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Introduction

Since the recent discovery of the relation

between noncommutative field theories and

string theory (Connes, Douglas, Schwarz and

Seiberg, Witten) there was a lot of activity in

this field.

Noncommutative theories are realized by

replacing the ordinary multiplication by a

∗-product

f ? g(x) = e
i
2 θµν∂(ξ)

µ ∂(η)
ν f(x+ ξ)g(x+ η)|ξ,η→0.

This modification of the Lagrangian affects

the Feynman rules, by adding a momenta

dependent phase to each vertex.

θexp  i k    p 

k p

k+p
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The change in the Feynman rules leads to the

following interesting consequences:

(i). Planar graphs of the noncommutative

theory differ from the planar graphs of the

commutative theory only by global phases and

therefore contain the same UV divergences as

of the commutative theory (Gonzalez-Arroyo

et.al., Filk).

(ii). One loop nonplanar graphs are UV finite.

Accordingly, anomalies can be also classified

as planar or nonplanar.

Planar Anomaly in 4d Nonplanar Anomaly in 4d

(In a theory with bifundamental fermions the

nonplanar graph is related to a mixed anomaly

U2(N)U(M).)
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Planar anomalies are well understood. The

’planar’ axial current (related to the planar

vertex in the planar graph) is anomalous

Dµj
µ
A = −

g2

8π2
Fµν ? F̃

µν

The anomalies which are related to nonplanar

graphs are less understood. In particular, it

was claimed (Intriligator, Kumar) that this

anomaly vanishes since the associated integral

is UV finite and one can shift the integration

variable.

In particular, if this analysis is correct, the

“good” global anomaly which is responsible for

the decay process π0 → γγ is forbidden.

Therefore noncommutativity (even at the

GUT scale) is excluded in nature !
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Our suggestion is different.

Indeed for any non-zero noncommutative

momentum θq which flows through the

nonplanar vertex

qµj
µ
A(−q) = 0

However, for θq = 0 we have a non-zero

anomaly which takes the following form
∫

d2xNC ∂µj
µ
A = −

g2

8π2

∫

d2xNC FµνF̃
µν

The whole anomaly is “concentrated” in the

zero noncommutative momentum !

The axial charge is not conserved and

therefore the pion decay is not forbidden.
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Our suggestion for the solution of the pion

decay issue raises an immediate paradox.

Consider a noncommutative theory, that

originates from a decoupling (Seiberg-Witten)

limit of string theory. Suppose that some

U(1)’s are anomalous. A theory with

anomalous local symmetry is not consistent.

In the usual commutative case, string theory

resolves the problem by giving a string scale

mass to these U(1)’s such that they ’look’

global to the low-energy observer. The gauge

symmetry becomes SU(N).

This kind of solution seems to be excluded in

the noncommutative case since SU(N)

noncommutative theories are inconsistent.
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Noether procedure and axial currents

Consider a noncommutative U(1) gauge theory

with a massless Dirac fermion in the

fundamental representation

S = i

∫

d4x ψ̄ ? 6Dψ ,

where Dµψ=∂µψ+igAµ?ψ. The action is

invariant under global axial transformations

δαψ(x) = i α γ5ψ(x) . We have two possible

choices of currents (due to the cyclicity

property
∫

f ∗ g =
∫

g ∗ f)

i) jµ
A = ψ̄ ∗ γµγ5ψ , ii) j′µA = −ψt(γµγ5)t ∗ ψ̄t .

jA is gauge invariant, whereas j ′A is gauge

covariant. The two currents satisfy, classically,

i) ∂µj
µ
A = 0 , ii) Dµj

′µ
A = ∂µj

′µ
A +ig [Aµ, j

′µ
A ]∗ = 0 .
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j′A (the “planar” current) satisfies a local

anomaly equation

Dµj
′µ
A = −

g2

16π2
εµνρσFµν ∗ Fρσ .

The gauge invariant current jA cannot satisfy

a similar equation, since the r.h.s. is not gauge

invariant (Fµν is not gauge invariant even for

the Abelian theory).

But, due to the cyclic symmetry of the

?-product under integration, both currents

define the same gauge invariant charge

Q =

∫

dx j0A =

∫

dx j′ 0A .

The anomaly equation implies that Q is not

conserved. If at the same time the divergence

of jA did vanish, we would encounter a

contradiction. This problem does not arise

when jA satisfies instead the integral anomaly

equation.
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Nonplanar anomalies - 2d example

Consider the nonplanar anomaly diagram in

2d Euclidean space

The 2d anomaly and the vacuum polarization

are related to each other Aρν = ερµΠµν due to

the special properties of the Dirac algebra in

2d.

gµνΠµν(q) =

4(d− 2)
∫ 1

0
dx

∫

ddl
(2π)d

l2−x(1−x)q2

(l2+x(1−x)q2)2 exp ilθq

which vanishes, unless θq = 0.
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Nonplanar anomalies - a perturbative

calculation

Consider the nonplanar anomaly diagram in 4d

The expression is
∫

d4l
(2π)4 exp 2ilθq tr

(

exp ikθp γ5 6l
l2
γλ (6l+6k)

(l+k)2 γ
ν−

exp−ikθp γ5 6l
l2
γν (6l+6p)

(l+p)2 γ
λ
)

with qµ the

momentum of the axial current and pν , kµ the

momenta of the vector currents. A second

contribution with a similar form, but with

(p, ν) interchanged with (k, µ), cancels the

above expression.

So, it seems that indeed noncommutativity

leads to a vanishing anomaly.
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However, in arriving to the above expression,

we shifted the integration variable l. This is

legitimate only for θq 6= 0.

For θq = 0 we have the ordinary anomaly.

∂µj
µ
A(−q) = −

g2

8π2
FµνF̃

µν |θq=0
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Nonplanar anomalies - a point-splitting

calculation

The current jA, regulated by point splitting, is

jµ
A(x) = limε→0 ψ̄(x+ ε

2) γ
µγ5∗U(x+ ε

2 , x−
ε
2 )∗ψ(x− ε

2)

where a Wilson line has been introduced to

preserve the gauge invariance of the

regularized expression,

U(x, y) = e
ig

∫

y

x
dl·A(l)

It leads to

iqµj
µ
A(q) = − g2

2π2 limε→0
εν(ε−θq)ρ

(ε−θq)2 εµραβ ×
∫

d4k
(2π)4 f(k,|ε−θq|) Fµν(q − k) ikαAβ(k) e−

i
2 qθk

where f is always non-zero and becomes 1 for

|ε−θq| → 0. Again, the anomaly vanishes

unless θq = 0.
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A comment about analyticity

We found that the θq = 0 is different from the

θq → 0 result. Namely, the θq = 0 plane is

singular.

This is not unusual in noncommutative

theories.

In fact, in order to preserve gauge invariance,

the limit θ → 0 cannot be smooth (A.A.,

Nucl.Phys.B593:229.)

For pure U(N) noncommutative theory (θ 6= 0)

β0(SU(N)) = − g3

(4π)2
11
3 N

β0(U(1)) = − g3

(4π)2
11
3 N

For the commutative theory (θ = 0)

β0(SU(N)) = − g3

(4π)2
11
3 N

β0(U(1)) = 0
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Global anomalies

Global anomalies have application both in

phenomenology (pion decay) and in

constraining effective descriptions (’t Hooft

anomaly matching conditions).

Since we argue that mixed global anomalies do

not automatically cancel, the pion decay is

allowed.

In addition, if one considers, for example, a

noncommutative version of Seiberg duality, the

same set of global anomalies (apart from the

baryon number which is now gauged) should

be considered. The noncommutative theory is

not less restrictive.
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Local Anomalies - a paradox

Consider D3 branes placed on C3/Z3 orbifold

singularity. The supersymmetric 4d field

theory that ’lives’ on the brane has the

following chiral content

U1(N)× U2(N)× U3(N)

3 chirals 1

3 chirals 1

3 chirals 1

The theory has mixed anomaly. For example,

the anomaly U2
1 (N)U2(1). Diagrammatically,

it is due to a nonplanar graph.

We have two U(1)’s which are anomalous and

one U(1) (the sum of the above U(1)’s) which

is anomaly free. Local symmetries cannot be

anomalous. String theory should resolve this

problem.
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In the ordinary case, the solution is very

simple. String theory gives a mass M 2 ∼ 1
α′

to

the anomalous U(1)′s. The low energy theory

becomes SU(N)3 × U(1) theory instead of

U(N)3 theory.

Let us see the solution in detail. There are 2

sets of 0-forms and 2-forms (Hodge dual to

each other) RR fields in the twisted sector that

couple to the brane via WZ terms

S ∼
1

α′2

∫

d4x ΣqCq ∧ tr exp 2πα′F

In terms of the dual 0-forms C ≡ C0 we have

the following action

S ∼

∫

d4x
1

α′
(tr Aµ + ∂µC)2 + C tr FµνF̃µν

Under a gauge transformation

Aµ → Aµ + ∂µλ , C → C − λ.

In this way the U(1)’s get a gauge invariant

mass of the string scale.
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In addition, the anomaly cancels (as it should

in string theory) due to the variation of the

interaction term between the RR scalar and

the gauge field.

Diagrammatically, we have a version of the

Green-Schwarz mechanism

U(1)

U(N) U(N)

RR field  + =  0

U(N) U(N)

U(1)

a b

The triangle diagram is cancelled by a tree

level diagram which involves a propagation of

a closed string field.
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The noncommutative Green-Schwarz

mechanism

In the presence of a constant NS-NS 2 form, in

the Seiberg-Witten limit, the field theory on

the D3 branes becomes noncommutative.

What is therefore the mechanism that

guarantees the consistency of the field theory ?

Clearly, the above mechanism should be

modified.

First: the low energy theory cannot be an

SU(N) theory, since the SU(N) algebra is not

closed under noncommutative gauge

transformation.

Second: the triangle diagram exists, in the

noncommutative case, only for θq = 0. It

cannot be be cancelled by the tree level

diagram without a modification.
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We suggest the following solution: The tree

level diagram also exists only for θq = 0.

The reason is as follows. The intermediate RR

field originates from a closed string. According

to Seiberg and Witten, it ’feels’ a different

metric: the closed string metric. We need to

translate the closed string metric to an open

string metric by using

g−1 = G−1 −
θGθ

(2πα′)2
,

Accordingly the RR field propagates in the

open string metric as follows

1

q2 + n
α′

→
1

q2 + (θq)2

(2πα′)2 + n
α′

For θq = 0, the situation is as in the ordinary

(commutative) theory. For θq 6= 0 the whole

massive tower could (in principle) participate

in the mechanism, but a direct calculation

(and gauge invariance) lead to the vanishing of

their contribution.
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We therefore propose the Lagrangian

L ∼
1

α′
(tr Aµ+∂µC)(q)Gµν(tr Aν+∂νC)(−q)|θq=0.

This action is gauge invariant with respect to

a noncommutative gauge transformation ! The

reason is that for θq = 0 the gauge

transformation

tr δλAµ(q) =

tr iqµλ(q) + tr
∫

d4kA(k)λ(q − k) sin kθq

becomes commutative.

The anomalous U(1)’s become massive only if

they propagate with θq = 0, namely with

momentum transverse to the noncommutative

plane. Otherwise, the low-energy theory is

U(N).
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Concerning the anomaly cancellation:

Assuming, as in the commutative case, a term

C tr FµνF̃µν . We will obtain the following

effective action after integration over the RR

field

Seff =

∫

d4q (
1

∂2
tr ∂A)(q)(tr Fµν F̃µν)(−q)|θq=0.

Thus, the anomaly from the measure is

cancelled by tree level contribution in a

Green-Schwarz mechanism that involves only

θq = 0 modes.

In a direct string theory calculation the

mechanism originates from

U(1)
U(N)

U(N)
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Summary

• Nonplanar anomalies do not vanish.

• In the case of local nonplanar anomalies,

anomaly cancellation can be achieved via a

GS mechanism, which involves RR modes

with θq = 0. The low-energy theory is a

gauge invariant U(N) theory and certain

U(1)’s become massive only for θq = 0.

• Global anomalies do not automatically

vanish and therefore noncommutativity is

not excluded.
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