
Particle Physics and Cosmology: Experiment 1

Solar Models

Introduction
In the astrophysics course last year we discussed the equations that govern the struc-

ture of stars. These equations are summarised below, but you should remind yourself of
the details and the assumptions that were made.

The pressure, P, mass inside radius r, M, temperature , T, density, ρ, and luminosity,
L, are determined by

dP

dr
= −ρGM(r)

r2 ,

dM

dr
= 4πr2ρ,

P = nkT/V = ρkT/M,

dL

dr
= 4πr2ρε(r)

and

L(r) = −16πacr2T 3

3κρ
dT

dr
,

where κ is the opacity and ε the energy production rate.
The aim of this experiment is to solve these equations numerically and determine

the form of the main sequence section of the Hertzsprung-Russell diagram. You can use
Mathematica or write your own turbobasic/C/fortran code.

Part A: Getting Started
Using your Mathematica notes from Level 1 or your PH204 notes and the notes at the

end of this script, write a program to solve simple first order differential equations. Test
your code by numerically solving equations that you can solve analytically and compare
the results. There are sufficient differential equations for everyone to use a different one!

Part B: Solar Models
Once you are familiar with the numerical solution of simple differential equations,

input the solar model equations. Test the solutions giving suitable opacity laws and energy
production rates, i.e. make the equations soluble analytically and compare results.

When the code has been tested, construct some stars. You need to give the central
pressure and central temperature of the star to fix the boundary conditions for the equa-
tions. If you guess values for both of these the solutions will be unphysical, but by varying
one of these parameters you can search for a physical solution. A simple search strategy,
such as bisection, will allow you to build a star. Once you have a physical solution, record
the features of your star. Now change the second parameter and build another star.

You should examine the effects of varying opacity laws, energy production rates and
compositions. Can our simple model reproduce a star of the same mass and luminosity as
the Sun?
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Brief Notes on Mathematica
Mathematica is a symbolic manipulation package. It is much more powerful than a

standard number cruncher, although this all we are using it for here.
Basics to get you going:

x=y sets x to be the value of y now ( just as in turbobasic)
x := y sets x to be the value of y every time x is needed, i.e. it uses the value of y at

the time x is required.
(* comments are surrounded like this *)
Keywords have capital first letters - you should use lower case
Don’t use statements like x=x+1, in Mathematic as in real maths this is nonsense
x == y sets up an equation ( like x=y in real maths)
NDSolve[ {y′[x] == x, y[0] == 0}, {y}, {x, 0, 10}] Numerical Solves the Differential

equation dy
dx = x for y with the boundary condition y(0)=0 in the range x=0 to x=10.

/. % uses the previous result
/. %% uses the last but one result
Plot[Sin[x], {x, 0, 4}] plots sin(x) between x=0 and x=4.
See the sample codes for examples.

Using Fortran or C

If you are using an unfamiliar language, try the ’hello world’ approach: Using either
sample code or a book as a guide to syntax, write code to do the following:
• write ’hello world’ on the screen,
• write ’hello world’ to a file,
• use a ’do’ or ’for’ loop to write the numbers 1 to 10 on the screen,
• use an ’if’ statement to write the numbers between 1 and 10 that are more than 2
away from 5 on the screen,
• use a subroutine to apply the test used above,
• use the code to solve simple differential equations then do the star.

2



Opacity and Energy Production
From your astrophysics notes we know that the energy production rate per unit volume

is of the from
rate = Bρ2T−2/3e−α/T

1/3

with

α = 3
(q2

1q
2
2e

4 m1m2
m1+m2

25kε20h̄
2

)1/3
where the q’s are the charges of the participating nuclei (in terms of the electron charge)
and the m’s are their masses. The rate determining step is proton +proton→ deuteron +
positron + neutrino. For this reaction q1 = q2 = 1 and m1 = m2, giving

α = 3.38× 103K1/3

The energy production rate per unit mass, ε, is simply the above rate divided by the
density. Note that ε is proportinal to the density (if the density doubles there are twice as
many particles in the volume each or which has twice as many particles to interact with).
We can find the constant B from books, e.g. Bahcall ’Neutrino Astrophysics’ , which gives
ε/ρ = 1.2× 10−8 W/kg/(kg/m3) at T = 1.54× 107K. If we set Tref = 1.54× 107 we can
write

ε

ρ
= 1.2× 10−8T

−2/3e−α/T
1/3

T
−2/3
ref e−α/T

1/3
ref

Note that this has the correct dependence on T and matches the calibration value at
T = Tref .

For the opacity we use the three approximations discussed in the astrophysics lectures:

κ1 = constant , κ2 = β
ρ

T 3.5 , κ3 = γ
√
ρT 4.

To set the constants we again use a plot from Taylor’s book (page 101). We can directly
read off

κ1 = 10−1.6.

The approximations κ2 and κ3 are equal at T = Tref = 104.57K for ρ = ρref = 0.1kg m−3

where they both have the value 104 m2kg−1. Thus we

κ2 = 104 ρ

ρref

(Tref
T

)3.5
κ3 = 104

√
ρ

ρref

( T

Tref

)4
The last thing is to decide which form is appropriate.

We want κ3 if κ3 < κ2
We want κ2 if κ2 < κ3 and κ2 > κ1
We want κ1 if κ2 < κ3 and κ1 > κ2
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We use mathermatica’s Sign function to do this. Sign[positive number] =1 and Sign[negative
number] =-1. Thus

1 + Sign[x]
2

=
{ 1 x > 0

0 x < 0

The functions check1 and check2 are ±1 depending on the relative values of the κ’s.
we can then use expressions like the one above to set kappa[r] equal to the appropriate
approximation. Work through the algebra for all three cases if you don’t believe me!

Chasing the Initial Conditions
For a fixed central temperature, if the central pressure is too low we have a low density

gas cloud. The density profile will fall as r−2 at large distances and the temperature will
become constant. The outer regions form an isothermal sphere. The only physical problem
with this is that the gas cloud is of infinite extent. In reality there will be some limit to
the size of the cloud and the edge will be in contact with cold empty space. The gas cloud
will therefore loose energy and, according to the Virial theorem, contract and get hotter.
Thus in some sense we have produced an embryonic star. We are however interested in
stars on the main sequence, so we do in the code what nature would do, i.e. we increase
the central pressure.

For a fixed central temperature, if the central pressure is too high it all goes horribly
wrong! The temperature drops to zero while the pressure is finite. The ideal gas equation
then produces an infinite density and the code falls over- look out for the ’singularity
suspected’ error message. This tells you that the pressure is too high.

Once you have a pressure that is too high and one that is too low, hunt for the
ideal pressure by bisection. The closer you get to the ideal pressure the less dense the
isothermal sphere surrounding the star becomes. For pressures below the ideal pressure
(i.e. ones that don’t give singularities) look at the mass profile. On large length scales the
mass is dominated by the isothermal sphere and looks linear. However, on smaller scales
you should see an initial accelerating growth followed by a slowing down. At the ideal
pressure the mass profile would become a constant beyond the edge of the star. You don’t
have to get exactly the correct pressure to see the profile turning over. Once you have a
clear turnover estimate the mass and luminosity of your star.
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