Studies of large-N reduction with adjoint fermions

Barak Bringoltz
University of Washington

“Non-perturbative volume-reduction of large-N QCD with adjoint fermions”
BB and S.R. Sharpe, 0906.3538

“Large-N volume reduction of lattice QCD with adjoint Wilson fermions at weak coupling”
BB, JHEP, 0905.2406
Main motivation

Study a large-N limit of QCD where quarks are back-reacting on gauge fields

Armoni-Veneziano-Shifman:

QCD(AS)
infinite volume

Orientifold

QCD(Adj)
infinite volume

Kovtun-Unsal-Yaffe:

QCD(Adj)
infinite volume

Orbifold

QCD(Adj)
“zero” volume

“Eguchi-Kawai”
volume reduction
works if have light
adjoint quarks around

Study QCD(Adj) on a single-site gives physics of QCD(AS) at infinite volume
More motivations

QCD + adjoints is an interesting theory:

- \(N_f=1/2 \) is softly broken \(\mathcal{N}=1 \) SUSY
- \(N_f=2 \) is in (or close by to) the conformal window.
- Any value of \(N_f=2 \) and heavy enough quarks is YM.

Does it really provide a workable Eguchi-Kawai? (finally, after 27 years...)

- Original Eguchi-Kawai. Jan `82.
- Quenched Eguchi-Kawai. Bhanot, Heller, Neuberger, Feb `82
- Twisted Eguchi-Kawai. Gonzalez-Arroyo, Okawa, July `82

Can study large-N limit of all these with method I will describe.

But Bhanot-Heller-Neuberger Feb `82.
But BB-Sharpe, 2008.
But, Teper-Vairinhos, Hanada-et-al, Bietenholtz et al. 2006.

This talk. No “But”’s?
I. What is the Eguchi-Kawai equivalence.

Given SU(N) gauge theory on an $L_1 \times L_2 \times L_3 \times L_4$ lattice, defined by $g^2N, am, a\mu, \ldots$

Then if:

- Translation symmetry is intact.
- Z_N center symmetry is intact.
- large-N factorization holds.

At $N=\infty$, Wilson loops, Hadron spectra, condensates, etc. are independent of $L_{1,2,3,4}$.
I. What is the Eguchi-Kawai equivalence.

Given SU(N) gauge theory on an $L_1 \times L_2 \times L_3 \times L_4$ lattice, defined by $g^2 N, a m, a \mu, \ldots$

Then if:

• Translation symmetry is intact.

• Z_N center symmetry is intact.

• Large-N factorization holds.

at $N = \infty$

Wilson loops, Hadron spectra, condensates, etc. are independent of L_1, L_2, L_3, L_4.

This talk: fate of Z_N. First at weak coupling, then non-perturbatively
I. What is the Eguchi-Kawai equivalence.

Given SU(N) gauge theory on an $L_1 \times L_2 \times L_3 \times L_4$ lattice, defined by $g^2 N, a\mu, \ldots$

Then if:

- Translation symmetry is intact.
- \mathbb{Z}_N center symmetry is intact.
- Large-N factorization holds.

This talk: fate of \mathbb{Z}_N. First at weak coupling, then non-perturbatively

Wilson loops, Hadron spectra, condensates, etc.
are independent of $L_{1,2,3,4}$.

Not “academic” requirements:

Breakdown of EK equivalence by formation of a baryon crystal

BB, PRD, 0811.4141, 0901.4035

QEK model
BB+Sharpe 2008

at $N=\infty$
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1 = 1$.

Fields:

$$U_{\mu=0}(\vec{x}, x_0 = 1) \equiv \Omega_{\vec{x}}$$

$$U_{\mu=1,2,3}(\vec{x}, x_0 = 1) \equiv U_{\mu=1,2,3}(\vec{x})$$

$$\psi(\vec{x}, x_0 = 1) \equiv \psi_{\vec{x}}$$

Action:

Gauge: Wilson, $b = 1/g^2 N$

Fermions: Wilson, $\kappa = \frac{1}{8 + 2am_0}$

kappa=$1/8$: chiral quarks

kappa=0 : infinitely massive quarks

Weak coupling expansion:

$$\Omega_{\vec{x}}^{ab} = \delta^{ab} e^{i\theta^a} + \delta \Omega^{ab}(\vec{x}) + \ldots$$

$$g^2 N \to 0 :$$

$$U_{\vec{x},\mu} = 1 + iA_\mu(\vec{x}) + \ldots$$
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1 = 1$. BB, JHEP, 0905.2406

Get familiar form

$$V(\theta) = \sum_{a \neq b} \int \left(\frac{dp}{2\pi}\right)^3 \left\{ \log \left[\hat{p}^2 + 4 \sin^2 \left(\frac{\theta^a - \theta^b}{2}\right) \right] - 2N_f \log \left[\hat{p}^2 + \sin^2 (\theta^a - \theta^b) + m_W^2 (\theta, p) \right] \right\}$$

$$\hat{p}^2 = 4 \sum_{i=1}^{3} \sin^2 p_i/2 \overset{a \rightarrow b}{\longrightarrow} \hat{p}^2 \quad \hat{p}^2 = \sum_{i=1}^{3} \sin^2 p_i \overset{a \rightarrow b}{\longrightarrow} \hat{p}^2 \quad m_W = a m_0 + 2 \left[\sin^2(p/2) + \sin^2((\theta^a - \theta^b)/2) \right]$$

Calculate $V(\theta)$ potential for different θ^a corresponding to Z_N, $Z_N \rightarrow \emptyset$, $Z_N \rightarrow Z_2$.

These are good news:
Reduction works!
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1=1$.

Aside: Comparing some weak coupling calculations.

<table>
<thead>
<tr>
<th>Kovtun et al. ‘07</th>
<th>Lattice calculation</th>
<th>Bedaque et al. ‘08</th>
</tr>
</thead>
<tbody>
<tr>
<td>4D YM + adjoints continuum</td>
<td>4D YM + Wilson adjoints and $L_1=1$</td>
<td>Think about $L_1=1$ as 3D theory defined on spatial continuum</td>
</tr>
<tr>
<td>Z_N</td>
<td>Z_N</td>
<td>$Z_N \rightarrow Z_2$</td>
</tr>
</tbody>
</table>

Useful to understand the reason for the difference
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1=1$. BB, JHEP, 0905.2406

Bedaque et al. (focus on gauge dynamics first)

\[
S_{\text{gauge}} = \frac{2N}{\lambda} \text{Re} \sum_{x} \text{Tr} \left(U_{x,i} U_{x+1,j} U_{x+1,j}^\dagger U_{x,j}^\dagger \right) + \frac{2N}{\lambda} \text{Re} \sum_{x} \text{Tr} \left(U_{x,i} \Omega_{x,i} U_{x,i}^\dagger \Omega_{x,i}^\dagger \right)
\]

\[
S_{\text{one-site}} = \int d^3 x \left(\frac{1}{g^2} \text{Tr} \sum_{i<j}^3 F_{ij}^2 + f^2 \text{Tr} \sum_i \left| D_i \Omega \right|^2 \right)
\]

\[
D_i \Omega(x) = \partial_i \Omega(x) + i[A_i, \Omega]
\]

$\Omega \in SU(N)$
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1 = 1$. BB, JHEP, 0905.2406

Bedaque et al. (focus on gauge dynamics first)

$$S_{\text{gauge}} = \frac{2N}{\lambda} \text{Re} \sum_{i<j} \text{Tr} \left(U_{x,i} U_{x+i,j} U_{x+j,i}^\dagger U_{x,j}^\dagger \right)$$

$$+ \frac{2N}{\lambda} \text{Re} \sum_i \text{Tr} \left(U_{x,i} \Omega_{x+i} U_{x,i}^\dagger \Omega_x^\dagger \right)$$

\[\Rightarrow \text{"} a_s \rightarrow 0 \text{"} \]

$$S_{\text{one-site}} = \int d^3x \left(\frac{1}{g^2} \text{Tr} \sum_{i<j \in [1,3]} F_{ij}^2 + f^2 \text{Tr} \sum_i |D_i \Omega|^2 \right)$$

$$D_i \Omega(x) = \partial_i \Omega(x) + i[A_i, \Omega]$$

$$\Omega \in SU(N)$$

$$V(\theta) = \sum_{a \neq b} \int \left(\frac{dp}{2\pi} \right)^3 \log \left[a_t^2 p^2 + \sin^2 \left(\frac{\theta^a - \theta^b}{2} \right) \right] = \Lambda^3 + \sum_{a \neq b} \int \left(\frac{dp}{2\pi} \right)^3 \log \left[1 + \frac{1}{a_t^2 p^2} \sin^2 \left(\frac{\theta^a - \theta^b}{2} \right) \right]$$
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1 = 1$. BB, JHEP, 0905.2406

Bedaque et al. (focus on gauge dynamics first)

$$S_{\text{gauge}} = \frac{2N}{\lambda} \text{Re} \sum_{x<i,j} \text{Tr} \left(U_{x,i} U_{x+i,j} U_{x+j,i} U_{x,j}^\dagger \right)$$

$$+ \frac{2N}{\lambda} \text{Re} \sum_{x,i} \text{Tr} \left(U_{x,i} \Omega_{x+i} U_{x,i}^\dagger \Omega_{x}^\dagger \right)$$

"$a_s \to 0$"

$$S_{\text{one-site}} = \int d^3x \left(\frac{1}{g^2} \text{Tr} \sum_{i<j\in[1,3]} F_{ij}^2 + f^2 \text{Tr} \sum_i |D_i \Omega|^2 \right)$$

$$D_i \Omega(x) = \partial_i \Omega(x) + i[A_i, \Omega]$$

$$\Omega \in SU(N)$$

$$V(\theta) = \sum_{a \neq b} \int \left(\frac{dp}{2\pi} \right)^3 \log \left[a_t^2 p^2 + \sin^2 \left(\frac{\theta^a - \theta^b}{2} \right) \right] = \Lambda^3 + \sum_{a \neq b} \int \left(\frac{dp}{2\pi} \right)^3 \log \left[1 + \frac{1}{a_t^2 p^2} \sin^2 \left(\frac{\theta^a - \theta^b}{2} \right) \right]$$

$$= \Lambda^3 + \Lambda \sum_{a \neq b} \sin^2 \left(\frac{\theta^a - \theta^b}{2} \right) + \ldots$$

$$= \Lambda^3 + \Lambda \left| \text{tr} \Omega_{\text{classical}} \right|^2 + \ldots, \Omega_{\text{classical}}^{ab} = e^{i\theta^a}$$

$S_{\text{one-site}}$ is non-renormalizable ... need counter-terms...

Bernard&Appelquist `80, Longhitano `80, Banks&Ukawa `84, Gasser-Leutwyler `84, Arkani-Hamed-Cohen-Georgi `01, Pisarski `06,
II. Weak coupling analysis: $L_{2,3,4} = \infty$, $L_1=1$. BB, JHEP, 0905.2406

What does this teach us?

- Continuum limit in space with $L_1=1$ (or for any $D > 2L_1$).
- Need counter-terms \rightarrow new **Low Energy Constants (LEC)**.
- Means treating theory as an **Effective Field Theory (EFT)**, and at one-loop:

\[V(\theta) \rightarrow V(\theta) + b_1 |\text{tr} \Omega_{\text{classical}}|^2 + b_2 |\text{tr} \Omega_{\text{classical}}^2|^2 \]

Amusing: these are (Mithat and Larry)'s terms

Dim-reg hides this and **implicitly** sets $b_1=b_2=0 \rightarrow b_{1,2} > 0$ fixes $Z_N \rightarrow Z_2$ breaking.
II. Weak coupling analysis: \(L_{2,3,4} = \infty, \ L_1 = 1 \). \(\text{BB, JHEP, 0905.2406} \)

What does this teach us?

- Continuum limit in space with \(L_1 = 1 \) (or for any \(D > 2L_1 \)).
- Need counter-terms \(\rightarrow \) new Low Energy Constants (LEC).
- Means treating theory as an Effective Field Theory (EFT), and at one-loop:

\[
V(\theta) \rightarrow V(\theta) + b_1 |\text{tr} \ \Omega_{\text{classical}}|^2 + b_2 |\text{tr} \ \Omega_{\text{classical}}^2|^2
\]

Amusing: these are (Mithat and Larry)'s terms

Dim-reg hides this and implicitly sets \(b_1 = b_2 = 0 \) \(\rightarrow \) \(b_1,2 > 0 \) fixes \(\mathbb{Z}_N \rightarrow \mathbb{Z}_2 \) breaking.

EFT point of view is not necessary

In any case, large-\(N \) reduction defined at fix lattice cutoff:

But \(\mathbb{Z}_N \)-realization may depend on lattice action ...

Results I got cannot be anticipated in advance (from Kovtun et al.)
In any case, we saw that: Wilson fermions at weak coupling obey reduction

But really need a non-perturbative lattice study

- Really interested in $L_{1,2,3,4}=1$, but IR div’s.
- What happens at $g^2 N \sim 1 - 3$?
- Non-perturbative effect (e.g. QEK and TEK model).
In any case, we saw that:
Wilson fermions at weak coupling obey reduction

But really need a non-perturbative lattice study

- Really interested in $L_{1,2,3,4}=1$, but IR div’s.
- What happens at $g^2 N \simeq 1 - 3$?
- Non-perturbative effect (e.g. QEK and TEK model).

Wilson gauge + $N_f=1$ Wilson fermions, Metropolis.
SU(N) with $N=8,10,11,13,15$.
A variety of spacings and masses.

Goal: Map single-site theory in κ and $g^2 N$
Look for intact ZN.

BB+S.Sharpe, 0906.3538
III. Results of non-perturbative MC lattice simulations

What should we expect? $L_{1,2,3,4} = oo$:

- Continuum physics

 $(1/g^2 N =) b$

- Strong-to-weak lattice transition

- Strong-coupling/lattice physics

- Quarks are light along line

BB+S.Sharpe, 0906.3538
What should we expect? $L_{1,2,3,4} = 1$

III. Results of non-perturbative MC lattice simulations

BB+S. Sharpe, 0906.3538

quarks are light along line

Continuum physics

strong-coupling/lattice physics

$\frac{1}{g^2 N} = b$

0.25 0.125 0.04 0.19
What should we expect? $L_{1,2,3,4} = 1$:

Continuum physics

$(1/g^2 N =) b$

Strong-to-weak lattice transition

~ 0.04

Quarks are light along line

Strong-coupling/lattice physics

Continuum physics

~ 0.19
What should we expect? $L_{1,2,3,4}=1$:

- Continuum physics
- $(1/g^2N =) b$
- strong-to-weak lattice transition
- strong-coupling/lattice physics
- ~ 0.04
- ~ 0.19
- quarks are light along line
- $\kappa_c(b)$
- \mathcal{Z}_N^4
- 0.125
- 0.25

III. Results of non-perturbative MC lattice simulations

BB+S.Sharpe, 0906.3538
What should we expect? $L_{1,2,3,4} = 1$:

Continuum physics

$(1/g^2N =) b$

strong-to-weak lattice transition

strong-coupling/ lattice physics

quarks are light along line
What should we expect? $L_{1,2,3,4}=1$:

Continuum physics

$(1/g^2 N =) b$

strong-to-weak lattice transition

strong-coupling/lattice physics

quarks are light along line

III. Results of non-perturbative MC lattice simulations

BB+S.Sharpe, 0906.3538
III. Results of non-perturbative MC lattice simulations

What should we expect? $L_{1,2,3,4}=1$:

- **Continuum physics**
 - $(1/g^2N) = b$
 - Strong-to-weak lattice transition

- **strong-coupling/lattice physics**
 - At $b\approx 0.19$

- **Continuum**
 - At $b\approx 0.04$
 - $\kappa_c(b)$
 - b_{bulk}

- Quarks are light along line
III. Results of non-perturbative MC lattice simulations

What should we expect? $L_{1,2,3,4}=1$:

- Continuum physics
- $\left(\frac{1}{g^2 N} = \right) b$
- Strong-to-weak lattice transition
- Strong-coupling/lattice physics
- Quarks are light along line

BB+S. Sharpe, 0906.3538
III. Results of non-perturbative MC lattice simulations

Scan no. 1: infinitely massive quarks

X-axis: Real(Polyakov)
Y-axis: Imag(Polyakov)
III. Results of non-perturbative MC lattice simulations

Scan no. 1: infinitely massive quarks

X-axis: Real(Polyakov)
Y-axis: Imag(Polyakov)

\[b = 0 \]
III. Results of non-perturbative MC lattice simulations

Scan no. 1: infinitely massive quarks

X-axis: Real(Polyakov)
Y-axis: Imag(Polyakov)

\[b = 0 \quad \text{and} \quad b \approx 0.3 \]
III. Results of non-perturbative MC lattice simulations

Scan no. 1: infinitely massive quarks

X-axis: Real(Polyakov)
Y-axis: Imag(Polyakov)

\[b = 0 \quad b \approx 0.3 \quad b = 0.5 \]
III. Results of non-perturbative MC lattice simulations

Scan no. 2: decreasing the quark mass $b=0.5$, SU(10)
III. Results of non-perturbative MC lattice simulations

Scan no. 2: decreasing the quark mass $b = 0.5$, $SU(10)$

$k \approx 0$

$k = 0.03$
III. Results of non-perturbative MC lattice simulations

Scan no. 2: decreasing the quark mass $b=0.5$, $SU(10)$

$k \approx 0$

$k = 0.03$

$k = 0.06$
III. Results of non-perturbative MC lattice simulations

BB+S.Sharpe, 0906.3538

Scan no. 2: decreasing the quark mass $b=0.5$, SU(10)

$k \approx 0$

$k = 0.03$

$k = 0.06$

$k = 0.12$
Scan no. 2: decreasing the quark mass $b=0.5$, $SU(10)$

$\kappa \approx 0$

$\kappa = 0.03$

$\kappa = 0.06$

$\kappa = 0.12$

$\kappa = 0.1475$
III. Results of non-perturbative MC lattice simulations

Scan no. 2: decreasing the quark mass $b=0.5$, SU(10)

- $\kappa \approx 0$
- $\kappa = 0.03$
- $\kappa = 0.06$
- $\kappa = 0.12$
- $\kappa = 0.1475$
- $\kappa = 0.16$
III. Results of non-perturbative MC lattice simulations

Scan no. 2: decreasing the quark mass $b=0.5$, $\text{SU}(15)$

$\kappa = 0$

$\kappa = 0.06$

$\kappa = 0.09$

$\kappa = 0.1275$

$\kappa = 0.1475$

$\kappa = 0.155$
III. Results of non-perturbative MC lattice simulations

Scan no. 2: looking for the “critical” line

b = 0.35: 1st transition at kappa ~ 0.15

BB+S.Sharpe, 0906.3538
Scan no. 2: looking for the “critical” line

III. Results of non-perturbative MC lattice simulations

BB+S. Sharpe, 0906.3538

\[b = 0.35: \]

1st transition at \(\kappa \sim 0.15 \)
III. Results of non-perturbative MC lattice simulations

Scan no. 2: looking for the "critical" line

1st transition structure at all b. Extending from $\kappa=0.25$ to 0.125
III. Results of non-perturbative MC lattice simulations

All results consistent with phase diagram and validity of reduction.

BB+S.Sharpe, 0906.3538
III. Results of non-perturbative MC lattice simulations

All results consistent with phase diagram and validity of reduction.

But:

- See long autocorrelation times there at very very weak coupling.
- More order parameters for nontrivial breaking of Z_N.

BB+S.Sharpe, 0906.3538
III. Results of non-perturbative MC lattice simulations

All results consistent with phase diagram and validity of reduction.

But:

- See long autocorrelation times there at very very weak coupling.
- More order parameters for nontrivial breaking of \mathbb{Z}_N.

Perform long runs and measure order parameters of the form

$$\text{tr } [P_1^{n_1} P_2^{n_2} P_3^{n_3} P_4^{n_4}] \text{ with } n_i \in [-5, 5]$$

14641 order parameters!
III. Results of non-perturbative MC lattice simulations

All results consistent with phase diagram and validity of reduction.

But:

- See long autocorrelation times there at very very weak coupling.
- More order parameters for nontrivial breaking of Z_N.

Perform long runs and measure order parameters of the form

$$\text{tr} \left[P_1^{n_1} P_2^{n_2} P_3^{n_3} P_4^{n_4} \right] \text{ with } n_i \in [-5, 5]$$

14641 order parameters!

Still no sign of breakdown of Z_N, up to $b=0.5-1.0$
IV. Conclusions and future prospects.

Weak coupling with $L_{2,3,4}=\infty$, $L_1=1$

- Large-N volume reduction works for YM+Wilson adjoints fermions.

Non-perturbative lattice Monte-Carlo of $N_f=1$ case.

- Large-N volume reduction works for YM+Wilson adjoints fermions.

This is exciting:
Eguchi-Kawai finally works
start extracting physics of QCD(Adj) and QCD(AS)

- Mesons, baryons (see Carlos Q. Hoyos’s talk).
- Realization of chiral symmetry (of both adjoint sea-quarks and valence fundamental).
- Comparisons with RMT.
- Static potential, string tensions.
- Open to suggestions ...

A new UNEXPLORED physically relevant and rich theory
IV. Conclusions and future prospects.

Weak coupling with $L_{2,3,4}=\infty$, $L_1=1$

- Large-N volume reduction works for YM+Wilson adjoints fermions.

Non-perturbative lattice Monte-Carlo of $N_f=1$ case.

- Large-N volume reduction works for YM+Wilson adjoints fermions.

This is exciting:

Eguchi-Kawai finally works
start extracting physics of QCD(Adj) and QCD(AS)

- Mesons, baryons (see Carlos Q. Hoyos’s talk).
- Realization of chiral symmetry (of both adjoint sea-quarks and valence fundamental).
- Comparisons with RMT.
- Static potential, string tensions.
- Open to suggestions ...

A new UNEXPLORED physically relevant and rich theory

pretty cool... 😎