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in the standard manner (i.e. in accordance with Ref. [26]) in terms of the
ultraviolet parameters,
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where MUV is the ultraviolet (UV) regulator mass, while g2
0 and λ0 are the

bare coupling constants.
Note that since Λ is expressible in terms of the ’t Hooft coupling, it is

explicitly N -independent. Equation (3.9) is exact [27] in supersymmetric
gluodynamics. If θ "= 0, the exponent in Eq. (3.8) is replaced by
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Figure 1. The gluino condensate 〈λλ〉 is the order parameter labeling distinct vacua in super-

symmetric gluodynamics. For the SU(N) gauge group there are N discrete degenerate vacua.

All hadronic states are arranged in supermultiplets. The simplest is
the so-called chiral supermultiplet, which includes two (massive) spin-zero
mesons (with opposite parities), and a Majorana fermion with a Majorana
mass (alternatively, one can treat it as a Weyl fermion). The interpolating
operators producing the corresponding hadrons from the vacuum are G2,
GG̃ and Gλ. The vector supermultiplet consists of a spin-1 massive vector
particle, a 0+ scalar and a Dirac fermion. All the particles from one super-
multiplet have degenerate masses. Two-point functions are degenerate too
(modulo obvious kinematical spin factors). For instance,

〈G2(x) , G2(0)〉 = 〈GG̃(x) , GG̃(0)〉 = 〈Gλ(x) , Gλ(0)〉 . (3.10)
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Extremal surface
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Composite wall
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✾ In many theories one can switch on magnetic fluxes
    inside the brane (electric fluxes on the brane)

✾ If the flux is larger than critical, elementary branes
    are stabilized (work in progress)

What we find for super-Yang-Mills? 

Γ∼ exp
[
−π

3
N2 (Λd)3

]
.
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kinks (confined monopoles)
orientation of chromomagnetic flux
in group space fluctuates and 
averages to zero!

string I
string II

Basic theory: ✾ N=2 U(N) gauge group, N flavors
gluons + 2 gluinos + adjoint scalars

+ U(1) Fayet-Iliopoulos term ξ



M. Shifman

FI stabilization

✾ q=0 ⇒ BPS

  Bulk theory is fully Higgsed
✾ Color+Flavor locking 
✾ Common mass term eliminated by shifting a
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Non-Abelian string, SU(N)/SU(N-1)×U(1)=CP(N-1) 
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in the problem at hand they take the form

〈qkA〉 =
√

ξ





1 . . . 0 0 . . . 0
. . . . . . . . . . . . . . . . . .
0 . . . 1 0 . . . 0



 , 〈¯̃qkA〉 = 0,

k = 1, ..., N , A = 1, ..., Nf , (2.4)

where we write down the quark fields as matrices in color and flavor indices.
This particular form of the squark condensates is dictated by first two lines
in Eq. (2.3). Note that the squark fields stabilize at nonvanishing values
exclusively due to the U(1) factor represented by the term in the second line.

The FI term ξ singles r = N vacua out of all set of r-vacua which are
present in the theory if quadratic in the adjoint field superpotential defor-
mation µA2 is added. In the vacuum under consideration the adjoint fields
also develop VEVs, namely,
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 , (2.5)

For generic values of the quark masses, the SU(N) subgroup of the gauge
group is broken down to U(1)N−1. However, in the special limit

m1 = m2 = ... = mNf
, (2.6)

the SU(N)×U(1) gauge group remains unbroken by the adjoint field. In this
limit the theory acquires a global flavor SU(Nf ) symmetry.

While the adjoint VEVs do not break the SU(N)×U(1) gauge group
in the limit (2.6), the quark condensate (2.4) results in the spontaneous
breaking of both gauge and flavor symmetries. A diagonal global SU(N)
combining the gauge SU(N) and an SU(N) subgroup of the flavor SU(Nf )
group survives, however. Below we will refer to this diagonal global symmetry
as to SU(N)C+F .

More exactly, the pattern of breaking of the color and flavor symmetry is
as follows:

U(N)gauge × SU(Nf)flavor → SU(N)C+F × SU(Ñ)F × U(1) , (2.7)

where Ñ is defined in (1.2). Here SU(N)C+F is a global unbroken color-flavor
rotation, which involves first N flavors, while the SU(Ñ)F factor stands for

10

If ξ≠ 0

Now, add W=μa2, breaking N=2 down to N=1

T=2πξ
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u =∞ finish: N vacua fuse. 
σ→0.  Conformal limit ???

εvac
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Conclusions:

☀ Two distant elementary wall can fuse through quantum

     tunneling. Γ∼ e-N  .   Fluxes tend to stabilize;

☀ SUSY broken , but 2D confinement persists

☀ Heterotic N=(0,2) CP(N-1) model solved in 1/N

Part 1.  

Part 2.  
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