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Motivation

The most interesting regime of QCD where

chiral symmetry breaking and confinement

occurs is non-perturbative. Unfortunately, it is

difficult to derive analytical results in this

regime.

In supersymmetric theories the situation is

much better (due to holomorphicity): we can

derive exact non-perturbative results in N = 1

Super Yang-Mills and in Super QCD.

It would be fantastic if we could use the

knowledge that we accumulated in

supersymmetric QCD and use it for real QCD !
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Motivation - continuation

In these lectures I will present a method, called

“planar equivalence”, which enables us to copy

results from supersymmetric theories to QCD.

I have decided to organize the lectures as

follows:

Lecture number 1: what do we know about

N = 1 SYM ?

Lecture number 2: What is orientifold planar

equivalence ?

Lecture number 3: Supersymmetry relics in

QCD
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The N = 1 Super Yang-Mills Lagrangian

N = 1 Super Yang-Mills is a theory which

consists of a gluon and a gluino. The gluino is

the “superpartner” of the gluon. It is a

four-component Majorana (real) fermion

transforming in the adjoint representation of

the gauge group. We will focus on SU(N).

The Lagrangian of N = 1 SYM is

L = −
1

4g2
F a

µνF a
µν +

i

2g2
λ̄aDµγµλa

The Lagrangian looks exactly as the

Lagrangian of QCD with one quark flavor,

except that in the present case the quark field

(denoted by λ) transforms in the adjoint

representation.

The theory is expected to confine and to have a

mass-gap of degenerate color-singlets

(“glueballs” and “glueballinos”).
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UR(1) and the axial anomaly

The SYM theory admits, at the classical level,

a U(1) axial symmetry (similar to the UA(1) in

QCD), often called “R-symmetry”, of the form

(using the Weyl notation)

λα → eiβλα

The associated Noether current is

Jµ = 1
g2 λ̄γµγ5λ. The UR(1) symmetry is

broken by the triangle anomaly

SU(N)

SU(N)

    U (1)
R

∂µJµ =
N

16π2
F a

µνF̃ a
µν
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The UR(1) anomaly

Notice that the anomaly is proportional to N ,

since the gluino transforms in the adjoint

representation and tr T aT b = Nδab (in contrast

to QCD where the quarks are in the

fundamental and the axial anomaly is not

proportional to N , since tr tatb = 1
2
δab).

Thus,

UR(1) → Z2N

Namely, a residual transformation of the form

λ → eiπ k
N λ

leaves the partition function invariant.
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The fate of the Z2N symmetry

Witten conjectured in 1982 (Witten, 1982) that

the Z2N symmetry is spontaneously broken

down to Z2.

That indeed happens and the result is a theory

with N vacua, where the gluino condensate

serves as the order parameter of the breaking,

namely

〈λαλα〉k = const.Λ3ei2π k
N

where k = 0, ..., N − 1 labels the various vacua.

How do we know that a gluino condensate is

formed and that Z2N → Z2 ?

An evidence for the existence of a gluino

condensate follows from the

Veneziano-Yankielowicz effective action.
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The Veneziano-Yankielowicz effective action

In 1982, from anomaly considerations,

Veneziano and Yankielowicz wrote an effective

action for N = 1 SYM, (Veneziano,

Yankielowicz, 1982). The fundamental

(super)-field that appears in their Lagrangian

is S = λλ. The Lagrangian for S is

I = N(S log S/Λ3 − S) .

The equation of motion for S is

N log S/Λ3 = c .

Hence

(S/Λ3)N = c′ ,

or

〈S〉 = 〈λλ〉 = c′′Λ3ei2π k
N .

The Veneziano-Yankielowicz Lagrangian does

not fix the value of the gluino condensate, it

only demonstrates its non-vanishing.

In order to fix the value of the gluino

condensate a calculation is needed.
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The gluino condensate

There are various methods of calculating the

gluino condensate. (Shifman and Vainshtein,

1988), (Seiberg and Witten, 1994), (Davies,

Hollowood, Khoze and Mattis, 1999)

All the methods rely on holomorphy. I prefer

the last method where the authors compactified

the theory on a small circle to make the theory

weakly coupled. They calculated the gluino

condensate by showing that 〈λλ〉 is saturated

solely by monopoles. Then they showed that

the value does not depend on the radius of the

circle, due to holomorphicity. So, they could

de-compactify the theory to obtain

〈λλ〉k = −6NΛ3ei2π k
N .

The gluino condensate is analogous to the

quark condensate 〈q̄q〉 in QCD. The calculation

of such a quantity is a great achievement !
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The NSVZ beta function

By analyzing the response of the coupling to

the variation of the UV-cutoff in the expression

for the gluino condensate, NSVZ obtained an

important result: the exact beta function

(Novikov, Shifman, Vainshtein and Zakharov,

1983)

β(g) = −
g3

16π2

3N

1 − g2N
8π2

The NSVZ beta function is exact to all orders

in perturbation theory. The first two

coefficients are universal (namely scheme

independent) and they match the explicit one

and two loop calculations.

The generalized NSVZ beta function for

super-QCD played a central role in fixing the

conformal window in SQCD and in the

derivation of Seiberg duality (Seiberg, 1994).
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Intermediate summary

So far, we learnt that N = 1 SYM has an

interesting and rich structure.

The vacuum structure of the theory is depicted

in the figure below

SU(8)  N=1 Super Yang−Mills
      The Vacuum Structure of 

We know several exact results about the theory:

i. There are N degenerate vacua.

ii. A gluino condensate 〈λλ〉 is formed and we

know its exact value.

iii. The all orders (NSVZ) beta function is also

known.

What else do we know about N = 1 SYM ?
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Domain Walls

When a discrete symmetry, such as Z2N is

spontaneously broken, there exists domain

walls which interpolate between the various

vacua of the theory, see the figure below

  
Domain Walls in SU(8)
N=1 Super Yang−Mills

fundamental wall

4−wall

The domain walls are (2+1) dimensional

objects, localized at, say x3 = z. The

“fundamental” wall interpolates between

neighbouring vacua, whereas a k-wall “skips” k

vacua, as depicted in the figure.

We can think about the k-wall as a bound state

of k elementary walls.
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Domain Walls Tension

The tension of a k-wall is given by (Dvali and

Shifman, 1996) the difference between the

values of the gluino condensate in the given

vacua

Tk =
N

8π2
|〈λλ〉l+k − 〈λλ〉l| =

3N2

2π2
Λ3 sin(π

k

N
)

Note that when k is kept fixed and N → ∞,

Tk ∼ kT1 and also T1 ∼ NΛ3.

It means that in the large-N limit the k-wall

becomes a collection of k non-interacting

fundamental domain walls.

The tension of each fundamental domain wall is

proportional to N . This is surprising since

solitons in a theory with adjoint matter should

carry a tension ∼ N2.

In fact, every quantity (at least in perturbation

theory, or semiclassically) should depend on

N2. This observation led to a bold conjecture

by Witten ...
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Domain Walls as D-branes

In 1998 Witten argued that the N = 1 SYM

domain walls are QCD D-branes.

What does it mean ?

Usually we think about (a large-N) gauge

theory as a string theory of closed and open

strings. The closed strings are identified with

flavor singlets - the glueballs of the theory,

whereas the open strings are identified with

mesons.

But now we know that in string theory there

exists extended objects which are called

”branes”. Thus, if N = 1 SYM is described by

(or dual to a) string theory, where are the

D-branes in field theory ? Witten argue that

these are the domain walls.
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Domain Walls as D-branes

In string theory D-branes carry the following

character

i. They are non-perturbative objects. Their

tension is T ∼ 1
gstring

.

ii. An open string can end on a D-brane.

      D−Brane

open string

iii. D-branes interact by an exchange of closed

strings.

15



Domain Walls as D-branes

Witten noticed that the tension of the

fundamental domain wall is T1 ∼ N (at

large-N). By using the relation between field

theory and string theory gstring ∼ 1
N

, we

observe that the domain wall tension matches

the expectation from a D-brane.

Moreover, Witten argued that the QCD-string

(flux tube) can end on the domain wall, in the

same way that the open-string ends on a

D-brane.

Finally, together with Shifman (Armoni and

Shifman, 2003) we showed how domain wall

interact via an exchange of glueballs. In fact,

at large-N there is a cancellation between the

attraction due to an exchange of even-parity

glueballs and the repulsion due to an exchange

of odd-parity glueballs.

This is similar to the cancellation of the

interaction between parallel D-branes (dilaton

and graviton against RR-fields).
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The Acharya-Vafa theory

It is well known in string theory, that when

Dp-branes coincide there appears a (p + 1)

dimensional field theory “on the branes”.

If domain walls are the “QCD D-branes”, does

something similar happen on the domain wall ?

It was argued by Acharya and Vafa that this is

indeed the case (Acharya and Vafa, 2001). The

field theory on the k wall was argued to be a

U(k) gauge theory which contains a level N

Chern-Simons term

LAcharya−Vafa =
1

2g2
tr

(

−
1

2
F 2

mn − (Diφ)2

+Nεijk(Ai∂jAk +
1

3
AiAjAk) + fermions

)
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The Potential between Domain-Walls

By using the Acharya-Vafa theory, it is possible

to calculate the force between domain walls

(Armoni and Hollowood, 2005, 2006).

As in standard D-branes physics, the vev of the

scalar, x ≡ 〈φ〉, parametrizes the distance

between domain walls.

A Coleman-Weinberg effective potential for φ,

is interpreted as the potential between a pair of

parallel domain walls

It turns out that the one-loop effective

potential vanishes and we had to perform a

two-loops calculation. The result is

V (x) ∼
1

N

x2

1 + x2
.
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Summary

Today we learnt quite a lot about N = 1 SYM

i. The theory posses N degenerate vacua.

ii. Gluino condensation is formed

〈λλ〉k = −6NΛ3ei2π k
N .

iii. βNSVZ(g) = − g3

16π2

3N

1−
g2N

8π2

.

iv. There exists domain walls whose tension is

Tk = N
8π2 |〈λλ〉l+k − 〈λλ〉l| = 3N2

2π2 Λ3 sin(π k
N

).

v. Domain walls are “QCD D-branes”.

Tomorrow we will learn one more thing about

N = 1 SYM:

We can use some of the above results for QCD !
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