Alternative large N_c baryons and holography

Carlos Hoyos C. H., A. Karch, 0904.0008

> University of Washington Seattle

> Large N @ Swansea July 7, 2009

C. Hoyos (U. Washington)

Alternative baryons

LargeN@Swansea 1 / 20

INTRODUCTION

C. Hoyos (U. Washington)

Alternative baryons

LargeN@Swansea 2 / 20

э

Image: Image:

Classic large N_c limits of QCD

't Hooft; Veneziano '79

How to take the limit

•
$$SU(3)
ightarrow SU(N_c), \ N_c
ightarrow \infty$$

• Fundamental Flavors $q^i
ightarrow q^i$

Hadrons

< **-1** → <

< 🗗 🕨 <

Baryons and Regge trajectories

C. Hoyos (U. Washington)

LargeN@Swansea 5 / 20

What is a baryon in QCD?

Other large N_c limits of QCD

Corrigan and Ramond '79; Armoni, Shifman and Veneziano '03

How to take the limit

- $SU(3) \rightarrow SU(N_c), N_c \rightarrow \infty$
- Fundamental Flavors $\Psi_{[ij]} = \frac{1}{2} \epsilon_{ijk} q^k \rightarrow \Psi_{[ij]}; N_{AS} \le 5$
- More flavors: qⁱ
- Chiral version Ryttov, Sannino '05

Hadrons

- 'Light' mesons: $\overline{q_i}q^i$, $\overline{\Psi}^{[ij]}\Psi_{[ij]}$
- 'Heavy baryons': $\epsilon_{i_1\cdots i_{N_c}}q^{i_1}\cdots q^{i_{N_c}}$
- 'Heavy' mesons: $\epsilon_{i_1i_2\cdots i_{N_c-2}i_{N_c-1}i_{N_c}}\overline{\Psi}^{[i_1i_2]}\cdots\overline{\Psi}^{[i_{N_c-2}i_{N_c-1}]}q^{i_{N_c}}$
- 'Light' baryons: $\Psi_{[ij]}q^iq^j$

• • • • • • • •

Planar equivalence and Regge trajectories

Armoni and Patella, 0901.4508

• Supersymmetric theory:

$$\overline{q_i}e^{i\int A}q^j \to \overline{q_i}\int dx \ e^{i\int^x A}\lambda_j^i(x)e^{i\int_x A}q^j + \mathcal{O}(1/R)$$

- Equivalence: $\lambda_j^i \rightarrow \Psi_{[ij]}$
- Quarks joined by fermionic/unoriented string

$$\overline{q_i}e^{i\int A}q^j
ightarrow q_i \int dx \; e^{i\int^x A} \Psi_{[ij]}(x)e^{i\int_x A}q^j + \mathcal{O}(1/R)$$

- Natural framework for large N_c gauge theories at strong coupling
- Mesons appear as fluctuations of probe branes in the geometry
- Usual baryons appear as heavy objects: D-branes

How are light baryons realized?

HOLOGRAPHIC MODEL

C. Hoyos (U. Washington)

Alternative baryons

LargeN@Swansea 10 / 20

< A

э

- $\mathcal{N} = 4 SU(N_c) SYM + \mathcal{N} = 2$ hypermultiplets Q, \tilde{Q}
- Global symmetries: $SU(2)_L \times SU(2)_R \times U(1)_R \times U(N_f)$

fields	$SU(N_c) \times U(N_f)$	$(j_R, j_L)_R$
\mathcal{Q}	(1,1)	$(1/2,0)_1$
Φ_1, Φ_2	$(N^2_c-1,1)$	$(1/2, 1/2)_0$
Φ3	$\left(N_c^2-1,1 ight)$	$(0,0)_{\pm 2}$
Q	(\overline{N}_{c},N_{f})	$(1/2, 0)_0$
\widetilde{Q}	(N_c, \overline{N}_f)	$(1/2, 0)_0$

- Supersymmetric projection $\mathbf{Z}_2 \subset SU(2)_L$
- Φ_1 , $\Phi_2 \rightarrow$ antisymmetric

D-brane setup

- 2N_c D4 branes
- N_f D6s on top of O6⁻
- $N_f \ll N_c$ (quenched)
- Projection made in T-dual (D3+D7/O7+Z₂)

Field theory from D-branes

Chan-Paton factors

• Orbifold projection $X \to \pm \gamma_p X \gamma_p^{-1}$

$$\gamma_3 = \begin{pmatrix} iI_{N_c} \\ & -iI_{N_c} \end{pmatrix}, \quad \gamma_7 = \begin{pmatrix} iI_{N_f} \\ & -iI_{N_f} \end{pmatrix},$$

• Orientifold projection $X \to \pm \omega_p X^T \omega_p^{-1}$

$$\omega_3 = \begin{pmatrix} & I_{N_c} \\ -I_{N_c} & \end{pmatrix}, \quad \omega_7 = \begin{pmatrix} & I_{N_f} \\ I_{N_f} & \end{pmatrix},$$

Orientifold projection

D3 brane fields

• D3/D7 spectrum

H^A (N_c, \overline{N}_f)

• D7 brane fields $(A_{0123}, X_{45} \leftrightarrow A_{6789} \text{ parity odd})$

A_{0123}	Adjoint $SU(N_f)$
X_{45}	Adjoint $SU(N_f)$
A ₆₇₈₉	Antisymmetric $SU(N_f)$

Other examples

< 17 ▶

э

BPS Spectrum: field theory

BPS hypermultiplet $j_L = \ell/2$, *n*

- Lowest component: $\Delta = 2j_R + R/2$
- Bosonic degrees of freedom $8(\ell+1)$

Bosons:

• Fermions:

$$\frac{\Delta \quad (j_R, j_L)_R \quad \#}{\ell + 5/2 \quad (\frac{\ell+1}{2}, \frac{\ell}{2})_{\pm 1} \quad 2} \\ \ell + 7/2 \quad (\frac{\ell-1}{2}, \frac{\ell}{2})_{\pm 1} \quad 2$$

BPS Spectrum: gravity dual

$$AdS_5 imes \mathbf{RP}^5 + \mathrm{O7}/\mathrm{D7}$$
 on $\mathbf{RP}^3 \subset \mathbf{RP}^5$

D7 brane fluctuations

- Isometry \mathbf{RP}^3 : $SO(4)/\mathbf{Z}_2 \simeq SU(2)_L/\mathbf{Z}_2 \times SU(2)_R$
- Rotation on plane transverse to D7: $U(1)_R$
- Supersymmetries: $(j_R, j_L)_R = (1/2, 0)_1$

D7 KK modes on $S^3 \subset S^5$: A, Φ , Ψ enter in hypermultiplets with $j_L = \ell/2$

Δ	mode
$\ell + 2$	$A_{-}^{\ell+1}$
$\ell + 5/2$	Ψ_{-}^{ℓ}
$\ell + 3$	Φ^ℓ, A^ℓ
$\ell + 7/2$	$\Psi_+^{\ell-1}$
$\ell + 4$	$A_{\pm}^{\ell-1}$

Kruczenski, Mateos, Myers and Winters, hep-th/0304032; Kirsch hep-th/0607205

Projection of the bosonic BPS spectrum

Parity odd modes $\ell = 2k + 1$ ($j_L = k + 1/2$) are projected to the antisymmetric rep. of $SU(N_f)$

$$\Phi^{2k+1} \to -(\Phi^{2k+1})^{\mathcal{T}} \quad , \quad A^{2k+1} \to -(A^{2k+1})^{\mathcal{T}} \quad , \quad A^{2k+2}_{\pm} \to -(A^{2k+2}_{\pm})^{\mathcal{T}}$$

Example

$${\cal B}^{ab}=Q^a_i\Phi^{[ij]}_1Q^b_j$$

• \mathcal{B} ($\Delta = 3$, R = 0) is the lowest component of a $j_L = 1/2$ multiplet

- Symmetric in flavor \Rightarrow antisymmetric in $SU(2)_R \Rightarrow j_R = 1/2$
- Antisymmetric in flavor \Rightarrow symmetric in $SU(2)_R \Rightarrow j_R = 3/2$
- BPS condition $\Delta = 2j_R + R/2 \Rightarrow$ antisymmetric in flavor

Image: Image:

- Massless string excitations BPS operators: $\sim m_q/\sqrt{\lambda}$ (e.g. ${\cal B}^{[ab]})$
- Small string excitations non-BPS operators: $\sim m_q/\lambda^{1/4}$ (e.g. $\mathcal{B}^{(ab)}$)
- Large classical strings semiclassical regime: $\sim m_q$
- D3 on ${f RP}^3$ Pfaffian operators/heavy mesons: $\sim {\it N_c m_q}/{\sqrt{\lambda}}$
- D5 on \mathbf{RP}^5 Baryon operator: $\sim N_c m_q$

Meson-baryon degeneracy

- Mesons and baryons lie on parallel 'Regge trajectories' (defined by $\ell)$
- Degenerate in the semiclassical limit $\sim m_q/\sqrt{\lambda}$ or $\sim m_q/\lambda^{1/4} \ll m_q.$
- SO(5) symmetry: mass $\sim n + \ell \Rightarrow$ accidental degeneracy

- Alternative baryons and mesons have a common description in bulk
- In the semiclassical limit mesons and baryons are degenerate
- The results do not depend on the AdS₅ part of the geometry
- In a confining theory, a similar construction will lead to equal Regge slopes