $E=50 \mathrm{GeV}$ and 500 GeV , respectively.

Exercise 1.4: A 120 GeV Higgs boson will have a production cross section of 20 pb at the LHC. How many events per year do you expect to produce for the Higgs boson with a designed LHC luminosity $10^{33} / \mathrm{cm}^{2} / \mathrm{s}$? Do you expect it to be easy to observe and why?

Lecture II: Basic Techniques and Tools

Exercise 2.1: Assume that $m_{a}=m_{1}$ and $m_{b}=m_{2}$. Show that

$$
\begin{aligned}
t & =-2 p_{c m}^{2}\left(1-\cos \theta_{a 1}^{*}\right) \\
u & =-2 p_{c m}^{2}\left(1+\cos \theta_{a 1}^{*}\right)+\frac{\left(m_{1}^{2}-m_{2}^{2}\right)^{2}}{s}
\end{aligned}
$$

$p_{c m}=\lambda^{1 / 2}\left(s, m_{1}^{2}, m_{2}^{2}\right) / 2 \sqrt{s}$ is the momentum magnitude in the c.m. frame.
Note: t is negative dfinite; $t \rightarrow 0$ in the collinear limit.
Exercise 2.2: A particle of mass M decays to two particles isotropically in its rest frame. What does the momentum distribution look like in a frame in which the particle is moving with a speed β_{z} ? Compare the result with your expectation for the shape change for a basket ball.

Exercise 2.3: A particle of mass M decays to 3 particles $M \rightarrow a b c$. Show that the phase space element can be expressed as

$$
\begin{aligned}
& d P S_{3}=\frac{1}{2^{7} \pi^{3}} M^{2} d x_{a} d x_{b} . \\
& x_{i}=\frac{2 E_{i}}{M}, \quad\left(i=a, b, c, \sum_{i} x_{i}=2\right) .
\end{aligned}
$$

where the integration limits for $m_{a}=m_{b}=m_{c}=0$ are

$$
0 \leq x_{a} \leq 1, \quad 1-x_{a} \leq x_{b} \leq 1
$$

Exercise 2.4: Consider a three-body decay of a top quark, $t \rightarrow b W^{*} \rightarrow b e \nu$. Making use of the phase space recursion relation and the narrow width approximation for the intermediate W boson, show that the partial decay width of the top quark can be expressed as

$$
\Gamma\left(t \rightarrow b W^{*} \rightarrow b e \nu\right) \approx \Gamma(t \rightarrow b W) \cdot B R(W \rightarrow e \nu)
$$

Exercise 2.5: Appreciate the properties (a) partial wave unitarity and (b) kinematical threshold behavior by explicitly calculating the helicity amplitudes for

$$
e_{L}^{-} e_{R}^{+} \rightarrow \gamma^{*} \rightarrow H^{-} H^{+}, \quad e_{L}^{-} e_{L, R}^{+} \rightarrow \gamma^{*} \rightarrow \mu_{L}^{-} \mu_{R}^{+}, \quad H^{-} H^{+} \rightarrow G^{*} \rightarrow H^{-} H^{+}
$$

Lecture III(a): Linear Collider

Exercise 3.1: For a resonant production $e^{+} e^{-} \rightarrow V^{*}$ with a mass M_{V} and total width Γ_{V}, derive the Breit-Wigner formula

$$
\sigma\left(e^{+} e^{-} \rightarrow V \rightarrow X\right)=\frac{4 \pi(2 j+1) \Gamma\left(V \rightarrow e^{+} e^{-}\right) \Gamma(V \rightarrow X)}{\left(s-M_{V}^{2}\right)^{2}+\Gamma_{V}^{2} M_{V}^{2}} \frac{s}{M_{V}^{2}},
$$

Consider a beam energy spread Δ in Gaussian distribution

$$
\frac{d L}{d \sqrt{\hat{s}}}=\frac{1}{\sqrt{2 \pi} \Delta} \exp \left[\frac{-(\sqrt{\hat{s}}-\sqrt{s})^{2}}{2 \Delta^{2}}\right]
$$

obtain the appropriate cross section formulas for (a) $\Delta \ll \Gamma_{V}$ (resonance line-shape) and (b) $\Delta \gg \Gamma_{V}$ (narrow-width approximation).

Exercise 3.3: Derive the Weizsäcker-Williams spectrum for a photon with an energy $x E$ off an electron with an energy E

$$
P_{\gamma / e}(x) \approx \frac{\alpha}{2 \pi} \frac{1+(1-x)^{2}}{x} \ln \frac{E^{2}}{m_{e}^{2}}
$$

Lecture III(b): Hadron Collider

Exercise 4.1: For a four-momentum $p \equiv p^{\mu}=(E, \vec{p})$, define

$$
E_{T}=\sqrt{p_{T}^{2}+m^{2}}, \quad p_{T}^{2}=p_{x}^{2}+p_{y}^{2}, \quad y=\frac{1}{2} \ln \frac{E+p_{z}}{E-p_{z}}
$$

then show $p^{\mu}=\left(E_{T} \cosh y, p_{T} \cos \phi, p_{T} \sin \phi, E_{T} \sinh y\right)$,

$$
\text { and, } \frac{d^{3} \vec{p}}{E}=p_{T} d p_{T} d \phi d y=E_{T} d E_{T} d \phi d y
$$

Due to the random boost between the Lab-frame (O) and the c.m. frame $\left(O^{\prime}\right)$ for every event,

$$
y^{\prime}=\frac{1}{2} \ln \frac{E^{\prime}+p_{z}^{\prime}}{E^{\prime}-p_{z}^{\prime}}=\frac{1}{2} \ln \frac{\left(1-\beta_{c m}\right)\left(E+p_{z}\right)}{\left(1+\beta_{c m}\right)\left(E-p_{z}\right)}=y-y_{c m},
$$

where $\beta_{c m}$ and $y_{c m}$ are the speed and rapidity of the c.m. frame w.r.t. the lab frame.
In the massless limit, the rapidity y defines the pseudo-rapidity:

$$
y \rightarrow \eta=\frac{1}{2} \ln \frac{1+\cos \theta}{1-\cos \theta}=\ln \cot \frac{\theta}{2} .
$$

Exercise 4.3: Let the $p p$ c.m. energy be S, and the two partons 1 and 2 have energy momentum fractions x_{1} and x_{2}, respectively. Then

$$
s \equiv \tau S, \quad \tau=x_{1} x_{2}=\frac{s}{S} . \quad y_{c m}=\frac{1}{2} \ln \frac{x_{1}}{x_{2}} .
$$

The parton energy fractions are thus given by

$$
x_{1,2}=\sqrt{\tau} e^{ \pm y_{c m}} .
$$

The integration over the energy fractions can be rewritten in terms of the other two variables as

$$
\int_{\tau_{0}}^{1} d x_{1} \int_{\tau_{0} / x_{1}}^{1} d x_{2}=\int_{\tau_{0}}^{1} d \tau \int_{\frac{1}{2} \ln \tau}^{-\frac{1}{2} \ln \tau} d y_{c m}
$$

$\tau_{0}=m_{\text {res }}^{2} / S$ and $m_{\text {res }}$ the threshold for the parton final state.

Lecture IV: Kinematics

Exercise 5.1: For a two-body massless final state with an invariant mass squared s, show that

$$
\frac{d \hat{\sigma}}{d p_{T}}=\frac{4 p_{T}}{s \sqrt{1-4 p_{T}^{2} / s}} \frac{d \hat{\sigma}}{d \cos \theta^{*}}
$$

where $p_{T}=p \sin \theta^{*}$ is the transverse momentum and θ^{*} is the polar angle in the c.m. frame. Comment on the apparent singularity at $p_{T}^{2}=s / 4$.

Exercise 5.2: Show that for the decay $W^{-} \rightarrow e^{-} \bar{\nu}_{e}$, the transverse mass has end points

$$
0 \leq m_{e \nu T}^{2} \equiv\left(E_{e T}+E_{\nu T}\right)^{2}-\left(\vec{p}_{e T}+\vec{p}_{\nu T}\right)^{2} \leq m_{e \nu}^{2} .
$$

Exercise 5.3: Show that if W / Z has some transverse motion, δP_{V}, then, $p_{e T}^{\prime} \sim p_{e T}[1+$ $\left.\delta P_{V} / E_{V}\right], m_{e \nu T}^{\prime 2} \sim m_{e \nu T}^{2}\left[1+\left(\delta P_{V} / E_{V}\right)^{2}\right], m_{e e}^{\prime 2}=m_{e e}^{2}$.

Exercise 5.4: Consider a squark cascade decay to on-shell neutralinos:

$$
\tilde{q} \rightarrow q \tilde{\chi_{2}^{0}} \rightarrow q \ell^{+} \ell^{-} \tilde{\chi_{1}^{0}}
$$

Show the existence of the kinematical end-points in invariant mass distributions

$$
\begin{aligned}
& 1^{\text {st }} \text { edge }: M^{\max }(\ell \ell)=M_{\chi_{2}^{0}}-M_{\chi_{1}^{0}} \\
& 2^{\text {nd }} \text { edge }: \\
& M^{\max }(\ell \ell j)=M_{\tilde{q}}-M_{\chi_{1}^{0}} .
\end{aligned}
$$

